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Nilpotent Hopf Bifurcations in Coupled Cell Systems∗

Toby Elmhirst† and Martin Golubitsky‡

Abstract. Network architecture can lead to robust synchrony in coupled systems and, surprisingly, to codimen-
sion one bifurcations from synchronous equilibria at which the associated Jacobian is nilpotent. We
prove three theorems concerning nilpotent Hopf bifurcations from synchronous equilibria to periodic
solutions, where the critical eigenvalues have algebraic multiplicity two and geometric multiplicity
one, and discuss these results in the context of three different networks in which the bifurcations
occur generically. Phenomena stemming from these bifurcations include multiple periodic solutions,

solutions that grow at a rate faster than the standard λ
1
2 , and solutions that grow slower than the

standard λ
1
2 . These different bifurcations depend on the network architecture and, in particular, on

the flow-invariant subspaces that are forced to exist by the architecture.
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1. Introduction. Stewart, Golubitsky, Pivato, and Török (see [9, 5]) formalized the con-
cept of a coupled cell network, where a cell is a system of ordinary differential equations
(ODEs) and a coupled cell system consists of cells whose equations are coupled. These re-
searchers defined the architecture of coupled cell networks and developed a theory that shows
how network architecture leads to synchrony. The architecture of a coupled cell network is a
graph that indicates which cells have the same phase space, which cells are coupled to which,
and which couplings are the same. Coupled cell systems with a given architecture are called
admissible. In this theory, local network symmetries (which form a groupoid; see [9] for de-
tails) generalize symmetry as a way of organizing network dynamics, and synchrony-breaking
bifurcations replace symmetry-breaking bifurcations as a basic way in which transitions to
complicated dynamics occur.

This paper is concerned with homogeneous networks. These are networks in which there is
only one type of cell and one type of coupling. In particular, the differential equations defining
the time evolution of each cell in any admissible system are identical. Thus these networks
have the property that the diagonal subspace Δ, formed by setting the coordinates in all cells
equal, is flow-invariant for all admissible coupled cell systems. It is therefore expected that
branches of synchronous equilibria can exist in Δ and that synchrony-breaking bifurcations
from these equilibria (bifurcations in which critical eigenvectors of the Jacobian J at the
equilibrium are not in Δ) can occur naturally as one parameter in the differential equations
is varied.
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Figure 1. The three-cell feed-forward chain.

Golubitsky, Nicol, and Stewart [2] observed that a certain three-cell feed-forward network
(see Figure 1) has codimension one synchrony-breaking bifurcations where J restricted to
the center subspace is nonsemisimple. The corresponding Hopf bifurcation, which we call a
nilpotent Hopf bifurcation, leads to periodic solutions whose amplitudes grow with the sur-
prising growth rate of 1/6, rather than the expected growth rate from Hopf bifurcation of
1/2. Leite [6] and Leite and Golubitsky [7] showed that there are 34 different types of homo-
geneous three-cell networks where the number of inputs to each cell is either one or two, and
that several of these, in addition to the feed-forward network, lead to nilpotent bifurcations.

In this paper we develop an approach to nilpotent Hopf bifurcation theory which enables
us to complete the work in [2] by showing that the 1/6 power growth rate is generic in the
codimension one nilpotent Hopf bifurcations of the feed-forward network, and to classify the
periodic solutions that can emanate from codimension one nilpotent Hopf bifurcations in
certain other homogeneous cell networks.

Nilpotent (or 1:1 resonant nonsemisimple) Hopf bifurcations have been considered previ-
ously in a generic setting in [10, 1, 8]. Without the coupled cell framework, such bifurcations
occur in codimension three. However, the structure imposed on admissible vector fields at the
linear level by certain network architectures implies that nilpotent Hopf bifurcations can occur
in these systems at codimension one. Moreover, these same architectures can also put restric-
tions on the higher order terms of admissible vector fields, which force surprising branching
of the solutions.

When investigating structured systems, one fundamental question is “How does the archi-
tecture of the system affect the dynamics,” and already we see unexpected, complex behavior
in simple-looking systems. In addition to aiding our understanding of natural systems, we also
expect applications of a more synthetic nature. In particular, we believe that the “amplifica-
tion” seen in the 1/6 growth rate in the network of Figure 1 could have interesting engineering
consequences.

We begin with a brief review of ordinary Hopf bifurcation and a summary of our main
results.

