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1 Introduction

In this note we discuss the structure of systems of coupled cells (which we view as systems
of ordinary differential equations) where symmetries of the system are obtained through the
group G of global permutations of the cells and the group L of local internal symmetries of
the dynamics in each cell. We show that even when the cells are assumed to be identical
with identical coupling, the way that G and L combine to form the total symmetry group of
the system Γ depends on properties of the coupling. We illustrate this point by showing how
the combination of L with G can lead to a symmetry group Γ that is either a direct product
or a wreath product. The symmetry group has strong implications for the dynamics of the
system of cells, and the distinction between the two cases is substantial. This has important
implications for the modeling of systems by coupled cells.
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Several authors have studied abstractly systems of coupled cells cf. Alexander [1]. It
has been noted previously that the form of the coupling can seriously affect the dynamics
in systems of coupled cells [2]. More recently, Dangelmayr et. al. [6] have studied coupled
cell systems with specific internal and global symmetries where the coupling produces direct
product symmetry groups. Here we emphasize the point that the type of coupling does
influence the total symmetry group and describe a few general bifurcation results for two
natural types of coupling.

In the next section we discuss the form of the differential equations describing coupled
cells. Section 3 develops the properties of the coupling that lead to direct and wreath
products and Section 4 presents a number of examples of each type of coupling. In Section 5
we discuss the types of bifurcating branches that may occur in steady-state bifurcations for
wreath product systems and in the last section, Section 6, we consider these bifurcations for
direct product symmetries. These sections preview work that will appear in [8].

2 Identical Coupled Cells

In this section we discuss the form taken by systems of differential equations that model
systems of identical cells with identical coupling. Imagine an array of N coupled cells — by
which we mean a set of N cells with arrows connecting cell i to cell j when the output of
cell i is coupled to cell j. Define the N ×N connection matrix C by setting

C(i, j) =

{

1 if cell i is coupled to cell j
0 otherwise.

Note that C need not be a symmetric matrix (the coupling may be directed).
Let Xj ∈ Rkj be the state variables of cell j and let X = (X1, . . . , XN) be the state

variables of the entire system of cells. Suppose that the dynamics of the coupled cell system
is modeled by a differential equation

Ẋ = F (X). (2.1)

The structure of coupled cells allows us to write (2.1) in the form

Ẋj = fj(Xj) + hj(X)

where fj models the internal dynamics of the jth cell and hj represents the coupling of all
other cells to the jth cell.
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For simplicity of exposition, assume that the total coupling to cell j is the sum of couplings
from all cells i to cell j. (Similar conclusions may also be derived for more general types of
coupling.) This assumption may be stated as

hj(X) =
∑

{i:C(i,j)=1}

hij(Xj, Xi)

for appropriate functions hij .
Now assume that all cells are identical. Then kj = k and fj = f for j = 1, . . . , N ; that is,

the internal dynamics of each cell is governed by the same set of equations. The assumption
that all couplings between cells are identical leads to the identity hij = h for all i, j.

To summarize: the system of ODEs (2.1) has the form

Ẋj = f(Xj) +
N

∑

i=1

C(i, j)h(Xj, Xi) (2.2)

where Xj ∈ Rk for j = 1, . . . , N .

3 Symmetries in Coupled Cells

As mentioned in the introduction, the symmetries of coupled systems appear in two ways:
through global permutation symmetries and through local internal symmetries. Studies of
the effects of the global symmetries have been made by many authors, but studies of the
effects of internal symmetries have been less frequent.

Global Permutation Symmetries G

In coupled cell systems with identical cells and identical coupling the global symmetries

are permutations, determined by patterns in the couplings themselves. There are three
especially popular patterns in which the cells form rings, directed rings, or simplexes (‘all-
to-all’ coupling). In these cases the permutation symmetries G are the dihedral groups DN ,
the cyclic group ZN and the permutation group SN , respectively. A permutation σ ∈ SN
acts on state space by

σ ·X = (Xσ−1(1), . . . , Xσ−1(N)).

The permutation σ is a symmetry of the coupled cell system if

F (σ ·X) = σ · F (X)
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which happens precisely when
σCσ−1 = C, (3.3)

where σ is viewed as a permutation matrix.

Local Internal Symmetries L

A k × k matrix ρ is an internal symmetry if it is a symmetry of the internal dynamics of
each cell, that is,

f(ρXj) = ρf(Xj).

When do the internal symmetries lead to symmetries of the entire coupled cell array? The
answer depends on the type of coupling h. We discuss two types of coupling.

