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Abstract. We show that mode jumping in the buckling of a rectangular plate 
may be explained by a secondary bifurcation as suggested by Bauer et al. [1] 
- when "clamped" boundary conditions on the vertical displacement function 
are assumed. In our analysis we use the singularity theory of mappings in the 
presence of a symmetry group to analyse the bifurcation equation obtained by 
the Lyapunov-Schmidt reduction applied to the Von K•rmfin equations. 
Noteworthy is the fact that this explanation fails when the assumed boundary 
conditions are "simply supported". 

Mode jumping in the presence of "clamped" boundary conditions was 
observed experimentally by Stein [9]; "simply supported" boundary con- 
ditions are frequently studied but are difficult - if not impossible - to realize 
physically. Thus, it is important to observe that the qualitative post-buckling 
behavior depends on which idealization for the boundary conditions one 
chooses. 

Mode jumping [-9] is perhaps the most noteworthy feature of experimental studies 
of the post-buckling behavior of plates. As is well known, a rectangular plate can 
support a number of different buckled configurations; these may be distinguished 
by their wave number, by which we mean the number of zeroes of the (normal) 
deflection function along a line parallel to the leading direction. Experiments [9] 
have shown that the wave number need not remain constant as the load is 
gradually increased past the buckling load; rather there are special values of the 
load parameter at which a sudden and violent change in buckling pattern occurs. 
The new mode typically has a wave number greater than the old mode by unity. 

A spring model proposed by Stein [-8] offers an attractive explanation of this 
phenomenon. As observed by Bauer et al. [-1] secondary bifurcation often results 
from splitting a double eigenvalue by perturbation; in the spring model mode 
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jumping could occur [1] when the primary solution branch lost stability through 
such a secondary bifurcation. Whether or not mode jumping actually occurs 
depends on the value of certain parameters. In [4] we analyzed the most general 
form of reduced bifurcation equations for a rectangular plate at a double 
eigenvalue, consistent with the symmetries of the von Kfirmfin equations (or any 
other plate theory). It follows from this analysis that the spring model already 
exhibits (essentially) all possible behavior of the plate, and moreover that whether 
the plate exhibits mode jumping is determined by two dimensionless parameters 
which - using the terminology of singularity theory we call modal parameters. 
Calculations by Matkowsky and Putnik [6], Chow et al. [2], and Magnus and 
Poston [5] cast doubt on this explanation of mode jumping. These authors 
analyzed a simply supported plate governed by the von Kfirmfin equations and (in 
our language) found that the modal parameter values were such that mode 
jumping would not occur. However simply supported boundary conditions are 
hard to achieve experimentally, and in fact Stein [9] suggests that clamped 
boundary conditions would be the most accurate approximation for the loaded 
ends. Therefore, in this paper we analyze a yon K~trmfin plate subject to these 
mixed boundary conditions - clamped at the loaded edges, simply supported at 
the unloaded edges - and we find that here mode jumping does occur. (For 
comparison we also consider the case of simply supported boundary conditions on 
all four sides.) Of course, given the many doubts surrounding the von K~trm/m 
equation, the most important result of this paper is perhaps that even the 
qualitative behavior of a buckled plate may be changed by the choice of boundary 
conditions. 

The reader should be warned that the calculations outlined in Sect. 8 are long 
and tedious. However, the fact that these computations are made without the use 
of a computer is a simplification when compared to other work in this area. 
Moreover, our choice of boundary conditions made this simplification possible 
and this choice was prompted by physical considerations alone. 

1. The Experiment of Stein and Its Mathematical Idealization 
Let us begin by a description of Stein's [9] apparatus. In Fig. 1 we have indicated 
part of a large plate divided into 11 panels, each 4.71" by 25.36". The division is 
performed by knife blades located on either side of the plate, as shown in the end 
view. The knife blades prevent any normal displacement while (in principle) not 
inhibiting motion in the plane. Actually one is interested in the buckling of just a 
single panel, but having many, more or less identical, adjacent panels provides an 
experimentally feasible way of achieving simply supported boundary conditions 
along the unloaded edges. All measurements were performed on the center panel, 
which for theoretical purposes is treated as being embedded in an infinite periodic 
array of such panels. 

In the experiment, when the load was first increased beyond the buckling load, 
the initial configuration of the plate contained 5 buckles. This pattern persisted as 
the load was gradually increased until a load approximately 1.7 times the 
buckling load was passed, when the plate jumped suddenly and violently to a new 
configuration with 6 buckles. Further increases in the load led to jumps to states 
with 7 and 8 buckles, and eventually to the complete collapse of the plate. These 
latter jumps occurred after the plate had begun to deform plastically and are not 
discussed here - we consider only the jump from 5 buckles to 6. 
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For computational convenience in our theoretical analysis we choose a length 
scale so that the plate has width rc and length Ire. Thus the undeformed plate is 
parameterized by 

~ = {(Z1, Z2) :O ~ z1 ~ lTc, O ~ z 2 ~ ~} . 

The plate is subjected to a load ~ applied to the ends through a rigid yoke as 
indicated in Fig. 2. The von Kfirmfin equations for w, the z3-deflection of the plate, 
and ~b, the Airy stress function, are as follows 

A 2w = [q~, w ]  - ~ w  . . . .  (1.1) 

A2~=-½Ew, w]. 
Here A 2 is the biharmonic operator in the plane and 

[u, v] = u= 1._1v=2~2 - 2 u . , ~  v . . . .  + u=~= v~,=~ (1.2) 

the subscripts indicating differentiation. We analyze two sets of boundary 
conditions for w, namely 

w = w N = 0  on ends (clamped) ~ (1.3i) 
w = A w  = 0 on sides (simply supported)J'  

w = A w  = 0  (simply supported all around). (1.3ii) 

(The subscript N indicates differentiation in the normal direction.) We are most 
interested in (1.3i) as it seems to be the best approximation for Stein's experiment 
(We quote : "The plate was subject.. ,  to 'flat end' loading which results in almost 
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complete clamping of the loaded edges."), but we also consider (1.3ii) for the sake 
of comparison. In both cases above we take 

q~N =(A ~b)~ =0  (1.4) 

as the boundary condition for ~b; this differs somewhat from the usual choice, and 
we explain our reasons in Sect. 2. 

The paper is structured as follows. After discussing the boundary conditions 
for the yon Kftrmfin equations in the next section, we give a variational 
formulation in Sect. 3. The eigenvalues and eigenfunctions for the linearized yon 
Kfirmfin equations are computed in Sect. 4 along with a description of the relevant 
symmetries for this problem. In Sect. 5, we use results from Sects. 3 and 4 to 
compute the Lyapunov-Schmidt reduction to lowest order. The results from 
singularity theory [4] which form the basis for the rigorous analysis given here are 
sketched in Sect. 6. The main result is that all small perturbations of the yon 
Kfirmfin equations near a double eigenvalue consistent with the symmetries of 
Sect. 4 may be described - in an appropriate qualitative sense - by the addition of 
just one more parameter. As a consequence the whole perturbed bifurcation 
problem can be given an explicit normal form from which computations about 
secondary bifurcation may be made. The diagrams showing how mode jumping 
may be accomplished are also given in this section. The modal parameters for the 
two choices of boundary conditions are computed in Sects. 7 and 8, Finally, in 
Sect. 9 we show that the aspect ratio I may be taken to be the one non-modal 
perturbation parameter. 

