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Modulated rotating waves in O(2) mode 
interactions 

John David Crawford 
Institute for Nonlinear Science, University of California-San Diego, La Jolla, 
California 92093, USA 

Martin Golubitsky 
Department of Mathematics, University of  Houston, Houston, Texas 77004, 
USA 

and William F. Langford 
Department of Mathematics and Statistics, University of Guelph, Guelph, 
Ontario, Canada N1G 2W1 

Abstract 
The interaction of steady-state and Hopf bifurcations in the presence of O(2) symmetry 
generically gives a secondary Hopf bifurcation to a family of 2-tori, from the primary 
rotating wave branch. We present explicit formulas for the coefficients which determine 
the direction of bifurcation and the stability of the 2-tori. These formulas show that the 
tori are determined by third-degree terms in the normal-form equations, evaluated at the 
origin. The flow on the torus near criticality has a small second frequency, and is close to 
linear flow, without resonances. Existence of an additional SO(2) symmetry, as in the 
Taylor-Couette problem, forces the flow to be exactly linear; however, the tori are 
unstable at bifurcation in the Taylor-Couette case. More generally, these tori may reveal 
themselves physically as slowly modulated rotating waves, for example in reaction- 
diffusion problems. 

1. Introduction 

Bifurcation in systems of differential equations with O(2) symmetry has been the 
subject of much recent study (cf. (Golubitsky, Stewart and Schaeffer, 1988)). In 
systems with one parameter both steady-state and Hopf bifurcations from an 
invariant state may be expected, while in systems with two parameters various 
kinds of mode interactions may be unavoidable. As we explain below, we study 
one particular secondary bifurcation to an invariant 2-torus which occurs in a 
Hopf-steady-state mode interaction. 

Generically in systems of differential equations with symmetry group r the 
eigenspaces of the linearization of the differential equations at a r-invariant 
steady state will be irreducible under the action of T. Thus the existence of O(2) 
symmetry implies that the eigenvalues of this linearization will be either simple or 

0 Oxford University Press 1988 

D
ow

nl
oa

de
d 

by
 [

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
7:

07
 1

5 
N

ov
em

be
r 

20
12

 



160 JOHN DAVID CRAWFORD ET A L .  

double, since irreducible representations of O(2) are either one- or two- 
dimensional. Whether these eigenvalues are simple or double may be determined 
as follows. In either steady-state or Hopf bifurcation if a bifurcating branch of 
solutions consists of states which break the rotational SO(2) symmetry, then the 
critical eigenvalue must be double. 

A number of authors have studied Hopf bifurcation with O(2) symmetry when 
the critical eigenvalue is double (cf. (Ruelle, 1973; van Gils 1984; Golubitsky and 
Stewart, 1985)). The basic observation resulting from these studies is that 
generically there exist two types of periodic solutions, a family of standing waves 
and a pair of rotating waves. 

In this paper we consider steady-state-Hopf mode interaction with O(2) 
symmetry where the critical eigenvalues are all double. This interaction leads to a 
six-dimensional centre manifold and to an interesting variety of steady and 
periodic solution branches, arising as primary and secondary bifurcations. In 
addition, there are secondary and tertiary branches of tori; see (Golubitsky and 
Stewart, 1986). There is, however, precisely one secondary branch of 2-tori 
which yields a quasiperiodic state and it is this branch that we analyse here. We 
show that under certain non-degeneracy conditions the direction of branching, 
the stability and the frequencies for this family of 2-tori are determined by the 
third-order terms in the normal-form equations. 

Our analysis is motivated by the Taylor-Couette system, where the 2-tori 
correspond to a modulated spiral flow. Unfortunately, using the formula derived 
here, it can be shown that these 2-tori are unstable (see (Golubitsky and 
Langford, 1988)) and section 5 below. Our results, however, may be applicable to 
a number of other models where O(2) symmetry is present. We mention 
reaction-diffusion equations on a disk and fluid flow through an articulated 
hosepipe. 

The branch sf Ztori we study bifurcates from the primary branch of rotating 
waves. Since, near the bicritical point where mode interaction occurs, both the 
second frequency and the amplitude of the torus flow are small when compared to 
those of the rotating wave, we refer to these torus solutions as modulated rotating 
waves. We note that the coupling between the primary and secondary oscillations 
is weak; in fact, the flow on the torus is topologically conjugate to a linear flow 
with two independent frequencies. In section 4 we describe more precisely the 
nature of the flow on the torus, using results of Rand (1982) and Renardy (1982). 