Direct Products

Suppose that the coupling is equivariant with respect to the internal symmetries. That is,

h(ρXj, ρXi) = ρh(Xj , Xi)

for all ρ ∈ L. If we let L act on state space by

ρ ·X = (ρX1, . . . , ρXN),

then L×G is a group of symmetries of the full system of ODEs (2.1). An example is diagonal
linear coupling

h(Xj , Xi) = λ(Xi −Xj),

where λ ∈ R is the coupling strength.
If h satisfies no other invariance or equivariance conditions, then the symmetry group of

(2.2) is the direct product of the groups of local and global symmetries. When the coupling
leads to a direct product, the internal symmetries are symmetries of the whole cell system
only when they act ‘diagonally’ — that is, in the same way on each cell.

Wreath Products

In the second type of coupling any internal symmetry acting on any individual cell is a
symmetry of the entire system (2.2). In this case the coupling of cell i to cell j must not
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‘feel’ the effect of an internal symmetry applied to cell i alone. This invariance may be
formalized as:

h(ρXj , ρXi) = ρh(Xj , Xi)

h(Xj, ρXi) = h(Xj , Xi)

for all ρ ∈ L. Equivalently
h(ρXj , σXi) = ρh(Xj , Xi)

for all ρ, σ ∈ L. (That is, the coupling is invariant in Xi, equivariant in Xj .)
With such coupling the symmetries of (2.1) include the group LN acting by

(ρ1, . . . , ρN) ·X = (ρ1X1, . . . , ρNXN).

The wreath product of L with the permutation group G, denoted by L≀G, is the smallest group
generated by LN and G in the given actions of LN and G on state space. See Robinson [19]
p.18 or Scott [20] p.215 for general information on wreath products. The wreath product
contains the direct product (identify L with the diagonal subgroup of Ln) but it is huge in
comparison. If the coupling satisfies no further group-theoretic constraints, then the wreath
product will be the full symmetry group of these coupled cell systems. We note that an
example of wreath product coupling is:

h(Xj , Xi) = |Xi|
2Xj .

4 Examples

At first sight the above abstract considerations may appear rather artificial, especially as
regards the wreath product. However, examples of both kinds of coupled cell system are
widespread — and in several respects the wreath product is the most natural and the most
interesting. In this section we discuss a number of such examples.

Wreath Product Examples

(a) Coupled arrays of Josephson junctions.

This example was suggested by Kurt Wiesenfeld. There is an extensive literature studying
arrays of identical coupled Josephson junctions [17, 3]. Indeed, such arrays are prototypical
examples of systems exhibiting all-to-all coupling, since the coupling is electrical and is
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felt equally by all junctions. Thus an array having k junctions is modeled by a system of
differential equations with Sk symmetry. Josephson junction arrays are usually posed as an
example of a system of coupled cells with no internal symmetry. However, we shall consider
each Josephson junction array to be a single cell, with Sk as its internal symmetry group.

Josephson junction arrays are often used to model certain kinds of computer chip. From
this point of view, it is natural to consider an array of N chips, also electrically coupled.
Thus the global symmetry group is SN , since the system of chips may be modeled as having
all-to-all coupling. When the resistances in the individual chip and in the array of chips
are different — a reasonable modeling assumption — then this system of coupled chips has
Sk ≀ SN symmetry (rather than SkN symmetry).

(b) Discretizations of PDEs with gauge symmetry.

In systems of PDEs with local gauge symmetry, the gauge group acts independently at
each point in space. For example, in systems with an abelian gauge, such as the original
complex Ginzburg-Landau equation modeling superconductivity, the local gauge symmetry
is a phase shift and (except for smoothness considerations) the phase shift operates indepen-
dently at each point in space. It is well known that when discretizations of systems of PDE
are made, the resulting system of ODEs has the structure of a coupled system of cells with
each cell representing the dynamics of the PDE at one point or in one small region of space.
From this point of view it is natural for the gauge symmetries to act independently in each
cell. Should the system of PDEs be posed on a symmetric domain, then the total symmetry
group of the discrete system will be the wreath product of the local gauge symmetry with
the global (permutation) symmetry of the domain.

(c) Molecular dynamics.

As suggested by John Guckenheimer, another example of wreath product symmetry
should occur in molecular dynamics. Molecules are made up of atoms (the cells) and have
permutation symmetries that depend on the type of atoms and the bonds (coupling) between
the atoms. On the other hand, atoms themselves have internal symmetries and the applica-
tion of one of these symmetries to one atom should have no effect on the bonds between that
atom and another. If this description is valid, then symmetries of models for the dynamics
of molecules that include internal variables from the individual atoms will have a wreath
product symmetry. If it is merely an approximation, then the system can be considered as
a symmetry-breaking perturbation of one with wreath product symmetry.

