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An Example of Moduli for Singular Symplectic Forms 

Mar t in  G o l u b i t s k y *  and David Tischler*  

Queens College, Department of Mathematics. Flushing, N.Y. 11367, USA 

In [3] Mar t ine t  shows that  there are four generic types of s ingulari t ies  for germs 
of closed C ~ 2-forms on 4-manifolds  and then defines a no t ion  of s tabil i ty for 
these germs. The stabi l i ty  of the first s ingular i ty  type is just  the classical D a r b o u x  
theorem for symplect ic  forms. Mar t ine t  proved the s tabi l i ty  of the second type;  
while, more  recently, Roussar ie  [6] has shown the s tabi l i ty  of the third. In this 
paper  we shall show that  forms exhibi t ing this last type of s ingular i ty  are un- 
for tunate ly  not  stable. In fact, we show that  near  any generic X2.2.1 singular i ty  
there is, at least, a one pa rame te r  family of  moduli .  

In w we briefly descr ibe the var ious  singularit ies.  In w we will show how to 
reduce the p rob lem of s tabi l i ty  to one involving a contact  s t ructure on IR 3 at 0. 
Section 3 conta ins  the p r o o f  of instabi l i ty .  

Note :  we assume that  all functions, forms, vector  fields, etc. are C ~. 

w 1. The Singularity Types 

Let w be the germ of a closed 2-form on IR ~ at 0. Let f2 be a volume form on IR 4 
and let w A W = ff2. 

(i) If f(0)=t=0 then w is symplect ic  and  Da rboux ' s  Theorem states that  there 
are coord ina tes  x, y, z, t o n  IR 4 at 0 such that  

w = d x A d y + d z A d t .  

Next assume that  f ( 0 ) = 0  while (~()") (0) 4= 0. Let 2;~ = { f = 0 } ,  and let i: S 2 -+ IR 4 
be the inclusion. Note  that  X z is a d imension  3 submani fo ld  of IR 4. 

(ii) If i* w(0)4 = 0, then w has a S2.o singular i ty  at 0. Mar t ine t  [3, p. 157] has 
shown that  for I;2.0 singulari t ies  there are coord ina tes  x, y, z, t on 1R ~ such that  

w = x d x  Ady+dz  A dr, 
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Next, assume that i ' w ( 0 ) = 0  and let 172, 2 = {i* w=0}.  Consider the 2-plane field 
ker w on 2; 2. X2, 2 is precisely the points where the 2-planes are tangent to 222. 
Generically this tangency occurs in codimension 2 in 2;2. So generically 2;2, 2 is a 
dimension 1 submanifold of 272, [3, p. 124]. 

(iii) w has a 2;z,2,o singularity at 0 if ker W//~2;2, 2 a t  0 in 2;2' Roussarie [6] 
has shown that for 2;2,2.0 singularities there are coordinates x, y, z, t on IR 4 at 0 
such that 

7. 3 
w = d x A d y + z d y / x d z + d  ( x z + t Y - 3 - ) / x d t  (elliptic 172, 2. o). 

o r  

w = d x A d y + z d y A d z + d  x z - t y - - ~  Adt  (hyperbolicX2.2,0). 

These two cases are distinguished as follows: let Q' be a volume form on Z2, and 
X the vector field such that a = i*w = X_I f2'. Clearly X = 0 on 2;2.2 since a = 0  
there. Thus at least one eigenvalue of the linear part  of X at a point  in 2;2, 2 is zero. 
The fact that  ~ is closed means that X is volume preserving. So the trace of the 
linear part  of X is zero, and the other two eigenvalues are either both real or both 
imaginary. This proper ty  is an invariant of the singularity type. If the eigenvalues 
are real and non-zero then the singularity is a hyperbolic  2;2, 2, 0; if they are imagi- 
nary, it is an ellipic 2;2, 2, o. 

(iv) w has a 2;2,2,1 singularity at 0 if ToX2,2 c K e r  w(0). 