2. Boundary Conditions in the yon Kfirmfin Equations 

We have discussed above the two choices (1.3) for boundary conditions for w along 
the loaded ends. The simply supported boundary conditions for w along the sides 
were chosen for the following reason. The end view of a typical cross section of the 
plate after buckling is indicated in Fig. 3. Assuming the center panel is embedded 
in an infinite periodic array, the displacement w is an odd function under reflection 
across either side of the panel, so 

w = WNN = 0 on sides. 

On adding a second order tangential derivative to WNN = 0 we obtain A w  =0, as 
taken in (1.3). 

Fig. 3 

The boundary conditions for the stress function are more subtle, perhaps 
because ~b is a derived quantity in the theory. In the remainder of this section we 
indicate explicitly the hypotheses under which (1.4) follows from the equations of 
continuum :mechanics. The reader prepared to accept (1.4) may omit this section 
without loss of continuity. Most interestingly we found that the boundary 
conditions (1.4), which we consider most realistic for the experiment, actually 
simplified the calculations as compared to the more customary choice ~b= Aq~ =0. 
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Consider a three dimensional solid occupying a region U in its undeformed 
position. For the rectangular plate 

U =  {0=<z 1 <-rcl, O<=z 2 <=~, -h<=z 3 <=h}. 

A deformation of the solid is a map ~:U--*IR 3. The principle unknowns in 
continuum mechanics are the three components of the displacement u = (u 1, u 2, u3) 
defined by 

• (z) = z + u(z) ,  (2.1) 

where z=(zl ,  zz, z3). The strain tensor is defined by 

1 [~u~ Ou~ (2.2) 

The stress tensor ~rij is determined from the strain by some sort of constitutive 
relation. For the problem at hand the strains are small and Hooke's law is 
considered sufficiently accurate. Thus, stress and strain are related linearly by 

1 1 3 

where E is Young's modulus, v is Poisson's ratio, and 6is is the Kronecker notation. 
Of course (2.3) may be inverted to give a as a function of e. Finally the equilibrium 
equations are 

j=l O~j = 0 '  (2.4) 

where the tilde indicates variables expressed in the deformed coordinates resulting 
from the transformation ~b. Equation (2.4) represents a system of three equations 
for the three components of u. 

The derivation of the yon K~trmfin equations from (2.4) is based on two 
approximations which, moreover, are intertwined in a subtle way. First, it is 
assumed that the plate is very thin (i.e., h ~ l ) ,  and second, it is assumed that 
deflections are small with the z3-deflection (u3) predominating. This derivation, 
rather heuristic in character, is carried out in Chap. V of [10], for example, and 
yields the PDE 

2w = [~b, w] 
AZq5 = -½[w, w], (2.5) 

where w = u  3. We mention here that the Airy stress function q~(zl, z2) is defined by 
the relations 

t 
qSz2z~ = ffl~, ¢ ~  = -ff~2, qSz,~, =ff22, (2.6) 

where the bars indicate averages over the thickness of the plate. For example, 

1 h 
~11(Z1 ~ Z2) ~- ~ 2.~h 0"11(ZI' Z2' z3)dz3" 
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Since 4) is defined by second order differential equations we may without loss of 
generality assume 

05~,(0, 0) = 05~(0, 0) = 0 = ~ 05. (2.7) 
~2 

The relations (2.6) and (2.7) provide the basis for the choice of boundary 
conditions for 05. Below we shall omit the bars in (2.6) - indeed to lowest order in 
the thickness parameter h all quantities are independent of z 3 and thus equal their 
averages. 

The approximations indicated above mean that a number of terms in (2.2) are 
negligibly small; indeed to this level of approximation we have 

l(c~u 1 ~u 2 c~u3~u3t 
~,2 = ~[~z z + ~z [  + az, Oz2] (2.8) 

c~u i 1 [~u3~ z 
eu= < + ~l~zf  ) i=1,2. 

We now analyze the boundary conditions for 05, first along the loaded end of 
the plate given by zl = 0. Those boundary conditions which seem the most relevant 
here are 

0u, 
8z 2 = 0  and °"12=0 along z 1=0 .  (2.9) 

For  imagine the experimental configuration of Fig. 4 in which the plate is 
compressed by some supporting structure. We suppose that the bar in the 
supporting frame is rigid, so that whatever compression of the plate occurs will be 
uniform along the edge. This condition is expressed by the equation 

c3u 1 
~Z  2 = 0 on z, = 0. 

The other boundary condition in (2.9) expresses the condition that there is no 
friction between the plate and the compressing bar, the plate is free to slide along 

the length of the bar. In the following lemma ~-~- and ~ denote normal and 

tangential derivatives. 

Lemma 2.10. The boundary conditions (2.9) imply 

OT\ONj=O and ~-~( 05)=0 alon 0 z l = 0 .  (2.11) 

Proof Observe that u 3 = 0 along z 1 = 0 as u 3 = w in the von Kfirmim equations and 
0 

w vanishes along all edges for both our choices of boundary conditions. Since - -  
~z 2 

is a tangential derivative, 0u3 ~z 2 = 0  on z~ =0. 
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Now by (2.3) s~2 and o-12 are proportional, and by (2.9) both vanish on z 1 =0. 
Thus we may use (2.8) to modify the first equation of (2.9) to read (note the 
interchange of indices) 

~u2 = 0  and o.12=0 on z1=0 .  (2.12) 

On taking the tangential derivative ~ we find 

02u2 = 0  and o-12=0 on z1=0 .  (2.13) 
0 z 1 ~ z  2 

Now (2.8) implies that 

~22 ~2U2 ~b/3 ~2U3 + (2.14) 
Oz 1 - g z l & 2  ~z2 3 z ~ 3 z  z " 

c3u 3 As 0z~z 2 = 0  on z 1 = 0  we replace (2.13) with 

~822 o-12=0= ~ on z1=0 .  (2.15) 

In view of Hooke's law (2.3) we are led to the boundary conditions 

o . l a = 0 = ~ z  1 22-va11) on Z l = 0 .  (2.16) 

Note that o.31 is assumed to be zero in the approximations made to derive the von 
Kfirm~m equations. 