(d) Heteroclinic cycles.

Perhaps the best known example of a structurally stable heteroclinic cycle in a symmetric
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system is the one abstracted by Guckenheimer and Holmes [15] from a model by Busse and
Heikes [4] on rotating convection. In the experiment the dynamics of the convection system
passes near three rolls patterns — each rotated by 120◦ from the previous one. Guckenheimer
and Holmes observed that the model in [4] can be abstracted using a certain 24 element
symmetry group; this symmetry group is just Z2 ≀ Z3. The system of ODEs has the form of
a system of three coupled cells with one internal state variable (k = 1) and one nontrivial
internal symmetry (Z2). Due to the rotation in the model, the coupling from cell i to cell
j is not equal to the coupling from cell j to cell i. Thus the symmetry in this system is
that of a directed ring system. One wonders whether the existence of heteroclinic cycles is
related to the coupling pattern. Examples of Field and Richardson [9] on symmetry groups
Z2 ≀ ZN substantiate this point of view. The ‘instant chaos’ scenario of Guckenheimer and
Worfolk [16] involves a subgroup of index two in Z2 ≀ Z4. The symmetry group of the cube
is the wreath product Z2 ≀ D3.

Direct Product Examples

(a) Neural networks.

Wegelin et. al. [21, 6, 7] study coupled systems of three cells where each cell is itself a
system of three identical cells. In order to study patterns of oscillation they consider direct
product couplings. In particular they consider the types of Hopf bifurcation that occur with
this symmetry. They find eleven different patterns of oscillation, as well as states with more
complicated dynamics, and they discuss the stability of the periodic solutions that they find.

(b) Discretization of PDEs with range symmetries.

Suppose that a system of PDEs in k functions u is posed on a domain with a symmetry
group G and a group of range symmetries L acting on Rk. For example, consider the
reaction-diffusion system on the interval [0, 1] satisfying Dirichlet boundary conditions

ut = ∆u+ f(u),

where f(−u) = −u. In this case the nontrivial domain symmetry is x 7→ 1 − x and the
nontrivial range symmetry is u 7→ −u. Other examples include elastic buckling of rods and
plates with various symmetric geometries and appropriate boundary conditions — see for
instance Buzano et al. [5] who study rods whose cross-sections are regular polygons, leading
to Z2 × Dn symmetry.

Discretizations of such PDEs will lead to coupled cell systems with the direct product of
the domain and range symmetries as the group of symmetries. Here the range symmetries
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must act identically on all cells.

(c) Direct products that occur by themselves.

In a number of applications direct products occur in the standard models. For example,
the Couette-Taylor system is posed on a circular cylinder with periodic boundary conditions
in the axial direction. The group of symmetries for this model is O(2)×SO(2). Euclidean-
invariant PDEs on rectangular domains with periodic boundary conditions have O(2)×O(2)
symmetry, see Gomes and Stewart [13, 14] which also give connections with Neumann and
Dirichlet boundary conditions.

5 Wreath Product Bifurcations

Wreath product bifurcations lead to some rather remarkable states, in which some cells are
active while the remainder are quiescent. This kind of spatial differentiation has been found
only rarely in bifurcation analyses, but appears to be natural in coupled cells with wreath
product symmetry. In this section we summarize our knowledge of steady-state bifurcation
in systems of coupled cells with wreath product symmetries. Details may be found in [8]
along with a description of the corresponding Hopf bifurcation. To simplify the discussion
here we assume that the global permutation symmetries G act transitively on the N cells.

Generically, steady-state bifurcations in systems of ODEs occur when the linearization
at an equilibrium has zero eigenvalues and the kernel of the linearization is an absolutely
irreducible representation of the group of symmetries of that equilibrium. In the context
of coupled cells with wreath product L ≀ G symmetry we consider steady-state bifurcation
from a group invariant equilibrium. The corresponding irreducible representations have local
symmetries acting either trivially or nontrivially. When the local symmetries act trivially, the
types of bifurcation reduce to the types considered in coupled cell systems with no internal
symmetry. Here we only consider those types of bifurcation in which the internal symmetry
group L acts nontrivially. In the case of a nontrivial action of L the irreducible spaces have
the form

W ⊕ · · · ⊕W,

where W is an irreducible representation of L. Here we use the assumption that G acts tran-
sitively on the N cells. The irreducible representation on the kernel is absolutely irreducible
precisely when the representation of L on W is absolutely irreducible, which we henceforth
assume.