Earlier studies of steady-state-Hopf mode interactions without O(2) symmetry 
(cf. (Langford, 1979; Holmes, 1980; Guckenheimer, 1981; Langford and Iooss, 
1980)) also revealed bifurcation of 2-tori. These cases differ from the present 
situation however, in that these 2-tori arise via bifurcations which are degenerate 
(or nearly so), are tertiary rather than secondary bifurcations, and occur only in 
restricted cases. The 2-torus described here exists generically in the context of 
O(2) mode interactions. 

After a preliminary discussion of the hypotheses and normal forms in section 2, 
the analysis begins in section 3 with the truncated Poincark-Birkhoff normal 
form. Symmetry properties are exploited to reduce the question of bifurcation of 
the torus from the rotating wave to a question of Hopf bifurcation for an 
autonomous complex ordinary differential equation. Because the formula in the 
standard Hopf theorem does not apply directly to this case, a modified Hopf 
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MODULATED ROTATING WAVES 161 

bifurcation formula is given in the Appendix. It is presented in greater generality 
than is required here, to facilitate application to other systems of complex 
differential equations. 

In section 4, truncation of the tail of the normal form is shown not to change 
the qualitative nature of the flow on the torus of modulated rotating waves, nor 
the existence of the torus itself. In applications with an additional SO(2) 
symmetry, such as the Taylor-Couette problem, the formal normal form may in 
fact be exact, and then the results of section 3 apply directly. See section 5. 

The method of averaging provides an alternative to the approach presented 
here for the calculation of the bifurcation coefficients. In fact, one of the authors 
has independently derived the same bifurcation formulas using the method of 
averaging. These averaging calculations are not included in this paper. 

2. Hypotheses and notation 

Consider a 2-parameter family of differential equations 

u' =f (4 p), (2.1) 

where f is smooth (C") and f : X  X R2-, X. Here we shall consider X = Rn with 
n 3 6 ,  but, with suitable hypotheses on f, X could be infinite-dimensional; for 
example (2.1) could be the Navier-Stokes equations (see (Golubitsky and 
Langford, 1987; Iooss, 1984; Renardy, 1982)). 

Assume that a linear action of O(2) is defined on X, and that (2.1) is 
equivariant with respect to this action; that is, for all (u, p)  E X  x R2 and 
Y E 0(2), 

f (YU, P) = nP(u7 P). (2.2) 

Assume that (2.1) has an O(2)-invariant equilibrium solution which without loss 
of generality we may take to be u = 0. Thus 

Moreover, assume that at p = 0 E R2, the Frechet derivative 

has eigenvalues 0 and fiw, (oo#O), and no others on the imaginary axis. It 
follows from differentiation of (2.2) that 

A y =  yA forall y ~ 0 ( 2 ) ,  (2.5) 

so that eigenvalues of A are generically either simple or double and semisimple, 
see (Golubitsky et al., 1988). Because we assume here that both the steady-state 
and Hopf bifurcations break symmetry, we require that the eigenvalues 0 and 
f iwo are double. It follows that these eigenvalues have continuous extensions as 
double eigenvalues, for p # 0. Furthermore, (2.3) is in fact generic in this setting. 

By the centre manifold theorem, equation (2.1) has an invariant 6-dimensional 
centre manifold, tangent to the direct sum of the eigenspaces of the eigenvalues 0 
and f iw. If the remaining eigenvalues of A have negative real parts, this centre 
manifold is attracting near 0. Thus we can restrict our attention to this centre 
manifold. Furthermore, the equivariance (2.2) is preserved in the reduction to the 
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162 JOHN DAVID CRAWFORD ET A L .  

centre manifold, so we may assume that (2.1) is a 6-dimensional system, satisfying 
(2.2) to (2.5). 