The standard Hopf theorems. Hopf bifurcation occurs at an equilibrium x0 and at a
parameter value λ0 of

ẋ = F (x, λ), x ∈ Rn, λ ∈ R,(1.1)

when the linearization of (dF )x0,λ0 has a pair of purely imaginary eigenvalues. Generically,
the critical eigenvalues are simple, and no other eigenvalues lie on the imaginary axis. Under
these assumptions we may assume, after a change of coordinates and a rescaling of time, that
x0 = 0, λ0 = 0, the critical eigenvalues of (dF )0,0 are ±i, and locally F (0, λ) = 0.

Let σ(λ) + iω(λ), where σ(0) = 0 and ω(0) = 1, be the eigenvalue extension in (dF )0,λ of
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i. Assume that the eigenvalue crossing condition holds, that is,

σ′(0) �= 0.(1.2)

The two standard Hopf bifurcation theorems [4] then state the following:
1. There is a unique branch of small amplitude periodic solutions to (1.1) with period

near 2π.
2. Generically, the amplitude of the periodic solutions on this branch grows at a rate of

order λ1/2; that is, the bifurcation is of pitchfork type.

The main results. We present three theorems concerning nilpotent Hopf bifurcations in
coupled cell systems. Specifically, in this paper we shall use the term nilpotent Hopf bifurcation
to indicate that there are critical eigenvalues ±ωi of (dF )0,0 at the equilibrium (0, 0), where
ω > 0, that are each double, but with only one (complex conjugate) pair of corresponding
eigenvectors. Typically we will also rescale time so that ω = 1. We note that network
architectures can easily be found that lead to codimension one bifurcations in admissible
vector fields in which the critical eigenvalues have algebraic multiplicity greater than two and
geometric multiplicity one. For example, the n-cell feed-forward chain, obtained by attaching
additional cells to the end of the network in Figure 1, has eigenvalues of algebraic multiplicity
n− 1 and geometric multiplicity one.

We show below that nilpotent Hopf bifurcations can occur generically in codimension one
bifurcations from a synchronous equilibrium in coupled cell networks. This point was noted
previously in [2, 6]. Our focus here is on the nonlinear theory, in which we show that network
architecture can lead generically to multiple periodic solutions whose amplitude growth rate
is greater than, equal to, or less than 1/2.

This variety in nilpotent Hopf bifurcations is due to the type of nonlinear degeneracies
forced by different network architectures on their admissible vector fields. In our approach
we study classes of networks whose architectures force, in codimension one, a particular type
of nonlinear degeneracy in the Liapunov–Schmidt reduced equation. Given this assump-
tion on architecture, we classify the branches of periodic solutions that occur generically in
codimension one bifurcations. Each network architecture can, in principle, lead to different
codimension one bifurcations, just as each symmetry group can lead to different equivariant
bifurcations.

We illustrate our results by discussing the following three specific networks:
(a) the three-cell feed-forward network in Figure 1, whose nilpotent Hopf bifurcation gener-

ically leads to two branches of periodic solutions with amplitude growth at rates of 1/6
and 1/2. The existence of these solutions in a restricted class of coupled cell systems
is shown in [2].

(b) the three-cell network in Figure 2, whose nilpotent Hopf bifurcation generically leads
either to two or four branches of periodic solutions with amplitude growth at the
standard rate of λ1/2.

(c) the five-cell network in Figure 3, whose nilpotent Hopf bifurcation generically leads to
two branches of periodic solutions with amplitude growth at rate λ.

Coupled cell networks and nilpotent normal forms. A general theory for the differential
equations associated with coupled cell networks is outlined in [9, 5]. In particular, an algo-
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Figure 2. A three-cell network with nilpotent linear part.
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Figure 3. A five-cell network with nilpotent linear part.

rithmic way of identifying a class of systems of differential equations with a directed graph is
given. The identification is reasonably intuitive, so we do not describe the general setup here.
Rather, we just list the results for the three networks of Figures 1–3.

(a) Following [2], the coupled cell systems corresponding to the three-cell feed-forward
network in Figure 1 have the form

ẋ1 = f(x1, x1),

ẋ2 = f(x2, x1),

ẋ3 = f(x3, x2),

(1.3)

where x1, x2, x3 ∈ Rk and f : Rk × Rk → Rk is arbitrary. Note that the synchrony
subspace x1 = x2 = x3 is flow-invariant for such systems, and the existence of a
synchronous equilibrium (satisfying f(a, a) = 0) is to be expected. Without loss of
generality we may assume that the synchronous equilibrium is at the origin. The
Jacobian of (1.3) at the origin has the form

J =

⎛
⎝ A + B 0 0

B A 0
0 B A

⎞
⎠ ,

where A = f1(0) is the linearized internal dynamics and B = f2(0) is the linearized
coupling. The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(0, 0, u)t A 2 1
(v, v, v)t A + B 1 1
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where u is an eigenvector of A and v is an eigenvector of A+B. It follows that when
k ≥ 2, (1.3) can have a codimension one nilpotent Hopf bifurcation.