Using (2.6) we may write (2.t6) in terms of ~b obtaining: 

~bz~=0=~b~ .... - v q S z ~  on z l = 0 .  (2.17) 

The first equations of (2.11) and (2.17) coincide. Moreover ~ b ~  = 0  on z~ = 0  

since 8-772 is a tangential derivative, and it follows that 

- - ( A ¢ ) = O  on z l=O.  (2.18) 
(~z 1 

This proves Lemma 2.10. 
We claim that (2.1 t) is also satisfied along the sides of 0f2. Recall from Sect. t 

that the boundary conditions along the sides are manufactured by assuming 
periodic behavior in the z 2 variable. This periodicity for the stresses leads to 

0 
o.12=0, ~ a 1 1 = 0 ,  and ~-~a22=0 (2.18a) 

on the sides as a u is even with respect to reflection across the lateral boundaries 
while o.12 is odd. By (2.6) 

(]~NT=O, (PNTT"~O, and ~bNNN=O 
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on the sides. On omitting the redundant middle equation we obtain boundary 
conditions equivalent to (2.11). 

Lemma 2.19. Let  dp(z~,zz)=qb(zl, z2)+ ½2z 2. Then d2 and w = u  3 satisfy: 

A 2w = - ,~w~,~ + [~, w] 
in ~2 (2.20) 

A 2 ~ =  1 w - -~[  , W] 

with boundary conditions 

Oq~ ~ A ~ = 0  on ~2 (2.21) c~N = 0  and 

Note. This is the form for the yon K~trm~m equations which was described in 
Sect. 1. 

Proof It is trivial to see that ~ satisfies (2.20) as ~b satisfies (2.5). By (2.11) 

0N(A~b)=0 on ~2 (2.22) 

and ~ satisfies the same boundary condition as it differs from ~b by a quadratic 
polynomial which is annihilated by the third order operator in (2.22). It follows 

from (2A1) that ~ is constant on each of the four sides of 0~, although the 

constants could be different on the different sides. With the normalization (2.7) we 
have 

a6 
a N = 0  on z l = 0  and z2=0  

while 

a4~ 06 
oN=C1 on z l = l ~  and ~ = c  2 on z2=~.  

(2.23) 

(2.24) 

It remains to determine c I and c z. Observe that 

bz 

0 

~2(o, ~ 1 -  ~ ( o ,  o) = i 6 ~ ( o ,  z2ldz2 . 
0 

Applying (2.7) and (2.6) we have 

4~z~(t~, O) = ~ ~22( z~, O)dzl = 0 
0 

~b~2(0 , ~Z) = ~ 0" 11(0, z2)dz 2 = - ,~, 
O 

(2.25) 

(2.26) 
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the latter equalities coming from the total compressive force exerted on the plate. 
Note that the total force - described by the integrals - is given even though its 
distribution is not. Thus cj =0  and c z = - 2 .  Equation (2.24) leads to (2.21) on 
recalling the definition of 49. The proof is complete. 

For the remainder of this section we describe - though not in detail - other 
possible choices for boundary conditions for the von K~rm&n equations. 

If, in Fig. 4, the plate were welded to the compressing bar, the appropriate 
boundary conditions would be: 

~ul = 0 ,  u2=0 on the ends. (2.28) 
~z 2 

This is a physically consistent boundary condition which, however, does not seem 
to be expressible in terms of the stress function 49, at least not without the use of 
pseudodifferential operators. It also seems less appropriate for Stein's experiment. 

FOR( PLATE 1 

BAR 
Fig. 4 Fig. 5 

A different experimental arrangement is depicted in Fig. 5. Here the compres- 
sive force is administered by a large number of smaller forces applied locally, each 
at the control of the experimenter. (By fixing the force one looses control over the 
displacement.) Idealizing one imagines that the force density is prescribed all along 
the boundary. 

In view of the relation 

F i = ~ 0-unj (2.29) 
J 

this boundary condition leads to the prescription of 0-1 t and 0-12 and thus by (2.6) 
to the prescription of 49~22 and 49~2~2" On integrating the tangential derivatives, one 
obtains 49 and 49N on the boundary. In other words this configuration leads to 
Dirichlet boundary conditions. Although conceptually possible, experimental 
realization of these boundary conditions might prove difficult. 

A common boundary condition [2, 5, 6] used for 49 is 

49=A49=0 on ~fl. (2.30) 

This boundary condition implies that 

49~ = 4 9 ~ = 0  on ~f2 (2.31) 

which is equivalent - by (2.6) - to 

o-i1=0 and 0"22=0 on ~ .  (2.32) 
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As noted above in (2.29) a 11 is related to the z 1 component of the external forces 
and may therefore be prescribed. However, o-22 is related to the stress transmitted 
within the plate parallel to the edge. It is a non-trivial question in control theory to 
decide whether one can achieve an arbitrary profile for cr22 by operations 
performed at the boundary of the plate. Certainly prescription of o-22 is an 
unphysical boundary condition. 

3. A Variational Formulation 

In this section we show that solutions of the von Kfirmfin equations with 
boundary conditions (1.3), (1.4) may be characterized as stationary points of the 
potential 

1 ~ t 
V(w) = ~ fl AwFf 2_  T[ w~l tt 2 + ~ tf A;  l[w, w] rE 2, (3.1) 

where IF" l! indicates the L 2 norm and d~ 1 is the generalized inverse of the 
Laplacian with Neumann boundary conditions. The domain of V consists of 
functions in ~2(f2) (i.e., two derivatives in the L 2 sense) which satisfy either 

w = w N = 0 on ends, w = 0 on sides, (3.2i) 

w = 0  all around (3.2ii) 

according as (1.3i) or (1.3ii) is desired. 
One can easily eliminate 4) from the yon K/trmfin equations with boundary 

conditions (1.4), regarding w as given one determines ~b by solving 

A24=-½[w,w] on O 

~bN=(A4)N=0 on (3f2. (3.3) 

Indeed (3.3) is a boundary problem associated with A~, the square of the Laplace 
operator on L2(O) with Neumann boundary conditions, so we may write 

-sAN [w, wJ. [A N has a one dimensional kernel spanned by the constants. 
The generalized inverse A~ 1 is defined by the requirements 

A ~ I = 0  and ~A[~fdx=O for feL2(f2).] 

The equation for w may therefore be written 

A2w = - 2w ... .  -½[A~ 2[w, w], w]. (3.4) 

Suppose w is a stationary point of V with either (3.2i) or (3.2ii) defining the 
domain. Regardless of boundary conditions we certainly have dV,~. ~ = 0 for all test 
functions ~e ~([2). A simple calculation shows that 

dV~. ~ = (Aw, d ~)-,~(w~,, ~ )  + ~(A; ~ [w, w], ~ ;  ~ [w, ~]), (3.5) 

where (u, v)= ~ uv dz denotes the L 2 inner product. [Note that the third term in 

(3.1) is homogeneous of degree 4 and differentiation brings out a factor 4.] We now 
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integrate by parts in the sense of distributions in (3.5) to obtain 

d V w • ~ = (A 2w + 2w .. . .  + ½[A ~ 2 [w, w], w], ~). (3.6) 

In the case of the first two terms the integration by parts is justified because 
~ @(f2), while for the third it :may be justified by shifting the bounded, self-adjoint 

operator A~ 1 to the other factor and then appealing to the following lemma with 
f = A u Z [ w , w ] .  Since (3.6) must vanish for all ~ ( f 2 ) ,  we conclude that (3.4)is 
satisfied in the weak sense. However (3.4) is an elliptic equation, and it follows that 
the equation is also satisfied in the classical sense. 