Definition. The closed 2-form germ w is stable at 0 in IR 4 if for every ne ighborhood 
U of O there is a ne ighborhood V of w (in the C ~ topology on closed 2-forms) 
such that if w' is in V, then there is a point  p' in U and a germ of diffeomorphism 
~b: (1R~, 0)--* (IR4, p ') such that w=f)*w'  at 0. 

The work of Darboux,  Martinet,  and Roussarie shows that symplectic, 
L'2, o, and both types of 172, 2, o singularities are stable. Mart inet  [3, p. 123] and [5] 
show that an open dense set of  forms on a compact  4-manifold consists of forms 
which exhibit only the four singularity types listed above. We shall show that 
•2, 2, 1 singularities are not stable. 

w 2. T h e  R e d u c t i o n  to  Z 2 

Let w have a 2;2, 2 singularity at 0 and let x: IR 4 ~ I R  define 2;2" Let cr = i* w. 

(2.1) Lemma.  Let n: R4--* X 2 be a submersion which is the identity on 2;2. Then 
there is a 1-form v on 2;2 such that 

(i) W = 7g* G ~- d x  A ~* u on .~'2, 

(ii) v Adv(O)4=O (v is a contact form), 
and 

(i i i)  cr/x v = 0.  

Proof We can certainly write w = n *  a +  dx/x n* v + x #  for some l-form v o n  2;2 
and 2-form # on 11t 4. Restricting to 172 yields (i). Next compute  

W A W = 2 n *  a A d x  A rC*V+ 2 X [ n *  a A I I + d x  A rc*V A l l ] +  xZ # A #. 

Now w A W = 0 =  2n*Cr A dx A n* V o n  172. 
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Thus  a /x  v - 0  on  222. Fin a l l y  the fact t ha t  222 is gener ic  impl ies  tha t  the co- 
efficient of  x is no t  zero  at  the or ig in .  So dx/,, n* v A IdO) 4= 0. Since w is c losed  a n d  
d w l s ~ = d x A n * d v + d x / ' , l ~  we have  tha t  i d O ) = - n * d v ( O ) + c d x  for s o m e  con-  
s tan t  c. 

Thus  dx A n* v /x n* dv(O) 4= O a n d  (ii) fol lows.  
N o w  since a /x  v = 0 we can  wr i te  a = v/~ ~. 
Let  w a n d  ff have  222, 2,1 s ingu la r i t i e s  a t  0 a n d  the same  Z 2 sets. By the last  

l e m m a  we have  t ha t  on  2" 2 

w = n * a + d x A n * v  a n d  ~ = n * # + d x A n * ? , .  

(2.2) L e m m a .  Let 0 :  ( IR'~, 0)--* (IR 4, 0) be a germ of  a diffeomorphism such that 
0"  w = w. Then there is a d(ffeomorphism 4): (2;2,0) --* (222,0) such that 

(a) 4 ) * # = a  

and 
(b) 4)*~=k(v+Jk)  

Jor some functions k and.[. 

Proof. C e r t a i n l y  0 " 6 v / x  if) = w/x w, so 0(222) = 2;2. 
Let  4 )=  0]s~. A p p l y i n g  i* to 0 * # = w  yie lds  (a). Nex t  no te  t ha t  

0 =  4)*ff A # ) =  4)*~ A o-. 

Using  M a r t i n e t  [3, L e m m a  3, p. 163] or  d i rec t  c o m p u t a t i o n  we have  tha t  

4)*v=k(v+fcO since a = r A ~ .  

(2.3) Coro l l a ry .  I f  there exist arbitrarily small perturbations a s oJ'cr with a~/x v = 0 
]dr which there is not a dilfeomorphism 4)/ (222, O) -~ (222, O) satisfying 4), a~ -  a and 
4)*v=k,(v+J~o:). Then w is not stable. 

Proqf  This  is o b v i o u s  f rom the a b o v e  by  le t t ing  Ws=W+n*(a~-a ) .  Then  w~= 
n* a s + dx A n* v o n  222" 

w The Proof of Instability 

Let a a n d  v be as above .  Since v is a c o n t a c t  fo rm one can  c h o o s e  c o o r d i n a t e s  
y, z, t on 222 so tha t  v = d y + z d t .  W e  first show tha t  we can  pu t  2;2, 2 in to  a n o r m a l  
form whi le  f ixing v. 