(b) The coupled cell systems corresponding to the three-cell network in Figure 2 have the
form

ẋ1 = f(x1, x1, x3),

ẋ2 = f(x2, x1, x3),

ẋ3 = f(x3, x2, x3),

(1.4)

where x1, x2, x3 ∈ Rk and the overbar indicates that f : Rk × R2k → Rk satisfies
f(a, b, c) = f(a, c, b). The synchrony subspace x1 = x2 = x3 is still flow-invariant for
such systems, and the existence of a synchronous equilibrium, which without loss of
generality we may assume is at the origin, is to be expected. The Jacobian of (1.4) at
the origin has the form

J =

⎛
⎝ A + B 0 B

B A B
0 B A + B

⎞
⎠ ,(1.5)

where A = f1(0) is the linearized internal dynamics and B = f2(0) = f3(0) is the
linearized coupling. The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(u, u,−u)t A 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A and v is an eigenvector of A + 2B. Thus, if k ≥ 2,
codimension one nilpotent Hopf bifurcations occur in this network as well.

(c) The coupled cell systems corresponding to the five-cell network in Figure 3 have the
form

ẋ1 = f(x1, x1, x4, x4),

ẋ2 = f(x2, x1, x2, x5),

ẋ3 = f(x3, x2, x4, x4),

ẋ4 = f(x4, x2, x4, x5),

ẋ5 = f(x5, x1, x2, x3),

(1.6)

where xj ∈ Rk, f : Rk × R3k → Rk, and the overbar indicates that f(a, b, c, d) is
invariant under permutation of b, c, d. The synchrony subspace x1 = x2 = x3 = x4 =
x5 is flow-invariant, and a synchronous equilibrium, which again we may assume is at
the origin, is therefore to be expected. The Jacobian of (1.6) at the origin is

J =

⎛
⎜⎜⎜⎜⎝

A + B 0 0 2B 0
B A + B 0 0 B
0 B A 2B 0
0 B 0 A + B B
B B B 0 A

⎞
⎟⎟⎟⎟⎠ ,
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where A = f1(0) is the linearized internal dynamics and B = f2(0) = f3(0) = f4(0) is
the linearized coupling. The 5k eigenvalues of J are

Eigenvalues Algebraic multiplicity Geometric multiplicity

A± iB 2 1
A + 3B 1 1

Assuming that (1.6) depends on a parameter λ, we can arrange for a codimension one
nilpotent Hopf bifurcation at λ = 0 by taking k = 1, A(λ) = λ, and B(λ) ≡ −1.

Review of the Liapunov–Schmidt reduction proof of Hopf bifurcation. We use the
standard procedure of Liapunov–Schmidt reduction for finding periodic solutions through
Hopf bifurcation (see [3]), but nilpotence dramatically changes this analysis.

Since periodic solutions to (1.1) will not in general have period 2π, rescale time in the
usual way by letting s = (1 + τ)t so that (1.1) becomes

(1 + τ)
dz

ds
= F (z, λ).(1.7)

Fixing the period allows us to define the operator Φ : C1
2π × R × R −→ C2π by

Φ(x, λ, τ) = (1 + τ)
dx

ds
− F (x, λ),(1.8)

where C2π and C1
2π are respectively the Banach spaces of continuous and continuously differ-

entiable 2π-periodic functions x : S1 −→ Rn. Note that
(a) the solutions to Φ(x, λ, τ) = 0 correspond to near 2π-periodic solutions of (1.1),
(b) Φ(0, λ, τ) ≡ 0 since F (0, λ) ≡ 0,
(c) Φ is S1-equivariant, where θ ∈ S1 acts on u ∈ C2π by

(θ · u)(s) = u(s− θ).