Lemma 3.7. I f  f, w, ~Ygz(f2) and if w, ~ vanish on 0f2, then 

~ f [w,  ~-ldz = ~ Ef w]~dz. (3.8) 

Remark 3.9. It may be seen as follows that the integrals in (3.8) are meaningful. The 
bracket operation involves second derivatives of its arguments, which for H a 
functions contributes products of L 2 functions. On the other hand, by Sobolev's 
lemma in two dimension, an Jgz functions is continuous and therefore bounded. 
Thus the triple products in (3.8) are integrable. 

Proof First suppose that f w, ~ are smooth. Ignoring the possible boundary terms 
in an integration by parts we find that 

( ~2 ~2 92 ] 

= ~ E~ w]~dz ,  
f2 

the latter equality being the result of cancellation. It remains to show that the 
boundary terms vanish. In the first integration by parts the boundary term is 

~U(Q,N)dS ,  

where the two component vector Q is given by 

Q=(w . . . .  ~-=l-w~,=~.-~,w=,~¢~ - w  . . . .  ~ ) .  

On a portion of the boundary where N=(0,  + l )  both terms in the second 
component of Q vanish, since w=,=~ and ff=~ are tangential derivatives and both w 
and ff vanish along the boundary. Similarly for the case N = (___ 1, 0). Thus the first 
integration by parts contributes no boundary term. In the second integration by 
parts, the boundary integral contains a factor of ~ and therefore vanishes. 

We have verified (3.8) when f w, ~ are C ~. In the general case consider 
sequences j~, %, ft, of smooth functions which converge to the appropriate 
functions in the Jg2 norm. We claim that the integrals in (3.8) are continuous with 
respect to this convergence; indeed this follows from the observations of 
Remark 3.9. Thus (3.8) extends to the limit functions, and the proof is complete. 

We now consider the role of boundary conditions. In case (3.2ii) the domain of 
Vis 

X = { w ~ 2 ( O ) : w = O  on ~?f2}. (3.10) 
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Suppose w e X  is a stationary point of V. Since w e X  the first boundary condition in 
(1.3ii) is satisfied automatically. To verify the second we again integrate by parts in 
the relation dV w • ~ = 0  for ~ X .  Keeping track of the boundary contribution of the 
first term in (3.5) we find 

d Vw. ~ =(42w +,~w .... +½V~ 2[w, w], w], ~) 

Since Eq. (3.4) is satisfied, the inner product in (3.11) vanishes. Likewise the second 
term in the boundary integral contributes nothing since ~, which vanishes on Of 2, is 
a factor. Thus we have shown that 

AW~NdS=O for all ~ X ,  

from which it follows that Aw vanishes on ~3f2, as desired. 
The consideration of the case (3.2i) is no more difficult. Along the ends of ~f2 

the boundary conditions w = w N = 0 are satisfied automatically by the choice of the 
domain of V, while along the sides the boundary conditions may be verified as 
above. 

4. The Linearized Problem 

The principal result of this section concerns the linearized version of (3.6) with 
clamped boundary conditions, namely 

A2w+2wzlzl=O in f2 

w=wN=O on ends (4.1) 

w = A w = O  on sides. 

We show that the smallest eigenvalue of (4.1) is double if and only if l=  k ( k ] / ~  
for some positive integer k and that, in this case, the two eigenfunctions are given 
by (4.14). For completeness we also derive the known result that with simply 
supported boundary conditions the smallest eigenvalue is double when 
l =  ] / k - ( ~  1), the eigenfunctions being given by (4.20). 

Letting w=f(zl),q(z2) one obtains 

f~4~ + f . . . . . .  gt4~ 
f t - 2 f g +  = 0  (4.2) 

g 

with boundary conditions 

f(O) = f(bz) =if(0) =f '(/n) = 0, (4.3a) 

g(0) = g(~z) = g"(0) = g"(Tc) = 0. (4.3b) 

We may satisfy (4.3b) by choosing 

g(Zz)=sin (mz2) (4.4) 
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for some positive integer m. Moreover the choice m = 1 leads to the smallest value 
of 2 in the bifurcation calculation below, so we only consider this case. Thus 

f[41 + ( 2 -  2)f"+ f = 0. (4.5) 

Observe that when 2 = 4 the solutions to (4.5) have a non-oscillatory character 
and it is impossible to satisfy the boundary conditions (4.3). For  2 > 4 the solutions 
have the form 

A cos (azl) + B sin (azl) + C cos (bzl) + D sin (bzl), (4.6) 

where 

a = ~ ,  b= L]/~+~M, L = ~ - I ,  M =  - 2 .  (4.7) 

The boundary conditions f(0) = f'(0) = 0 imply that f is a linear combination of 

O=bsin(azO-asin(bzl) and ~=cos(azl)-cos(bzl).  (4.8) 

In general it is somewhat tricky to find conditions for when Aq5 +B~p is an 
eigenfunction. However, we are interested in the case when the first eigenvalue is 
double so we assume that both ~ and ~ are eigenfunctions. In that case 

(o(lrc) = ~p(ln) = tp'(ln) = 0 (4.9) 

must be satisfied. Note that ~b'= ab~t', so that 4'(trc)--0 is automatic. 
Equation (4.9) imply 

k (k + 2n) (4.10) a = ~ ,  b = ~  , 

where k and n are positive integers. From (4.7) we obtain 

a2 + b 2 = 2 - 2 ,  b2-a2= ~ .  (4.11) 

Elimination of 2 yields 

ab = 1. (4.12) 

Thus 

l=  ~ .  (4.13) 

Since we are interested only in the first bifurcation we assume that n = 1 in 
(4.13). The eigenfunctions for this problem are 

w l = l ~ - s l n l - ~ -  ) -sin ~ sin(z 9 
(4.14) 

/ /kZl wz=lcosl-~-)-cos((kl2)Zi))s in(z2) .  