It is possible to further simplify f by transforming the vector field to 
Poincark-Birkhoff normal form. This is a recursive procedure, which eliminates 
'non-resonant' terms in f up to any finite order k. In this process, the tail becomes 
more complicated and in general blows up as k +  m. We shall assume in this 
section that this calculation has been performed to order k and that the tail has 
been truncated. We call the resulting polynomial vector field the formal normal 
form off. (In section 4 we consider the effects of the tail on solutions of (2.1).) 
The formal normal form of (2.1) has an additional phase-shift symmetry, which 
we denote by s', associated to the purely imaginary eigenvalues. The full group 
of symmetries of the formal normal form is then 

After factoring out the kernel of the O(2) x S1 action on R6= C3, we may 
choose complex coordinates z = (zo, zl, z2) such that 

(a) 6 . z = (eki8zo, ea8z1, e-"'~,) for all 8 E S0(2), 

(b) K - z = (f0, z2, zJ, K E O(2) - S0(2), K' = id, (2.7) 
(c )  qb~z=(zo,e i+z1,e i~z2)  for all GES', 

where k and 1 are relatively prime. Observe that the 2,-coordinate corresponds to 
steady-state bifurcation and the zl, z2-coordinates correspond to Hopf bifurca- 
tion. See (Golubitsky, Stewart and Schaeffer, 1988) for further details. 

Recall that a two-dimensional irreducible representation of O(2) may be 
identified with an integer m where 8 E SO(2) acts on z 6 C by emIez. The kernel of 
this action of O(2) is Z,. When mode interaction does not occur, we may divide 
out by Z, and obtain an effective action of O(2) where m = 1. When mode 
interaction does occur this reduction is, in general, not possible and formula 
(2.7a) results. As we indicated in section 1, our interest in this secondary torus 
bifurcation is motivated by analyses of the Taylor-Couette system. In this 
application 

k = l = l ,  (2.8) 

which we henceforth assume. Analyses of this bifurcating 2-torus should be 
possible for general k and 1, though we do not pursue that issue here. 

The general formal normal form on C3, with O(2) X S1 equivariance, has been 
calculated in (Golubitsky and Stewart, 1986); see also (Golubitsky et al., 1988; 
Langford, 1986). It can be written as 
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M O D U L A T E D  ROTATING WAVES 163 

where 6 = z2Z2 - zlZ1, and c', p' and qj, j = 1, . . . , 4 are real-valued functions of p 
and the five invariant polynomials 

When it is necessary to list these arguments we shall use the notation 

The assumptions on the eigenvalues of A imply that 

Solutions of the formal normal form equations, corresponding to rotating 
waves and modulated rotating waves, are analysed in section 3. The effects of the 
higher-order tail, which breaks the S1 symmetry, on these solutions are 
considered in section 4. 

3. Bifurcation analysis for the normal form 

Here we consider bifurcations of the complex differential equation 

dzldt = g(z, 2, p) (3.1) 

in formal normal form; that is to say, with g satisfying (2.9) to (2.11). The 
steady-state and periodic solution branches of (3.1) are described in (Golubitsky 
and Langford, 1987; Golubitsky and Stewart, 1986; Golubitsky et al., 1988) and 
need not be presented in detail here. These solution branches lie in invariant 
fixed-point subspaces of C3, corresponding to isotropy subgroups of O(2) x S', as 
summarized in Table 1. Equation (3.1), when restricted to each of the fixed-point 
subspaces, decouples into amplitude and phase equations, which may be solved 
for steady-state (a = 0) and periodic (a >0) solutions. There are in fact two 
rotating-wave solutions; the second obtained by applying K to the one in Table 1. 

Table 1. Steady-state and periodic solutions 

Name Isotropy subgroup Fixed-point subspace Subspace equations 

Secondary, 

Secondary, 
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164 J O H N  D A V I D  CRAWFORD E T  A L .  

The nomenclature for the rotating-wave solutions is natural, since this solution 
is invariant whenever a spatial rotation through $ is combined with a temporal 
phase shift through -$ (or $ for the conjugate rotating wave). 

Of the solutions listed in Table 1, only the rotating-wave branch is considered 
in this paper. The amplitude of the rotating wave is a root of the equation 

and for each such root the rotating wave is given by 

z(t) = (0, z;(t), 0), z;(t) = aeiR'(') (3.3) 

and the phase SZ' is given by 

Locally, equation (3.2) may be solved by the implicit function theorem. The 
Taylor expansion of (3.2) gives (recalling that ~ ' ( 0 )  = 0) 

so that, assuming that pL - P2 # 0, we have 

In (3.5), (3.6) all coefficients and derivatives are evaluated at the origin, 
subscripts denote partial derivatives, and p : .  p is a directional derivative in 
parameter space. Bifurcation of rotating waves from the trivial solution occurs on 
the curve in the p-plane defined by a2 = 0 in (3.6), see Fig. 1. 