In standard Hopf bifurcation, the kernel and cokernel of the Frechet derivative (dΦ)0 are
two-dimensional, and these spaces may be identified with C. Liapunov–Schmidt reduction
implies the existence of a mapping φ : C×R×R → C, whose zeros near the origin parameterize
the small amplitude periodic solutions of Φ = 0. Moreover, this reduction can be performed
to preserve symmetry; that is, we can assume that

φ(eiθz, λ, τ) = eiθφ(z, λ, τ).(1.9)

It follows that

φ(z, λ, τ) = p(|z|2, λ, τ)z + q(|z|2, λ, τ)iz,(1.10)

where p, q are real-valued smooth functions satisfying p(0) = q(0) = 0. Using (1.9), we need
only look for solutions where z = x ∈ R. Hence solutions to φ = 0 are of two types: x = 0
(the trivial equilibrium) and solutions to the system p = q = 0 (the desired small amplitude
periodic solutions).
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In standard Hopf bifurcation, a calculation shows that qτ (0) = −1. Hence, the equation
q = 0 can be solved by the implicit function theorem for τ = τ(x2, λ), where τ(0) = 0, and
small amplitude periodic solutions to (1.1) are found by solving

r(x2, λ) ≡ p(x2, λ, τ(x2, λ)) = 0.(1.11)

Another (more complicated) calculation shows that

rλ(0) = σ′(0).

It follows from the eigenvalue crossing condition that r = 0 can be solved by another applica-
tion of the implicit function theorem for λ = λ(x2), where λ(0) = 0, and the first Hopf theorem
is proved. Setting u = x2, the second Hopf theorem (the square root growth of amplitude) is
proved by making the genericity assumption ru(0) �= 0. The calculation of ru(0) in terms of
(1.1) is the most difficult of the calculations.

Statements of the main theorems. In a nilpotent Hopf bifurcation the kernel and cokernel
of the Frechet derivative (dΦ)0 are still two-dimensional—just like ordinary Hopf bifurcation.
It follows that the Liapunov–Schmidt reduced equation φ = 0 has the same S1-equivariance
as in standard Hopf bifurcation and hence has the form of (1.10).

We show in section 2.2 that a nilpotent Hopf bifurcation leads to the following result.
Proposition 1.1. Let p and q be as in (1.10). Then

pτ (0) = 0, qτ (0) = 0,(1.12)

pλ(0) = 0, qλ(0) = 0.(1.13)

It follows from Proposition 1.1 that we cannot employ the implicit function theorem in
the same way as it is used in the standard Hopf theorem; higher derivatives are necessary
to understand the bifurcation. Note that Proposition 1.1 does not require any assumptions
about network architecture. Indeed, it follows simply from the fact that (dF )0 is nilpotent.

All is not lost, however. In section 2.3 we assume that F is a homogeneous coupled
cell system with nilpotent linearization, and we obtain the following generalization of the
eigenvalue crossing condition (see [10] for a version of this proposition for generic vector
fields).

Proposition 1.2. If F is a homogeneous coupled cell system, then

pττ (0) = −2, qττ (0) = 0,(1.14)

pλλ(0) = 2(σ′(0)2 − ω′(0)2), qλλ(0) = −4σ′(0)ω′(0),(1.15)

pλτ (0) = 2ω′(0), qλτ (0) = 2σ′(0).(1.16)

These explicit calculations enable us to proceed with the calculation of solutions to p =
q = 0. The three theorems mentioned previously can now be stated (in reverse order) and the
proofs sketched.

We begin by stating the following theorem, which is proved in section 3.
Theorem 1.3. Assume

qu(0) �= 0(1.17)
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and the eigenvalue crossing condition (1.2). Then there exist two branches of near 2π-periodic
solutions, each one growing at order λ. Moreover, one branch is subcritical, and the other is
supercritical.

This theorem is proved by a straightforward application of the implicit function theorem.
We also show that the network in Figure 3 generically satisfies (1.17).

Observe that Theorem 1.3 refers to the class of networks whose architecture does not force
restrictions on the nonlinear terms of the reduced equation. The linear structure alone forces
a different branching pattern than for generic Hopf bifurcation. It does not follow, however,
that this situation is somehow the “generic” case for coupled cell networks. Indeed, there are
network architectures, such as the feed-forward network, that do force pu = qu = 0.

In section 4 we prove the next theorem.