Next we compute the eigenfunctions for the yon Kfirm/m equations with 
simply supported boundary conditions. We wish to find solutions to (4.2) where 
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both f and 9 satisfy (4.3b). Again only solutions f(z 0 = sin(az 0 are consistent with 
these boundary conditions. Similarly for 9. Thus the eigenfunctions have the form 

k . sin @ z~ ) sm(mz2) (4.15) 

with the associated eigenvalue being 

12(k2 )2 
2=  k- £ ~ +m 2 . (4.16) 

As 2 is increasing in m the first eigenvalue tbr a given l is when m= 1 so (4.16) 
implies 

Note that 2 k has a unique minimum at k = l when k is viewed as a continuous 
parameter. Thus the only way for the first eigenvalue to be a double eigenvalue is 
for 

2k=2k+ 1 (4.18) 

with k < l < k + 1. This happens precisely when 

l=  l/~:(-~ 1) • (4.19) 

Of course the two eigenfunctions are 

W1 = sin (~ zl) sin(z2) 

k + l  . w2 =sin ( ~ -  Zl ) sln(zz) " (4.20) 

We end this section with a discussion of symmetry for the eigenfunctions given 
in (4.14) and (4.20). There are three obvious symmetries present in the yon Kfirm~m 
equations for a rectangular plate, one of which acts trivially. First, buckling up and 
buckling down have the same potential energy [see (3.1)]. So this induces a 
symmetry on the eigenspaces which is given by 

(w 1, w2)~ ( -  wl, - w2). (4.21) 

Second the equations are invariant under the mapping 

zl--*17~- z 1 . (4.22) 

This also induces an action on the (~b, ~) eigenspace W. For both (4.14) and (4.20) 
the action is given by 

(4~, tp)-*(- 1) k+ ~(qS, - ~p). (4.23) 

The equations are also invariant under the reflection z 2---,re- z2, but all eigenfunc- 
tions in question are invariant under this transformation and no new information 
is obtained. 
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Thus we may assume, by a reordering of w 1 and w 2 when k is even, that there 
is a Z z ® Z  2 group action on Wwhere the first Z 2 component acts by (4.21) and the 
second by 

(w 1, w2)~(w 1, - w2). (4.24) 

5. The Lyapunov-Schmidt Reduction 

Proposition 5.15 constitutes the main result of the present section. This pro- 
position gives the bifurcation equations to lowest order after the Lyapunov- 
Schmidt reduction has been performed. Note that the constants a, b, c, ~, and fl in 
(5.17) have been defined previously in (5.13). 

In Sect. 3 we showed that the yon Kfirmfin equations have a variational 
formulation 

dV=0 ,  (5.1) 

where V: X x IR---,IR and X is the Banach Space (3.10). We may write (5.1) as 

4~(w, 2) = 0 (5.2) 

where ~b: X x IR---,X* and 

(~(w, 2), ~) = (dV)~ ,~(0 .  (5.3) 

The calculations of Sect. 4 show that for certain specified lengths 1 of the plate the 
smallest eigenvalue 2 o is a double one; thus in such cases 

dim ker d4~( •, 20) = 2. (5.4) 

It is also the case that the dimension of coker d~(0, 2o) =X*/range d4~( -, 20) is two. 
The Lyapunov-Schmidt procedure is a way, using the Implicit Function Theorem, 
of obtaining a mapping 

G :IR 2 )< IR--~IR 2 (5.5) 

such that G(x, 2) = 0  parameterizes the solutions to (5.2). Here the domain ]R 2 is the 
kernel and the range IR 2 is the cokernel of &b(-, 20). 

The procedure is simple; let Q be a complementary space to K = Kerd~b and let 
E :X*~range  d~ be a projection with kernel K. The Implicit Function Theorem 
guarantees the existence of a mapping 

W: K × IR~Q (5.6) 

such that 

E. eb(k + W(k, 2), 2) -= 0, (5.7) 

where k E K. Let 

G(k, 2) = (id - E). ¢b(k + W(k, 2), 2). (5.8) 

This G is the mapping described in (5.5). As Wis only defined implicitly the explicit 
computation of G is impossible. However we shall show that to the lowest non- 
vanishing order, W drops out of this computation. 
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Let (x ,y)  be the linear coordinates on K given by w 1 and w 2 [thus the 
coordinates of x w l + y w  2 are (x ,y)  where w 1 and w 2 are the eigenfunctions 
obtained in Sect. 41 . In these coordinates (5.8) may be rewritten 

G(x, y, 2) = (((b(xw 1 + y w  2 + W), wO, (~ ( xw  1 + yw  2 + W), w2) ) . (5.9) 

If we define 

f,'(x, y, ;~) = V(xw~ + yw2 + W(x, y, ;t),,~) (5.1o) 

then 

6(x, y, 2) = \0x ,  ey ) 

We claim first that the Taylor expansion of ~" has the form 

~Z(x, y, 2) = ax  4 + bx2y  2 + cy 4 - c~2x 2 - fi 2 y a + . . . .  (5.1 t) 

where the dots indicate higher order terms in x, y, 2. Note that here 2 is assumed to 
vary with 2 o as origin. We further claim that through terms of the order retained 
(5.11) P coincides with 

f/(x,y,,~) = V(xwl + yw2, ,~), (5.12) 

from which W has been omitted entirely. This latter claim follows from the fact 
that at x = y = 0, 2 = 2 o 

w = w x =  w , = 0 .  

In conjunction with (3,1), (5.12) leads to the following explicit formulas for the 
coefficients in (5.11): 

a = ~ ! ] A ~  1[wl,  wlllJ 2 

b -- ¼E211A~ ~ [wl, wz] II 2 + (A~ ~ [wa, wl], ZIN 1 [W 2, W2])1 

c = ~ It A ;;~ [w2, w21 II 2 (5.13) 

where A~ 1 is the generalized inverse described in Sect. 3. 
We prove the first claim as follows. Observe that the reduced potential function 

is invariant under the action of Z 2 @ Z  2 on K described at the end of Sect. 4; that 
is, 

V(x, y) = ~ ' ( -  x, y) = V(x, - y). (5.14) 

This fact is guaranteed as the full potential function V also satisfies this invariance 
property [71. As a result the only possible non-zero terms in the Taylor expansion 
of Vare  ones which are even in x and y separately. Thus the form of (5.12) is the 
most general possible at a double eigenvalue considering the action of this 
particular symmetry group. Of course this observation could have been obtained 
by direct calculation! 
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Proposition 5.15. The reduced form of the yon Kdrmdn equations may be 9iven the 
form 

G(x, y, ,~) = (x 3 + # x y  2 - -  ,~,X, vxZy + y3 _ 2y) + .... (5.16) 

where 

b ~  
# = 2 c  c~ 

b c~ 

2a fi" 

(5.17) 

Remark 5.18. For reasons which will be discussed in the next section, # and v are 
called modal parameters. They determine the qualitative nature of the actual 
bifurcation which occurs. 

Proof The preceding discussion shows that 

G(x, y, 2) = (4ax 3 + 2bxy 2 - 2e2x, 2bx2y + 4cy 3 - 2fiZy) + . . . .  (5.19) 

Note that appropriate scaling of (5.19) specifically let 

x =  and y =  y (5.20) 

and divide the first coordinate of the result by e and the second coordinate by 

f i ] ~  leads to (5.16). Note that a, c, c~, and fi are all positive so the square roots 

are real. Of course multiplying each coordinate by a constant and scaling does not 
change the qualitative nature of the bifurcation diagram G =0. This will be 
formalized in the next section. We wilt also discuss why the higher order terms in G 
may be neglected. 