(3.1) L e m m a .  I f  w has a generic X2.2,1 singularity at O, then there is a contact 
diffeomorphism 4): (222,0) ~ (222, 0) such that 4) (X2, 2) = {Y = 0 = z - t }, and 4)* v = + v. 

Firs t  we desc r ibe  w h a t  we m e a n  by gener ic i ty .  A l o n g  X2, 2 the kerne l  field of  w 
equa ls  the  ke rne l  of  v. ( F o r  on 2; 2 , w = n * a + d x A n * v  and  on 222,2, a = 0 .  So 
w = dx/x n* v on 222, 2 .) Le t  A be a n o n - z e r o  vec to r  field t angen t  to 222, 2. W r i t e  

A = P c ~ z + q  ~ , t - ~  ~yy] 

where the first two  s u m m a n d s  are  in ke r  v. Since 0 is a 222, 2,1 s ingu la r i t y  for w, 
r(O) = O. W e  say tha t  0 is a gener ic  2"2, 2,1 s ingu la r i ty  if dr(A) 4 = 0 at  O. 
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Since a A v = 0  there are functions a and b so that  cr=adyAdt+bdyAdz+ 
z b d t/x dz. Now S2, 2 = {c~ = 0} = { a --- b = 0}. The genericity of  2;'2, 2 implies that  
da and db are linearly independent  at 0. Since cr is closed we have 

a -b t+  zb~-O. (1) 

Proof of Lemma 3.1. First we put 2;2, 2 in the plane y = 0 .  Now X2, 2 is transverse 
to either the z-axis or the t-axis. In the first case we write X2, 2 = {(y(t), z(t), t)}. 
Note  that  y ( 0 ) = 0 = z ( 0 )  and since v=dy at 0, y ' (0 )=0 .  Consider  the change of 
coordinates  

~ = y - y t t )  

5=z+/(t) 

t=t. 

This change of coordinates  preserves v, sends 0 to 0, and satisfies y(-,F2, 2)=0.  
In the second case X2, 2 = {(y(z), Z, t(z))}. Consider  the change of coordinates  

y = y - y ( z )  

Z ~ Z  

= t +  i Y'(S)_ds. 
0 S 

As before y ( 0 ) = 0  and y ' (0 )=0 ;  so this change of coordinates  makes  sense, sends 
0 to 0 and preserves v. 

In either case S2 ,2c{~- - -0  }. D r o p  the bars. Since X 2 , 2 c { y = 0 } .  A is tangent  
to y = 0  along 2;2,2" Thus 

A=p~zz+ q ~ - z ~  +Zq~y 

along S2, z. Thus dr(A)=A(zq)=p(O), q(O) at 0. So p(0) and q(0)=t=0. Now 2;2,2 
is t ransverse to the z-axis and 2;2,2= {(0, z(t), t)} where z (0 )=0  and z ' (0 )#0 .  We 
can assume that  z'(0) > 0. If not, use the contact  change of coordinates  

(y, z, t)--, ( - y ,  - z ,  t). 

Next note that any d i f feomorphism of the form O(y,z,t)=(y,z/k'(t),k(t)) 
where k (0 )=0  and k'(0)4:0 is a contact  t ransformat ion.  Fu r the rmore  

q5(2;2, 2)= ~b(0, z(t), t)= (0, z(t)/k' (t), k(t)). 

There obviously is a k such that  z(t)=k(Ok'(t). So we can assume that  L'2,2= 
{y=z- t=O} .  

(3.2) Proposition. There are no stable S2,2,1 singularities. 

Clearly if w has a stable 2,'2,2,1 singularity at 0, then it has a generic one. 
This we assume. As above,  cr=ady/x dt +bdy/ ,  dz+zbdt  Adz. Using L e m m a  3.1, 



An Example of Moduli for Singular Symplectic Forms 223 

we can assume that  

6/=al y + a z ( z -  t)+ ... 

b=bl  y + b z ( z - t ) + . . .  