Theorem 1.4. Assume

pu(0) = qu(0) = 0,(1.18)

puu(0) �= −1
2puτ (0)2, puλ(0) �= −ω′(0)puτ (0),

quu(0) �= −puτ (0)quτ (0), quτ (0) �= 0,

quλ(0) �= −
(
σ′(0)puτ (0) + ω′(0)quτ (0)

)
,

(1.19)

puu(0) �= quu(0)

quτ (0)

(
puτ (0) +

quu(0)

2quτ (0)

)
,(1.20)

and the eigenvalue crossing condition (1.2). Then there exist either two or four branches of
near 2π-periodic solutions to (1.1), with the number of branches depending on F , and each

branch grows as λ
1
2 .

The constraint (1.18) means that the implicit function theorem cannot be used to solve
p = q = 0, so the proof of Theorem 1.4 takes a form different from that for Theorem 1.3. We
show that there are either two or four branches of solutions to p = q = 0 (depending on the
uu, uτ , and uλ derivatives of p and q). Each of these solution branches is defined by λ = O(u),
and the growth rate of the amplitude is the standard 1/2 power. The proof of this theorem,
given in section 4, is based on showing that generically solution branches to p = q = 0 are
determined at quadratic order in u, λ, and τ . Then in section 4.3 we show that the network
in Figure 2 generically satisfies (1.18) and (1.19).

In section 5 we prove a third result.

Theorem 1.5. Generic nilpotent Hopf bifurcation in the feed-forward chain yields two
branches of near 2π-periodic solutions, the amplitude of one growing as λ

1
2 and the amplitude

of the other growing as λ
1
6 .

We show, using Poincaré–Birkhoff normal form techniques, that the feed-forward network
has two branches of solutions: one with growth rate 1/2 and the other with growth rate 1/6.
This step builds on the results in [2]. Then we show that the existence of these branches of
solutions implies that

pu(0) = puu(0) = puuu(0) = qu(0) = quu(0) = quuu(0) = 0.(1.21)
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Furthermore, using the Liapunov–Schmidt reduction, we show that

puuuu(0) �= 0 and quuuu(0) �= 0.(1.22)

It follows that there are no other branches of solutions to p = q = 0, or else these fourth
derivatives would also vanish.

In all three theorems and their corresponding examples, flow-invariant subspaces play a
vital role since they force the derivatives of p and q to vanish in (1.18) and (1.21). The five-cell
network of Figure 3 has no nontrivial invariant subspaces, and thus the derivatives are not
constrained. On the other hand, the feed-forward chain in Figure 1 and the three-cell network
of Figure 2 both possess a synchrony subspace S = {(u, u, v) : u, v ∈ Rk}. Furthermore, at
nilpotent Hopf bifurcations both networks satisfy the following:

The network has a flow-invariant subspace, S, that contains the critical

eigenspace but does not contain the corresponding generalized eigenspace.
(1.23)

An immediate consequence of (1.23) is the following.

Proposition 1.6. Suppose that a coupled cell system satisfies (1.23). Then at a nilpotent

Hopf bifurcation there exists a branch of solutions that grows at O(λ
1
2 ), and (1.18) holds.

Proof. Note that (1.23) implies that we can restrict the vector field to S, and because
S does not contain the generalized eigenvectors we can apply the standard Hopf theorem to
deduce that there is a standard Hopf bifurcation in S. Thus there is at least one branch that
grows as O(λ

1
2 ). This branch can be parameterized by u, so that

p(u, λ(u), τ(u)) ≡ 0 and q(u, λ(u), τ(u)) ≡ 0.

Differentiating both expressions with respect to u and evaluating at the origin yields

pu(0) + pλ(0)λu(0) + pτ (0)τu(0) = 0 and qu(0) + qλ(0)λu(0) + qτ (0)τu(0) = 0.

So by Proposition 1.1, pu(0) = qu(0) = 0.

Observe that the feed-forward chain has an additional flow-invariant subspace Ŝ ={
(0, 0, v) : v ∈ Rk

}
, and it turns out that Ŝ also satisfies (1.23). However, Ŝ is not a syn-

chrony subspace since it is not a polydiagonal, and this implies stronger consequences than in
Proposition 1.6. It is this that underlies the additional degeneracies in (1.21).

Theorems 1.3, 1.4, and 1.5 are concerned only with the existence of solutions branches, and
we do not consider the stability of the solutions or other dynamical features of the systems.
We would expect such an analysis to turn up some interesting features.

In section 6 we give three more examples of three-cell networks that can undergo nilpotent
Hopf bifurcation in codimension one. One of these falls into the same category as the network
in Figure 2, in that it has two or four branches of solutions given by Theorem 1.4. The
other two are similar to the feed-forward chain of Figure 1, in that they have two branches of
solutions, one growing at O(λ

1
2 ) and the other at O(λ

1
6 ).