6. Results from Singularity Theory 

What we describe here are results developed in [3, 4] for bifurcation problems with 
symmetry which are applicable to the problem at hand. By a bifurcation problem 
we mean an equation 

G(x, 2 )=0  (6.1) 

where G: IR " × IR~IR" is the germ of a mapping defined near the origin. Let F be a 
subgroup of the orthogonal group O(n). A bifurcation problem with symmetry group 
F is a bifurcation problem G satisfying 

G(Tx, 2) = yG(x, 2) (6.2) 

for all 7 in F. 
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The preceding analysis of the von Kfirmfin equations yields an example, 
namely, 

G(x, y, 2) = (x 3 + #xy 2 - 2x, vx2y + y3 _ 2y), (6.3) 

where the symmetry group F is Z 2 ® Z  2. 
Two such bifurcation problems G and H are called contact equivalent if 

G(x, 2) = r(x, 2)-H(X(x, 2), A(2)) (6.4) 

0A 
where ~--~ (0)> 0, det (d~) (0)>  0, and for each (x, 2)T(x, 2) is an invertible n x n 

matrix. The problems are F-equivalent if the associated contact equivalence 
preserves the symmetry group; that is, 

X(Tx, ,~) = 7x(x, 2) 
T(Tx, 2) = 7T(x, 2)7-1 (6.5) 

The scalings used at the end of Sect. 5 are specific examples of F-equivalences. 

Note. No two bifurcation problems of the form (6.3) are F-equivalent unless the 
corresponding modal parameters # and v are identical. Basically this means that 
no further scaling is possible. 

Definition 6.6. A bifurcation problem (6.3) is non-degenerate if #~1 ,  v + l ,  and 
#v+ 1. 

One should see [4, § 4] for a more motivated description of non-degeneracy. 
We will show that the bifurcation problems obtained from the von Kfirmfin 
equations are non-degenerate. For now we describe some results. 

Proposition 6.7. Let G be a non-degenerate bifurcation problem of type (6.3). Then a 
bifurcation problem with symmetry group F = Z 2 G Z  z of the form G plus higher 
order terms is F-equivalent to G. 

Proof Lemma 4.13 of [4]. 

This proposition justifies the neglect of the higher order terms in the 
Lyapunov-Schmidt reduction performed in Sect. 5. 

/~=o ~--.I 

2 ~ ./.zu= I 
Fig. 6 u = 0 

We now analyze the kinds of bifurcation diagrams associated to nonde- 
generate bifurcation problems. Note that the degeneracies # = 1, v = 1, and #v = 1 
break the first quadrant of the #v-plane into six regions shown in Fig. 6. As shown 
in [4], if one chooses two pairs (#j, va) and (#z, v2) in the same region of the #v- 
plane than the bifurcation diagrams obtained by setting (6.3) equal to zero may be 
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mapped one onto the other by a homeomorphism of the form (X(x, y, 2), Y(x, y, 2), 
A(2)). So all diagrams associated to one of the six given regions are topologically 
equivalent even though there are differential obstructions to contact equivalence 
(namely, the modal parameters). For all intents and purposes in applications, these 
regions yield equivalent bifurcation problems. Moreover, interchanging x and y 
shows that the diagrams in regions 3 and 4 as well as those in regions 5 and 6 are 
essentially contact equivalent, the equivalence being orientation reversing. With 
the boundary conditions that we have chosen to analyse, the yon Kfirm/m 
equations always yield # greater than one. So we restrict our attention to regions 1, 
3, and 5. Much of what has been stated here is implicit, though not proved 
rigorously, in the work of Bauer et al. [13. 

A consequence of the unfolding theorem - which is the most powerful theorem 
in singularity theory - is that one can classify all small perturbations of non- 
degenerate problems (6.3) up to F-equivalence by the addition of just one new 
parameter; that is, in addition to the modal parameters discussed above. 

Theorem 6.8. Let H(x,y,2) be a bifurcation problem with symmetry group F 
= Z a ® Z  2. Suppose that H is a small perturbation of a non-degenerate problem (6.3) 
with modal parameters #o and v o. Then H is F-equivalent to 

F(x, y, 2, a) = (x 3 + #xy 2 - 2x, vx2y + y3 _ (2 + ~r)y), (6.9) 

where (#, v, a) is near (#o, vo, 0). 

Proof. See (4.4) of [4]. 

The role of a, as will be seen, is to split the double eigenvalues into simple 
eigenvalues. As such it is not surprising that it may be identified with t, the length 
of the plate, which accomplishes the same task for the von Kfirm/m equations. This 
will be proved in Sect. 9. 

The qualitative nature of the bifurcation diagrams associated to (6.9) when 
(#, v) are in regions 1, 3 and 5 are shown in Figs. 7-9 for ~r<0 and a > 0 .  Branches 
which are stable and unstable are indicated by s and u in these figures. The 
important observation is that when a <0, quasi-static variation of 2 will produce 
no transition between modes in region (1), smooth transition between branches (or 
modes) in region (5), and a necessity for mode jumping in region (3). The major 
point of this paper is that different boundary conditions for the yon Kfirmfin 
equations yield bifurcation problems (6.3) with modal parameters in different 
regions of the #v-plane. In particular, as will be shown, simply supported 
boundary conditions yield modal parameters in region 1 while clamped conditions 
yield modal parameters in region 3. 

To explain the derivation of Figs. 7 through 9, note that setting (6.9) equal to 
zero yields the equations 

x = 0 ;  y = 0 ,  (6.10a) 

y = 0 ;  xZ=2,  (6.10b) 

x = 0 ;  y2=2+o- ,  (6.10c) 

(V - -  I )X2  -t- (1 - -  # ) y 2  = O" ; X2+#y2=2. (6.10d) 
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Fig. 7 
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The first three equations have real solution branches in all cases, while the last 
equation has no real solutions when a > 0  and v < l .  Moreover (6.10d) may be 
placed on the figures by noting where the secondary bifurcations occur when 
branch (6.10d) intersects branches (6.10b) and (6.10c). In particular, secondary 
bifurcations which occur along branch (6.10b) occur at 

2 b = a/(v - 1). (6.11) 

7. Calculation of Modal Parameters for the Simply Supported Plate 

Recall that A N is the Laplacian with Neumann boundary conditions. The 
eigenfunctions of A N are given by 

cos ( l z l ) cos(nz2) (7.1) 

with eigenvalues 

In order to compute the modal parameters for the simply supported plate one 
must compute a, b, c in (5.13). Thus one needs: 

A=A~I[wl,wI]; B=A~l[Wx,W21; C=A~l[w2, w2], (7.3) 

where A~ 1 is the generalized inverse of A N defined in Sect. 3. This is easy if one can 
write [wi, wj] in a double Fourier cosine series with terms given by (7.1). A 
computation, involving the trigonometric identities 

2 sinu sinv = cos(u - v) - cos(u + v) 

2 cos u cos v = cos(u - v) + cos(u + v) (7.4) 

2 cos 2 u = 1 + cos(2u) 

2 sin / u = 1 - sin (2u), 

and the eigenfunctions (4.20) yields 

k 2 A: icos( zl ) +  cos(2z2)] 

(7.5) 
2k+ 1 1 cos(: z )cos,.] 