Equat ion (1) implies that  b 2 = --612 . Also note that  c~=6/dt+bdz. The proposi t ion 
follows f rom the following: 

(3.3) Lemma.  Let 4) be a d!l]eomorphism of z~ 2 preserving 0 and Z2, 2 for which 
4)* v=k(~;+ f cO. Also assume 4)* aA V=0 (see (2.1)) which implies th6/t 

@ * a = ~ d y A d t + b d y  A dz+ zbd t  Adz  

whet'e 

a=al  y + ~z(Z-- t)+ ... 

and 

= b l  Y - -  a 2 (  g - -  t )  -~- �9 �9 �9 . 

T h e n  

( a l + b l )  4 ( a , + b 0  4 

6d 

This number  is an invariant  of a generic Z2,2.1 singularity which is easily 
perturbed.  For  example let q ~ = ( 6 / + s y ) d y A d t + b d t A d z + z b d t A d z .  Apply  
L e m m a  3.3 and Corol la ry  2.3 to see that  w is not stable. In fact this gives the 
example of modul i  promised  in the introduct ion.  

Proof of  Lemm6/ 3.3. We need only compute  the l-jet of q~*a. Since 6/(0)=b(0)=0,  
we need only know (dqS)(0) to do this. First we determine what  restrictions the 
facts that  @ * v = K ( v + f e )  and (/)(z:~2,2)=Z2,2 put on (d@)(0). 

Let @ = (A, B, C). We use the following nota t ion:  A yt denotes the coefficient 
of y t in the power  series expansion of A at 0, etc. @*v = K (v + fc0  implies 

A= + B C= = K.lb (2) 

A, + BC, = K [z + fa] (3) 

A~, + B C~, = K. (4) 

Evaluating (2) and (3) at 0 implies 

A ~ = A ' = 0 .  (5) 

4)(2;2, 2) = Z2, z = {Y = 0 = z - t } implies 

A (0, z, z) = 0 (6) 

B(0, z, z )=  C(0, z, z). (7) 

Thus 

A t ' + A ~ + A ~ = O  from (6) (8) 
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and 

B ~ + B' = C = + C' 

A '~ + B' C = = K(O)f(O) a 2 

2 A ~ + B ~ C ~ = - K(0)f (0)  a2 

2 A"  + B' C' = - K(0)riO) a 2 

At: + B ~ C ' =  K(0) I f ( 0 )  a 2 + 1] 

f rom (7) 

from (2) 

from (2) 

f rom (3) 

f rom (3). 

Now (10)+(11)+(12)+(13)  imply that  

(B' + B=)(O+ C ~) = K(0) using (8). 

Since 4)* v(0)= K(0)v (0 )+0 ,  we have 

Bt + Bz q=O. 

Next note that  (14) - (13) + (10) yields 

(Bt+B=)(B'+ C~)=0 using (9). 

Now (16) and (15) imply 

B t =  _ C ~ 

B = = C ' + 2 C  z f rom (9) and (17). 

So our  assumpt ions  on q5 imply that  ( y0 o) 
(dqS)(0)= C y C' + 2 C z - C  

Next, by a long but s t ra ightforward calculat ion of 4}* v, we have 

a 1 =AY[al  A y C ' - b  1 A y CZ+az(B y - CY)(Ct + CZ)] 

b 1 =AY[al  A y CZ+ b~ AY(Ct+2 C~) -a2 (B  y -  CY)(C'+ C~)] 

52 =a2 AY(Ct + CZ) 2. 

Hence 

(81 + b l )  4 _ (aj + b l )  ~ 

Finally, 

A x = K(0) 

and 

( C ' +  C~) 2 = K(O) 

So 

(AY) 3 

(C' + 0 )  6 " 

( a l + b l ) 4 _ ( a l + b t )  4 

by (4) 

by (14) and (9). 
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