Finally, we have placed the (lengthy) expressions for the derivatives of p and q into the
appendix, so as not to distract from the flow of the calculations.
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2. Reduction with nilpotent normal form. In this section we derive information about
the λ and τ derivatives of the Liapunov–Schmidt reduced mapping. Throughout we make the
standard assumptions that there exists a trivial (synchronous) equilibrium F (0, λ) = 0, that
J(λ) = (dF )0,λ has a complex conjugate pair of eigenvalues σ(λ) ± iω(λ) with σ(0) = 0 and
ω(0) = 1, and that the eigenvalue crosses the imaginary axis with nonzero speed, σ′(0) �= 0.
In addition we assume that the critical eigenvalues of (dF )0,0 have algebraic multiplicity 2
and geometric multiplicity 1. We also assume throughout that F is a coupled cell system,
since nilpotent Hopf bifurcations are nongeneric in systems without a coupled cell structure.

In section 2.1 we set up the generalities of the Liapunov–Schmidt reduction for a nilpotent
Hopf bifurcation and obtain a reduced bifurcation problem of the form (1.10). Then in sec-
tion 2.2 we prove Proposition 1.1. Finally, in section 2.3 we make the additional assumption
that F is a homogeneous coupled cell system and prove Proposition 1.2.

2.1. The Liapunov–Schmidt reduction. We study the Liapunov–Schmidt reduction of
(1.8) onto the kernel of the linearization of Φ at the origin. The linearization of Φ at the
origin is given by

Lu ≡ (dΦ)0u =
du

ds
− Ju,(2.1)

where J = (dF )0. Then K = kerL consists of the 2π-periodic solutions to the linear system

du

ds
= Ju.(2.2)

The Liapunov–Schmidt reduction requires an invariant splitting,

C1
2π = K ⊕M,

C2π = N ⊕R,

where R = rangeL, such that L|M : M → R is invertible. As we now show, we can take
M = K⊥ and N = K∗, where K∗ is the kernel of

L∗u = −du

ds
− J tu,(2.3)

which is the adjoint of L with respect to the inner product

〈u, v〉 =
1

2π

∫ 2π

0
v(s)tu(s) ds.(2.4)

Proposition 2.1. Assume that J has eigenvalues ±i with algebraic multiplicity 2 and geo-
metric multiplicity 1 and no other eigenvalues on the imaginary axis. Then

1. dimK = dimK∗ = 2;
2. there are bases {v1, v2} for K and {v∗1, v∗2} for K∗ such that K and K∗ can be identified

with R2 so that S1 acts on both spaces by counterclockwise rotation;
3. there are invariant splittings of C1

2π and C2π:

(a) C2π = K∗ ⊕R,

(b) C1
2π = K ⊕K⊥.

(2.5)
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Proof. We show that K and K∗ are two-dimensional by constructing bases. Note that
if n > 4, then J has eigenvalues off the imaginary axis, so solutions not lying in the space
spanned by the eigenvectors of ±i will not be periodic.

Let c ∈ Cn be an eigenvector of J with eigenvalue i. Then setting

v1(s) = Re{eisc}, v2(s) = Im{eisc}(2.6)

forms a basis for K, and in particular, dimK = 2.
Since J t has the same eigenvalues as J , and in particular has double eigenvalues ±i and

no other eigenvalues on the imaginary axis, we can construct a basis for K∗ in a similar way.
Let d ∈ Cn be an eigenvector J td = −id. Then

v∗1(s) = Re{eisd} and v∗2(s) = Im{eisd}(2.7)

forms a basis for K∗, and dimK∗ = 2.
We can identify K and K∗ with R2 via the mappings

(x, y) 
→ xv1 + yv2 and (x, y) 
→ xv∗1 + yv∗2.(2.8)

Observe that S1 acts on K as

θ · v1(s) = v1(s− θ) = Re{e−iθeisc} = cos θ v1(s) + sin θ v2(s),

and similarly

θ · v2(s) = − sin θ v1(s) + cos θ v2(s).

Therefore, the action of S1 on K, coordinatized by (2.8), is given by

θ ·
(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.(2.9)

That is, θ ∈ S1 acts by counterclockwise rotation through θ. By the same argument applied
to the identification given for K∗ in (2.8), S1 also acts on K∗ by counterclockwise rotation as
in (2.9).