2(2k+ 1) 2 -  1 

C = ¼ [ c ° s ( 2 k ~ 2 z l )  ~(k+l)2 j] + cos (2z2)/. 
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Next compute from (5.13) and (7.5) that 

1 ( k 2 + ( k + l )  2) 
a -  

256 (k+ 1) 2 

1 k2-t-(k+ 1) 2 
c -  

256 k 2 

b = 1-~ 6 + (2(2k + 1) 2 + 1) 2. 

k2 
4/2 

(k + 1) 2 

f l -  412 

Now compute using (5.17) that 

(k+1)2 [ 1 t #-kZ+(k+l) z 6+(2 (2k+1)z+1 )  2- >3  
1 (7.7) 

v-- k 2 + ( k + l )  2 6 +  (2(2k+1)2+1) ~ >1 .  

It follows that for any k, the bifurcation diagram is qualitatively similar to a 
problem in region 1 of Fig. 6 when simply supported boundary conditions are 
assumed. 

8. Calculation of Modal Parameters for the Clamped Plate 

The first step in these computations is to compute A, B, and C from Sect. 7 with the 
eigenfunctions associated to the clamped plate: 

w l = ~ ( z O s i n ( z 2 )  and w2=~(zOs in ( z2 )  , (8.1) 

where 

k + 2 .  q5 = _ ~ _  sin (kIZl) . / (k+2) --sin I ~  zl) 
and (8.2) 

~ : c o s ( ~ z l ) - c o s ( ~ z l ) .  

See (4.14). tn Sect. 7 we saw that the double cosine series expansion of [w i, wj] was 
rather simple, consisting of just a few non-zero terms, so that the computation of 
A, B and C was easy. For the eigenfunctions in (8.1) this cosine series for [w 1, w2] 
has an infinite number of non-zero terms, so we use a different technique. 

Notice that in (7.5) A has the form 

A = A l ( z l )  + A2(zl)  cos(2z2), (8.3) 
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where S A = 0; B and C have similar structure. It turns out that this is still true for 

the A, B, and C of this section. Observe that if we find a solution in the form (8.3) 
then we are finished as A~ 1 restricted to functions with mean zero is injective. 
Consider further that the image of A~ 1 satisfies the Neumann boundary con- 
ditions so that in (8.3) we have 

A'~(O) = A'~ (be) = A'2(O ) = A'g(Irt ) = 0. (8.4) 

Given the form (8.3) one sees from (5.13) that 

1 .l 1 .z 
8 a = ) 7  ! A2dzt + s i  ! A22dzt-al  +a2 

)71 ~I ) 7 1 " ( B 2 2 + @ )  4b= ! (A,C 1 + 2B2)dzl + ! dz 1 =b 1 +b 2 (8.5) 

t uz 
8 c = l l i l C 2 d z 1 - - l - ~ ! C 2 d z l . ~ c l + c  2 

the last equality being a definition. 
Observe that [w~, wj] has the form (8.3). In fact 

[-WI ' W1 ] = - -  (4~bt,  ..[_ (~bt)2) _1_ cos(2z2) (4~b,, _ (q~,)z) 

cos(2z2) . . . .  
[-wl,w2] = -  ½(¢"~p + 24',#' + ~tp")-t ~ tq) ~/)- 2q5'~' + qS~p") (8.6) 

[w2, w2 ] = _ (~p~,, + (p,)2) + cos(2z2) (~p~p,, _ 0p,)2), 

whereas applying the Laplacian to (8.3) yields 

AA = A~ + (A 2 - 4A2) cos(2z2). (8.7) 

Similarly for AB and AC. Clearly (8.6) and (8.7) yield six second order ODE's in the 
unknown functions Ai, Bi, and C v It is particularly easy to solve the equations for 
AI, Bt, and CI, the answers being 

~2 
A~ = - ~ -  + %  

B j - -  - ~-~2 + flo (8.8) 

C 1 -  2 +Yo, 

where %, flo, and y0 are constants of integration. The other constants of integration 
are seen to be zero from the Neumann boundary condition (8.4). From the definition 

of AN a we have S A = 0  which implies that 5Al(Zl)dzl=O. So %, fl0, and 70 are 
f2 0 

determined by 

I A~dz~= ~. B~dz~= j'C,dz~=O. (8.9) 
0 0 0 
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Thus 

(k+l) ~+1 flo=0; ~o=½. 
~o = 2k 2 ; (8.1o) 

Using (8.2) and the trigonometric identities (7.4) one 
explicitly we tabulate the results in (8.12) using the notation 

z=zl/l, 

k + 2  ( k + 2 )  2 
A 1 = ~ cos(2z) + ~ cos(2kz) - ( k ;2 )  cos((2k + 2) z) 

can compute (8.8) 

(8.11) 

+ ¼ cos ((2k + 4)z) 

B 1 k + 2  k + l  1 = - ~~ sin(2z) - ~ sin(2kz) + - ~ -  sin((2k + 2)z) (8.12) 

- -  ¼sin((2k + 4)z) 

C~ = ½cos(2z)- ¼cos(2kz) + ½cos((2k + 2)z) 

- ¼cos((2k+ 4)z) 

Now, using (8.5), one computes (noting that k = 1 is special) 

5 
a l =  16+  

5 k + l  1 (k+ l )  2 (~6~ 
4 k 2 q 2 k 4 when k = l )  

5 5 k + l  
bl = ~ + 8 - ~ -  (~3 when k = 1) (8.13) 

5 
c 1 = ~  ( 3  w h e n k = l ) .  

Next we wish to compute A2, B> and C 2. The second order ODE's given by 
(8.6) and (8.7) no longer have such an easy solution as in (8.8). One now has to 
compute explicitly with (8.2), the RHS of the equations being given by : 

2(k+2) ~ ( k + l )  2 2 
qSqS"- (q5')2 - k + Z - k  2- c°s(2z)- cos((2k ; i  + 2) z) 

2(k+l)  
½(qS"tp-2~b'~#'+~btp")-k2(k+2 ) sin((2k+2)z) 

2(k+l)  2 
k2(k if- 2) 

sin(2z) (8.14) 

,p,p,, 0 p , ) 2 = _ 2 ( k + l ) 2 + l  , 2(k+1)  2 k(k+2) ~- ~ c o s ( 2 z )  

2 
+ ~ cos((2k + 2)z). 
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The ODE's have the form A~-4A2=(8 .14  ). The solutions are (where m=2k  2 
+ 4 k +  1) 

A2 k + 2  k + 2  k + 2  
- 2k ~ cos(2z)+ 2~-mCOS((2k+2)z) 

B 2 = p  sin (2z)-  q sin ((2k + 2)z) + rf(z), 

where 

1 k + l  1 
P = 2k' q = ~ m '  r = 2kin' 

sinh ((2z - re) I) 
and f(z) = (8.15) 

cosh(~/) 

C 2  - k22k(k + 2k+ +2)2 21 cos (2z) - 2 ~  cos ((2k + 2) z). 