Recall that the equivariant branching lemma [12] guarantees that generically there exists
a branch of bifurcating equilibria for each isotropy subgroup with a one-dimensional fixed-
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point subspace. We call an isotropy subgroup axial if it has a one-dimensional fixed-point
subspace; we also call the corresponding bifurcating solutions axial. It turns out that axial
subgroups of wreath product symmetry groups are relatively easy to describe.

Definition 5.1 A subset J ⊂ {1, . . . , N} is a block if there exists a subgroup Q ⊂ G which

leaves J invariant and acts transitively on J . Let QJ be the largest subgroup of G that leaves

J invariant.

We now show how to form axial subgroups of L ≀ G from an axial subgroup A of L acting
on W and a block J . Let

Σ(A, J) = (H1, . . . , HN)+̇QJ ,

where Hj = A if j ∈ J and Hj = L otherwise.

Theorem 5.2 The subgroup Σ ⊂ L ≀ G is axial if and only if Σ is conjugate to Σ(A, J) for

some axial subgroup A ⊂ L and some block J .

Note that solutions X = (X1, . . . , XN) corresponding to the subgroup Σ(A, J) have the
property that Xj = 0 for all j 6∈ J and Xj 6= 0 for all j ∈ J . Thus the cells j are quiescent
when j 6∈ J and active when j ∈ J . We note that similar results hold for Hopf bifurcation
in the presence of wreath product symmetry.

6 Direct Product Bifurcations

Steady-state Bifurcation.

As in the previous section we begin our discussion with the irreducible representations of
L×G. Over C the irreducible representations of the direct product are just tensor products
of irreducible representations of L and G. This is not always true over R — but it is
often true. (The precise description depends upon the commuting linear maps of irreducible
representations, see [8].) In this note we consider only absolutely irreducible representations
that are tensor products of absolutely irreducible representations. So assume that L×G acts
absolutely irreducibly on the real tensor product U ⊗ V . The following theorem identifies a
class of axial solutions of systems with direct product symmetry.

Theorem 6.1 Let A be axial for L acting on U and let B be axial for G acting on V . Then

A× B is either axial or a subgroup of index two in an axial subgroup.
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Hopf Bifurcations.

Similar ideas apply to Hopf bifurcation. The equivariant Hopf bifurcation theorem [12] allows
us to find branches of time periodic solutions for each isotropy subgroup Σ ⊂ Γ × S1 which
has a two-dimensional fixed-point subspace (in an appropriate representation). We say that
Σ is C-axial if its fixed-point subspace is two-dimensional.

In general, isotropy subgroups Σ ⊂ Γ × S1 have the form of a twisted subgroup, that is,
there is a subgroup A ⊂ Γ and a homomorphism ϕ : A→ S1 such that Σ = Aϕ where

Aϕ = {(a, ϕ(a) ∈ Γ × S1 : a ∈ A}.

In order to introduce the C-axial subgroups of Γ = L×G we need one additional definition.
There is a natural way to take the product of two twisted subgroups. Recall that the twisting
reflects the fact that the general symmetry of a periodic solution is a mixture of a space
symmetry a with a phase shift ϕ(a). When taking the product of two twisted groups one
must add the phase shifts. More precisely, let Aϕ and Bψ be twisted subgroups. Then define

Aϕ×̇Bψ = {(a, b, ϕ(a) + ψ(b)) ∈ L × G × S1}.

The following theorem shows that there are many periodic solutions whose isotropy sub-
groups are products.

Theorem 6.2 If Aϕ ⊂ L × S1 and Bψ ⊂ G × S1 are C-axial in the representations on U

and V , then Aϕ×̇Bψ is C-axial in L × G × S1 in the representation on U ⊗ V .

For example, it is known that there are two C-axial subgroups of O(2) acting on U = C⊗C

corresponding to rotating waves and standing waves (see [12]). It is also known that there
are three C-axial subgroups of D3 acting on V = U corresponding to a discrete rotating
wave (ponies on a merry-go-round) and two standing waves (see [12]). Thus in the action
of L × G = O(2) × D3 on U ⊗ V , there are at least six C-axial subgroups. This Hopf
bifurcation problem is considered by Wegelin [21] when analyzing a system of three coupled
lasers and these periodic solutions are there found by explicit computation. Wegelin also finds
one additional C-axial subgroup in this bifurcation. Similarly, in the corresponding Hopf
bifurcation for D3 ×D3 symmetry Theorem 6.2 determines nine C-axial product subgroups.
Wegelin et al. [6, 21] find these solutions in their study of neural nets with macro and
micro symmetry. They also find two additional C-axial subgroups in this representation.
It is possible to use representation theoretic ideas to compute the additional (non-product)
C-axial subgroups. The details may be found in [8].
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