The search for solutions bifurcating from the rotating-wave branch is faciliated 
by a translation of the origin of coordinates to the rotating wave, together with a 
transformation to a rotating frame which moves with the rotating wave, and a 
rescaling to the amplitude of the rotating wave. Therefore, we introduce new 

Fig. 1 
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MODULATED ROTATING WAVES 165 

coordinates (v,, r,, 21,) in C x R X C, defined by 

avo 

z = [:I = a v 2 e i w  + rl)ei~(r)]. 
(3.7) 

Note that with (v,, rl, v2) = (0, 0, 0) this reduces to (3.3). We have chosen to 
rotate the z2-coordinate as well as the 2,-coordinate in (3.7), in order to exploit 
the S1 symmetry of the system. It is understood in (3.7) that the amplitude a is 
defined by (3.5), (3.6); however, the phase SZ(t) is no longer given exactly by 
(3.4). 

The transformed equations, obtained by substitution of (3.7) into (3.1), are 

By grace of the sl-invariance, the phase variable S2 has disappeared completely 
from the right-hand side of (3.8). This means that the (v,, r,, v2)-equations 
decouple and can be solved independently of SZ. If such a solution 
(v,(t), rl(t), v2(t)) is found, then the SZ-equation in (3.8) can be solved by direct 
integration: 

R( t )=f{q l  + 6q2+ ...} dt + R,. 
to 

(3.9) 

Furthermore, since ql(0) = wo # 0, if (vo(t), r,(t), v,(t)) is bounded and 
sufficiently small (for example a small periodic solution) then &(t) in (3.9) is a 
strictly monotone function of t. Note that, given one such solution, there must be 
a circle of such solutions, distinguished by the initial phase SZ, in (3.9), but all are 
conjugate under the S1 symmetry. This implies that, if a Hopf bifurcation to a 
periodic solution occurs in the (v,, r,, v2)-equations, the corresponding torus of 
solutions in the full O(2) x S1-equivariant equations (3.1) has 'linear flow', in the 
sense that every solution is S1-conjugate to every other solution. The solutions 
may be periodic or quasiperiodic, but there is no resonance. 

The first step in establishing a Hopf bifurcation in the (vo, r,, v2)-equations is a 
linear stability analysis. The Jacobian matrix at (v,, rl, v2) = (0, 0, 0) is 

The superscripts r indicate that the expressions are evaluated on the rotating- 
wave branch (3.2) to (3.6). Local bifurcation can occur only at non-hyperbolic 
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166 JOHN DAVID CRAWFORD E T  A L .  

points; that is, where (3.10) has an eigenvalue with zero real part. Generically, 

and by continuity these coefficients will remain non-zero in a neighbourhood of 
the origin. Furthermore, inequalities (3.11) are required for non-degeneracy of 
the primary bifurcation of rotating waves and standing waves, respectively. Hence 
the only remaining possibility for a local bifurcation from rotating waves is 

[c']' = 0. (3.12) 

Expanding (3.12) at 0, recalling that cl(0) = 0, gives 

This is to be solved concurrently with equation (3.5) for the rotating-wave 
branch, which can be done uniquely, provided that c;  and p ;  satisfy the 
transversality condition 

Henceforth we assume that (3.14) holds. This is a natural generalization of the 
Hopf eigenvalue crossing condition for classical Hopf bifurcation. 

Now we can eliminate a2 between (3.5) and (3.13) and obtain, to leading order, 

This gives the tangent to a curve through the origin in the p-plane on which 
(3.10) is non-hyperbolic. This tangent line is restricted to a ray by the condition 
that a2> 0, which to first order from (3.6) is 

[ P :  ' ~ l I [ p b  - p2] < 0; (3.16) 

see the ray OC in Fig. 1. 
Now suppose that as p  varies near (0,O) in the parameter plane, p  crosses the 

arc (3.15) (which is tangent to the ray OC in Fig. 1). Then the Jacobian (3.10) has 
a complex eigenvalue crossing the imaginary axis, and experience leads us to 
expect a Hopf bifurcation in the (v,, r,, v,)-equations. However, this is not quite 
the standard Hopf bifurcation, because for example (3.10) has no corresponding 
complex-conjugate eigenvalue. What is required here is a version of the Hopf 
bifurcation theorem for a special class of complex ordinary differential equations. 
Such a theorem is presented in the Appendix. 