The invariant splittings given in (2.5a,b) follow from the fact that L is Fredholm of index
zero. Specifically, the Fredholm alternative states that

R⊥ = K∗,(2.10)

which gives the decomposition in (2.5a).
An important point of departure of this case from the standard Hopf bifurcation is that

here we have

K∗ ⊥ K,(2.11)

as is shown in Lemma 2.2 below. This is essentially the reason why the first λ and τ derivatives
of p and q vanish in Proposition 1.1. The derivatives in Proposition 1.2 come from the fact
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that the generalized eigenvectors of J with eigenvalues ±i are not orthogonal to K∗. Notice
also that K ⊥ K∗ = R⊥ implies that K ⊂ R.

Let b be a generalized eigenvector of J such that

Jb = ib + c,(2.12)

and choose b so that

btc̄ = 0.

Then define

u1 = Re{eisb} and u2 = Im{eisb}(2.13)

by analogy with vj and v∗j . Note that

Luj = −vj .

The following lemma summarizes the relations between b, c, and d, and can be contrasted
with [3, Chapter VIII, Lemma 2.4].

Lemma 2.2. Let F be any vector field such that (dF )0,0 is nilpotent, and let b, c, and d be
defined as above. Then

ctd̄ = 0(2.14)

and the eigenvector d can be scaled so that

btd̄ = 2.(2.15)

Proof. Observe that

ibtd̄ = bt[J td̄] = [Jb]td̄ = (ib + c)td̄ = ibtd̄ + ctd̄.

Therefore, ctd̄ = 0.
Similarly, let v be any eigenvector of J with eigenvalue μ. Then

μvtd̄ = [Jv]td̄ = vtJ td̄ = ivtd̄.(2.16)

Thus every eigenvector of J with eigenvalue different from i is orthogonal to d̄. But ctd̄ = 0,
so btd̄ must be nonzero or d̄ is orthogonal to every eigenvector of J , which is a contradiction.
Therefore btd̄ �= 0, and we can scale d so that btd̄ = 2.

Before continuing with the reduction, we give the following useful formulas concerning vj ,
v∗j , and uj .

Lemma 2.3.

dv1

ds
= −v2,

dv1

ds
= −v2,

du1

ds
= −u2,

du2

ds
= u1,(2.17)

〈
v∗j , vk

〉
= 0,

〈
v∗j , uk

〉
= δjk,(2.18)
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where 〈·, ·〉 is the inner product defined in (2.4).
Proof. These formulas are straightforward calculations from the definitions of vj , v

∗
j , and

uj in (2.6), (2.7), and (2.13). We give two examples of these calculations; the others follow
very similar lines.

Observe that (2.6) implies

dv1

ds
=

d

ds
Re{eisc} = Re{ieisc} = −Im{eisc} = −v2.

Similar calculations yield the other derivatives in (2.17).
We verify only that

〈
v∗j , uk

〉
= δjk. Since

v∗1 = Re{eisd} = 1
2(eisd + e−isd̄), v∗2 = Im{eisd} = − i

2(eisd− e−isd̄),

u1 = Re{eisd} = 1
2(eisb + e−isb̄), u2 = Im{eisd} = − i

2(eisb− e−isb̄),

we can write

v∗j =
(−i)j−1

2
(eisd + (−1)j−1e−isd̄) and uk =

(−i)k−1

2
(eisb + (−1)k−1e−isb̄).

Then using (2.4) and the fact that btd̄ = 2 by (2.15),

〈
v∗j , uk

〉
=

ik−1(−i)j−1

8π

∫ 2π

0
(e−isb̄ + (−1)k−1eisb)t(eisd + (−1)j−1e−isd̄)ds

=
ik−1(−i)j−1

8π

∫ 2π

0

(
(−1)k−1e2isbtd + (−1)j+kbtd̄

+ b̄td + (−1)j−1e−2isb̄td̄t
)
ds

=
1

2
ik−1(−i)j−1(1 + (−1)j+k)

= δjk.