Note that the constants of integration have been chosen so that the boundary 
conditions (8.4) are satisfied. 

One may now compute using (8.5) and (8.15) that 

(k+2)2 [ t ]  
a 2 -  16k2 3+  ~ -  

i-~[ 2(k2 +2k+2)2  1 t 
c z = t -~ k2(k+2 ) + ~ (8.16) 

3 3 3 
b2 = i6  + ~ + 8-~ + E, 

where 

1 
lEt< 32k 2- (8.17) 

To obtain this estimate observe that 

E= 
k + 2 q2 2r 2 Lz z 2pr =l . 

16kin ~ + 2 + 7 ! f(z) dz, + ~zl ! f(z)sln(2z)dzl 

2qrrcl ! f(z) sin((2k + 2)z)dz 1. 

Next change the variable of integration z 1 to z; note that f(z), sin(2z); and 
sin((2k + 2)z) are all odd with respect to the point z = ~; observe that tf(z)l < e-2z~ 

0 " Isin] < 1 to obtain : on ( , 2), and use 

k + 2 q2 r z 2r 
J t< -i6-  m + 5-  + + 
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It is now routine to obtain the estimate for E in (8.17) 
Combining (8.13) and (8.16) yields (for k > 2) 

1 2 2 (k+2) 2 ( k+ l )  2 
8 a = ~ + ) ~ + ~ +  16k2m2 + 2U* 

1 ( k + l )  2 1 
8c= ~ + 2k2(k+2) 2 + 16m2 (8.18) 

1 1 1 
4 b = ~ + ~ + ~ + E .  

Moreover a simple calculation directly from (5.13) yields 

(k + 2) 2 

fi kZ+ 2k +2" 

Proposition 8.19. The modal parameters # and v fall in region 3 of Fig. 6. In 

particular # > 1 and 1 - < v < l .  

The result is obtained by using the following estimates when k > 2 

4 5 4 6.3 
1 + ~ + ~ < 1 6 a < 1 + ~ + / - ~ -  

2 7 2 9 
1 + ~ + ~ < 8b < 1 + ~ + 4k-- ~ (8.20) 

0.6 
0 < 1 6 c < 1 +  - -  k2" 

1 
Note that showing that v > - is equivalent to showing that b 2 -  ac > 0. Using the 

estimates one obtains the result for k ~ 2 and explicitly checks that when k = 1 the 
result is also true. In fact for k =  1,/~= 1.0857 and v=0.9715. 

9. Length is the Unfolding Parameter 

In Sect. 6 we described results from singularity theory [4] which enabled us to 
classify all small, symmetry preserving perturbations of the yon K~rm~n equations 
near a double eigenvalue by the addition of one new parameter a defined in (6.9). 
We now show that for clamped boundary conditions the aspect ratio 1 of the 
rectangular plate is a physical realization of a. 

Let 

l - I  o 
L =  lo , (9.1) 

where l o is the aspect ratio at a double eigenvalue; so l o = Vk(k + 2) for some 
positive integer k. We will show that, to first order in L, 

L.  (9.2) Cr=k(k+2) 1 kZ+~k+ 2 
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As the coefficient of L in (9.2) is always positive we see that l is the desired 
realization of o. (A similar calculation for simply supported conditions could also 
be given.) 

We now sketch the steps necessary to prove (9.2). The implicit function 
theorem which gives the existence of the Lyapunov-Schmidt reduction also 
guarantees that the resulting reduced equation G varies smoothly with L. This, 
along with the fact that L preserves all symmetries in the problem implies, as in 
(5.11), that 

G(x, y, 2, L) = \ Ox ' ~?y ]' (9.3) 

where 

l/(x, y, )~, L) = ax 4 + bx2y 2 + cy 4 + ( d -  c~)Ox 2 + ( e -  fi2)y 2 +.. .  (9.4) 

and ... indicates terms of higher order in x, y, 2. Here a, b, c, d, e, c~, fl all depend 
(smoothly) on L. Moreover, at L = 0, d = e = 0 while the remaining variables equal 
their respective counterparts in (5.11). The scaling of (5.20) shows that to first order 
in L one has 

G(x, y, 2, L)= (x3 + #xy2 - ~.x, vx2y + y3 - (~ + ( ~  - ~ )  L) ,)  + .... 

where ... indicates terms of higher order in x, y, 2, L. Moreover, # and v are as in 
(5.17) and 

0d 0 ge 0 d ° L .  d o = ~ ( ) ;  e 0 = ~ - ~ ( ) ;  and 2 = ~ . -  e (9.6) 

We claim 

~2 

d°=--(2A°ol+2°c°l '~z~C°l)  (9.7) 

( eo= - ~2Ac% +2oCOz, 

where 0)1, 0 2 are the eigenfunctions (8.1) and 2 o is the applied force at the double 
eigenvalue. Thus by (4.11), we have 

k k + 2  
20 = 2 +  ~ + ~ (9.8) 

Assuming this claim one makes a calculation involving integrals of the type 
considered in Sect. 8 to obtain 

( k + l  )2 
d o=0  and e 0 = - 4 \ k ( k ~ j  " (9.9) 

Finally (9.2) follows from the observation that 

~(D2 2 k z + 2 k + 2  (9.10) 
fi= ~z~ - 2k(k + 2) 
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W e  now prove  the claim. The  basic  idea  is to first change var iables  so tha t  the 
yon Kfirmfin equat ions  are  c o m p u t e d  on  a c o m m o n  d o m a i n  for all  L. Let  

~?l = {0--<zl <1~,  0 < z  2 <~z}.  (9.11) 

Consider  the change of  var iables  

(z,,z2)~(mzl,z2) of  ( 2 l o - ~  z, (9.12) 

where m=l/l o, the poten t ia l  function (3.1) has the form 

1 1 c~2w 02co1!2 2 1 (?co 2 
+Q(co), (9.13) 

where  Q is a quar t ic  expression in co. As Q only effects the quar t ic  terms in (9.4) it  

does not  enter  the calculat ion of d o and  %. 8V 
Observe  tha t  m -  1 = L .  Thus  to compu te  ~ at  L = 0 ,  we need to compu te  

~V /02m \ (?m 2 
~m (co,2,1)= - 2l~-z~,Aco ) + 2 ~ (9.14) 

Of  course,  the eva lua t ion  of  d o and  e 0 is a t  2 = 2 o. As in Sect. 5 the ca lcula t ion  
of  G to lowest  o rder  does not  involve the implici t ly  defined function W [of  (5.7)]. So 
the Tay lo r  expans ion  of  P to lowest  o rder  is the same as the Tay lo r  expans ion  of  

l/(x,y,k,m)= V(xco 1 + yco2, 2, m). (9.15) 

Using  (9.3) and  ext rac t ing  the coefficient of  x 2 and y2 from (9.15) and (9.14) yields 
(9.7) as desired. 
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