A second difficulty is the fact that the rotating-wave branch has not been 
calculated exactly, but only asymptotically for small a2. It is clear from (3.5) and 
(3.13) that, for the parameter values of interest, 11 = 0(a2). Therefore we rescale 
p  to make this explicit, and define 

Now all the terms in (3.10) are explicitly O(a2), and in fact the differential 
equations for v = (vO, r l ,  v2) take the form 
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MODULATED ROTATING WAVES 167 

where f 0  is independent of a and f is bounded as a+ 0. Now introduce a slow 
time variable 

2 t = a  t (3.19) 

and let a-0 in (3.18), to obtain the blown-up equation 

dvldz = fO(v ,  b, A). (3.20) 

The explicit form of f 0  is given below in (3.23). First we remark that if there 
exists a hyperbolic periodic orbit of (3.20) (for example from a Hopf bifurcation), 
then by standard transversality arguments, for sufficiently small a2 there is a 
nearby periodic orbit of 

and hence for (3.18), and orbital stability is preserved. To calculate f O ,  we recall 
that 

2 p = a vobo, 
N = a2[(1 + r,)2 + v2b2], (3.22) 

(S = -a2 + a2[v2b2 - (2 + rl)rl], 

and make use of the fact that a2 satisfies the rotating-wave branching equation 
(3.2). In (3.23). all coefficients and derivatives are evaluated at the origin: 

dvo/dz = f :  = [c: A + ch - ic2]vo + c~voBov0 + [ch + ic2]v2fi2vo 

+ [ch - ic2][2 + rljrlvo + c3[1 + r1]BOb2, 

drlldz = f y  = [ p h  -p2j[2 + r,][1 + rl]rl + [ p h  +p2][1 + rI]v2b2 

+ p;vobo[l + rll + Re [ [ p 3  + iq31[v~v211, 
dv21dt = f !  = 2[p2 + iq2]v2 + [ p h  + p 2  + 2iq2][2 + rl]rlv2 

2 2- + [ p h  - P 2  - 2iq ]v2v2 + p~vObov2  

+ [P3  + iq3][l + rl]B: + [4th-degree terms in v] .  

In f i ,  there are fourth-degree terms in vo,  rl, v2,  which come from the 
corresponding terms in (3.8), but they have not been written out explicitly 
because they have no effect on the Hopf bifurcation. 

In order to apply the bifurcation formula in the Appendix, we require the first 
three derivatives off O evaluated at criticality. These are 

- ic2 0 

d d 
[dyO]o[u,  zl][v, a ]  =--- fO[tlu + tzv, tlfi + tzb, A] (+ 

dr, dr, 

Anticipating the fact that only the first component of the third derivative of f 0  
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168 JOHN DAVID CRAWFORD ET A L .  

will be required we calculate 

Now equation (3.20) has the required form for application of the complex Hopf 
bifurcation theorem and formula in the Appendix. In particular, the linear part A 
operates only on v and not on fi. The special fact that the rl-equation in (3.20) is 
real causes no difficulty; the real v,-axis is invariant under the flow. 

Applying the formulas of the ~ p ~ e n d i x ,  we have 

and the Hopf coefficient H is 

The direction of bifurcation, relative to a given choice of path in the parameter 
plane (transverse to the ray OC) is determined by the sign of 

where ~ ' ( 0 )  is the directional derivative of c' at criticality, along the given path, 
evaluated on the rotating-wave branch. We have a supercritical branch if (3.32) is 
positive and a subcritical branch if it is negative. It follows from the transversality 
hypothesis (3.14) that generically al(0) f 0. The bifurcating torus is asymptotic- 
ally stable if the following quantities are negative: 

We conclude that, for a generic parameter path crossing the ray OC, equation 
(3.20) has a Hopf bifurcation of a branch of periodic orbits, with direction and 
stability determined by formulas (3.31) to (3.33). According to the remarks 
following (3.20), this implies existence of a branch of periodic orbits of (3.18) 
with frequency asymptotic to c2(0)a2, for small a'. 

Finally, for the reasons given after (3.9), this implies the bifurcation of an 
invariant torus of solutions of (3.8) and hence of (3.1). On this torus, we know 
that the second frequency is O(a2) and furthermore the flow is linear; that is, all 
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MODULATED ROTATING WAVES 169 

solutions on the torus are obtained from the S1 phase shift in (3.9). In fact, normal 
hyperbolicity of the bifurcating torus guarantees that the torus is invariant under 
the action of SO(2) X S1 and hence any group orbit. It then follows more 
generally that the vector field on the torus must be topologically conjugate to 
linear flow (see (Rand, 1982) and section 4). 

4. The higher-order tail 

In section 3 we investigated the bifurcation of an invariant Ztorus of solutions, 
under the assumption that the vector field (3.1) is in formal normal form, that is 
to say, has exact O(2) X S1 symmetry. However, in general the vector field has a 
remainder or tail of order k + 1 which has only the O(2) symmetry and not the S1 
symmetry. In this section we analyse how the tail modifies the conclusions of 
section 3. 

To begin, we reconsider the O(2) X S1-equivariant normal form (2.9). Instead 
of (2.9), we now have a vector field which is a sum 

g(z, 2; p )  =gk(z, 2; p)  + hk(z, Z ;  p). (4.1) 

Here gk is a vector-valued polynomial of degree k in (2, 2 )  whereas hk is a 
remainder of order k + 1 in (2, 2); further, gk  has the form (2.9), where hk is 
O(2)-equivariant but not S1-equivariant. We shall show that the torus bifurcation 
found in section 3 persists under the assumption that 

The transformation to a rotating coordinate system centred on the rotating- 
wave solution proceeds as before, using (3.7). However, now the transformed 
equations are not exactly as in (3.8). Instead, the right-hand side is a sum of a 
polynomial part of the same form as (3.8) and a remainder which is O(ak) and is 
not S1-equivariant. The failure of S1-equivariance is manifested in the presence of 
factors exp (iQ) in the O(ak) part, so that the vector field is now 2n-periodic in 
52. It remains true that the vector field is autonomous, and that for sufficiently 
small a and p, and bounded v, Q is a strictly monotone function of t .  We use this 
fact to change the independent variable in (3.8) from t to Q; 

Let us also rescale the parameter p as in (3.17). The result is a new system of the 
form 

dv ldQ = a2P(v, D, A, a2) + a k ~ ( v ,  6 ;  A, a, Q), (4.4) 

where P is a vector-valued polynomial in (v, 6)  independent of Q, and the 
remainder R is 2n-periodic in Q. Further consideration of P to first order as a + 0 
shows that 

P(v, D, A, 0) = - fO(v, u, A), [:,I 
where f0 is as in (3.18). We now apply first-order averaging to the equation (4.4). 
Since P is independent of 52, the averaging is trivial, and the first-order averaged 
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equation is 
dvldQ = a2P(v, 0, A, 0). (4.6) 

But, by ( 4 3 ,  this is identical to equation (3.20), for which there is generically a 
Hopf bifurcation to a branch of hyperbolic periodic solutions (that is, if 
Re (H) # 0). Now by a theorem of Hale (1969), the existence of hyperbolic 
periodic orbit for the averaged equation (4.6) implies the existence of a 
hyperbolic invariant torus for the periodically forced equation (4.4). Since (4.4) is 
equivalent to the original system near criticality, the local persistence of the torus 
to the perturbations of the tail is established. 

Now the loss of S'-equivariance means that the solutions of (4.4) are not all S1 
conjugates. Nevertheless, the O(2) symmetry is sufficient to preserve the 
qualitative nature of the flow on the torus, as we now show. The Z, part of the 
O(2) symmetry has been broken by the primary rotating-wave bifurcation; there 
are two isolated Z2-conjugate rotating waves, each of which is SO(2)-invariant 
(since each is an isolated periodic solution). The secondary Hopf bifurcation from 
the rotating wave yields an isolated 2-torus which is normally hyperbolic, 
provided H # 0. Therefore this 2-torus is also SO(2)-invariant. Now a theorem of 
Rand (1982) describes flow on a Ztorus that is both flow-invariant and invariant 
with respect to the action of SO(2). It is required that SO(2) is not the isotropy 
group of a solution in the torus (that is, there exists a non-axisymmetric solution); 
this is clearly satisfied, as seen from (2.7a) and (3.7). The conclusion is that any 
trajectory on the torus is either asymptotic to a rotating wave in the torus, or is a 
modulated wave and topologically conjugate to a linear flow. But a rotating wave, 
by definition, coincides with a group orbit of SO(2). In the present case, (2.8) 
implies that the rotation number of an SO(2) group orbit is equal to 1, while the 
rotation number of the flow is asymptotically proportional to the second 
frequency calculated in section 3, which is 0(a2). Thus, on the torus the group 
orbits and flow orbits are transverse, and rotating waves are excluded. Thus we 
conclude that every solution on the 2-torus is a modulated wave (in the sense of 
Rand (1982)), topologically conjugate to a linear flow with two independent 
frequencies depending continuously on the parameter p. In particular, there is no 
resonance (or frequency entrainment). 

For the case in which the modulated wave arises via Hopf bifurcation from a 
rotating wave, there are 'selection rules' which constrain the possible spatio- 
temporal patterns that can appear. These rules apply to the modulated waves 
obtained on the 2-torus; for more details see (Rand, 1982; Renardy 1982). 

Recall, however, that the normal form is valid only locally, and although we 
can perform the calculation to make the order k of the tail as high as we please, 
the neighbourhood of validity of the formal normal form in general shrinks to 
zero as k increases. This implies that at onset the torus is smooth, but as the torus 
grows it may rapidly lose differentiability. Thus the possibility of more compli- 
cated or even 'chaotic' dynamics away from criticality remains open. 

5. Application to the Taylor-Couette problem 

In the Taylor-Couette system, two concentric cylinders are rotated independ- 
ently, and the space between them is filled with fluid. Since the work of Taylor 
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(1923), an outstanding problem has been to explain the variety of patterns of fluid 
motion observed in the experiments; see the review article of DiPrima and 
Swinney (1981). A standard mathematical idealization is to assume that the fluid 
motion is periodic in the axial coordinate z.  This corresponds well to experimen- 
tal observations away from the ends of long cyclinders. Together with the 
reflectional symmetry z - t  - z  along the axis of the cylinder, this imposes a 
symmetry group O(2) on the problem. The rotation speeds of the two cylinders 
(or the two corresponding non-dimensional Reynolds numbers) provide two 
independent parameters in the problem. In the counterrotating case, there exists 
a bicritical point for these two parameters, at which the linearization of the 
Navier-Stokes equations simultaneously has a zero eigenvalue and a conjugate 
pair of purely imaginary eigenvalues. The O(2) symmetry forces all three of these 
eigenvalues to be double. Thus this bicritical point falls into context of the 
present work. 

There is an additional SO(2) symmetry in the Taylor-Couette experiment, 
corresponding to azimuthal rotations of the cylinders. Mathematically, in the 
normal form this SO(2) symmetry plays the same role as the S1 phase-shift 
symmetry, except that it is exact to all orders. Thus the non-symmetric tail 
considered in section 4 does not exist, and the results of section 3 apply directly to 
the Taylor-Couette problem. 

We have computed the bifurcation coefficients, given in this paper, from the 
Navier-Stokes equations for the Taylor-Couette problem over the range of 
radius ratio 0.45 to 0.98; see (Golubitsky and Langford, 1987). In this context, 
the branch of rotating waves is usually called 'spirals', therefore we refer to the 
modulated rotating waves as modulated spirals. Our conclusion is that, whenever 
spirals are stable, there exists a bifurcation to modulated spirals, but the 
modulated spirals are unstable at bifurcation. Thus modulated spirals are not 
likely to be observed in experiments near the bicritical point. 
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MODULATED ROTATING WAVES 

Appendix 

Complex Hopf bifurcation 
The standard Hopf bifurcation theorem applies to a real system of differential 
equations 

where f : Rn X R + Rn; see for example Hopf (1942) and the books of Marsden 
and McCracken (1976), Hassard, Kazarinoff and Wan (1981), Vanderbauwhede 
(1982), and Golubitsky and Schaeffer (1985). All of these references give explicit 
formulas for the coefficients which determine the direction of bifurcation, 
stability, and the period of the periodic solution, whenever the Hopf bifurcation 
hypotheses are satisfied. 

In the study of normal forms of differential equations which possess symmetry, 
it is often convenient to use complex coordinates, and one is lead naturally to a 
complex generalization of (A.l). Such systems may also undergo a Hopf 
bifurcation but the standard real formulas do not directly apply to the complex 
case. It is the purpose of this Appendix to present explicit formulas for the Hopf 
bifurcation coefficients for a class of complex differential equations. 

The complex differential equations considered here are assumed to be of the 
form 

dzldt = A(p)z + h(z, 5;  p), ( A 3  

where z E Cn, Z is the complex conjugate of z, p E R (a real parameter), 
A(p) : Cn -., Cn is linear for each p, and h : C" x Cn x R -, C". We assume that 
both A and h are sufficiently smooth in their arguments (three continuous 
derivatives is sufficient), and h is 'higher order' in the sense that 

Note that a major restriction implied by the form of (A.2) is that the linear terms 
must not contain 2. This situation frequently occurs in normal form differential 
equations with symmetry. Of course, such symmetries will also restrict the form 
of h, but for generality we place no further symmetry restrictions on h. 

For a Hopf bifurcation, assume that A(0) =A, has an algebraically simple 
purely imaginary eigenvalue io,, o, # 0, and no others with zero real part. Then 
for p sufficiently near 0, A(p) has a simple eigenvalue 

depending smoothly on p. We assume that the classical crossing condition holds: 

We remark that it is not necessary for A to have a conjugate pair of eigenvalues 
in (A.4), as in the real case. However, the system (A.2) embeds naturally in C2" 
as the system 

and obviously for (A.6), complex eigenvalues occur in conjugate pairs. 
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The method of analysis is the Liapunov-Schmidt procedure, as in (Golubitsky 
and Langford, 1981) but generalized to the complex setting. We introduce a 
rescaled time variable 

s = (w, + t ) t  (A.7) 

and seek solutions which are 2n-periodic in s, that is, 2nl(wo + z)-periodic in t. 
The starting point is the linearized system 

with p = z = 0. Clearly (A.8) has 2n-periodic solutions 

where c is an eigenvector of A, satisfying 

A,c = io,c, c*c = 1. (A. 10) 

Here * denotes conjugate-transpose. We shall have need of the adjoint 
eigenvector and eigenfunction defined by 

Define the inner product on @"-valued 2x-periodic functions 

(A. 12) 

and it is clear that ( a ,  Y) = 1. Now the same type of analysis as for the real case 
in (Golubitsky and Langford, 1981) leads to the following. 

Existence Theorem Under the assumptions (A.3) to (AS)  above; equation (A.2) 
has a one-parameter branch of periodic solutions, with (2, p) near (0,O) and with 
period near 2 x 1 ~ ~  in t, of the form 

= E ~ S )  + E ~ w ~ ( s )  + o(E~) ,  
= E~~~ + o(E~) ,  (A. 13) 
= E~~~ + o(E~),  

where E and W2 satisfy 

(z, Y )  = E, (W2, Y) = 0. (A. 14) 

The solution (A.13) is unique up to phase shift, in the sense that any 
neighbouring solution with period near 2n/wO can be expressed in the form 
(A.13) for a suitable choice of the eigenvector c in (A.9), or equivalently by a 
shift in time t. 

Our goal is to present explicit formulas for Wz, pz and z2 in (A.13), in terms of 
derivatives of the given vector field h. Let us use subscripts z and Z to denote 
partial Frechet derivatives of h with respect to these arguments. Then, for 
example, if (d,h), denotes the total Frechet derivative of h(z, 2 ;  p )  with respect 
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to z at the origin, we write 

(d,h),(v, fi) = h , ~  + hiU. (A. 15) 

Here, and henceforth, all derivatives are evaluated at (2, 2 ;  p) = (0, 0; 0). 
Define complex vectors b,, b2, b-2 by 

AobO = -h,@, 

[Ao - 2iuoZ]b2 = - ih,,cc, 
[A,, + 2 i ~ ~ l ] b - ~  = - ahi,-22. 

(A. 16) 

Then W2, p2 and t, in (A.13) are given by the formulas 

W2(s) = eZirb2 + b0 + e-2isb-2,  
p2 = -Re (H)lar(0), (A. 17) 
t2 = Im (H) - Re (H)or(0)ld(O), 

where we define 

H = id*h,,,-CCE + d*[h,,cbo + hZpcb2 + hii~b-2]. (A. 18) 

In (A.17), al(0) and ol(0) are the derivatives of the eigenvalue in (A.4), (A.5), 
and may be calculated from the identity 

d*A1(0)c = al(0) + iol(0). (A. 19) 

Formulas (A.16) to (A.18) are the generalization, to this complex setting, of the 
corresponding formulas in (Golubitsky and Langford, 1981) for real vector fields. 
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