To continue the reduction, let E : C2π → R be the projection with kerE = K∗, and write
x ∈ C1

2π as x = v + w, where v ∈ K and w ∈ K⊥. Then Φ(v + w, λ, τ) = 0 if and only if

(a) EΦ(v + w, λ, τ) = 0,

(b) (I − E)Φ(v + w, λ, τ) = 0,
(2.19)

where I−E is the complementary projection of C2π onto K∗ with kernel R. The differential of
EΦ(v +w, λ, τ) with respect to w at the origin is just L|K⊥ , and L|K⊥ : K⊥ → R is invertible
because L is Fredholm of index zero. Thus the implicit function theorem implies that (2.19a)
can be solved for w = W (v, λ, τ), where W : K × R × R → K⊥ is such that W (0) = 0 and

EΦ(xv0 + W (xv0, λ, τ), λ, τ) ≡ 0(2.20)

for any v0 ∈ K and x ∈ R. Solving (2.19b) is therefore equivalent to solving Φ(u, λ, τ) = 0,
and hence, to finding the near 2π-periodic solutions to (1.1).
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The following lemma greatly simplifies a number of formulas later on.
Lemma 2.4.

Wx(0) = Wα(0) = Wαβ(0) = 0,(2.21)

where α and β are placeholders for λ and τ .
Proof. Differentiating (2.20) with respect to x and evaluating all derivatives at the origin

yields

dΦ(v0 + Wx(0)) = 0

and therefore

0 = Lv0 + LWx(0) = LWx(0).

However, Wx(0) ∈ K⊥, and thus Wx(0) = 0.
Observe that setting v = 0, w = W (0, λ, τ) in (2.19a) yields

E

(
(1 + τ)

d

ds
W (0, λ, τ) − F (W (0, λ, τ), λ)

)
≡ 0.

This is solved for W (0, λ, τ) ≡ 0 since F (0, λ) ≡ 0, and this must be the only solution since
the implicit function theorem guarantees that W (0, λ, τ) is the unique solution to (2.19a).
This implies that all λ and τ derivatives of W evaluated at the origin vanish.

Define the reduced mapping φ : K × R × R → K∗ by

φ(v, λ, τ) = (I − E)Φ(v + W (v, λ, τ), λ, τ).(2.22)

Then for j = 1, 2

φj(x, y, λ, τ) =
〈
v∗j , φ(xv1 + yv2, λ, τ)

〉
.

Since K and K∗ are invariant subspaces under the action of S1 as specified in (2.9), it
follows from Proposition 3.3 of Chapter VII in [3] that φ commutes with this action of S1 on
K and K∗. Therefore, by Proposition 2.3 of Chapter VIII in [3], the reduced mapping has the
form in (1.10), where x and y come from the identification of K with C given by (2.8).

Solutions to (1.7) that are 2π-periodic correspond to solutions to φ(x, y, λ, τ) = 0, and by
(1.10) these solutions are given by x = y = 0 or p = q = 0. The former correspond to the
trivial steady-state solutions z = 0 to (1.7), whereas the latter (with x2 + y2 > 0) correspond
to nonconstant 2π-periodic solutions to (1.7).

Because φ is S1-equivariant, solutions to φ(x, y, λ, τ) = 0 come in group orbits, and we
can therefore rotate the plane so that y = 0 and

x ≥ 0.(2.23)

In particular,

φ1(x, 0, λ, τ) = 〈v∗1, φ(xv1, λ, τ)〉 = p(x2, λ, τ)x,

φ2(x, 0, λ, τ) = 〈v∗2, φ(xv1, λ, τ)〉 = q(x2, λ, τ)x.
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2.2. Linear terms in the reduced equation. We now consider the λ and τ derivatives of
p and q. The first x derivatives of φ,

∂φ1

∂x
(0) = p(0) and

∂φ2

∂x
(0) = q(0),

are both zero because linear terms vanish in the Liapunov–Schmidt reduction. Indeed, suppose
that linear terms remained in φ = (I − E)Φ. Then we could have used the implicit function
theorem to solve for these terms as we did for (2.19a). Since we could not do this, there can
be no linear terms in φ. The second x derivatives,

∂2φ1

∂x2
(0) = px(0) and

∂2φ2

∂x2
(0) = qx(0),

are also clearly zero because p and q are quadratic in x.
Proof of Proposition 1.1. For any parameter α, the general formula for φαx is

φαx = (I − E)
(
dΦα(v1 + Wx) + dΦ(Wαx) + d2Φ(v1 + Wx,Wα)

)
,(2.24)

from (A.5), but we can simplify this by using (2.21). With these results, and bearing in mind
that

(a) d2Φ(·, ·) is bilinear, so any terms of the form dΦα(·, 0) vanish, and
(b) range dΦ = ker(I − E), so any terms in the range of dΦ also vanish,

formula (2.24) becomes

φαx = (I − E) (dΦα(v1)) .(2.25)

To verify (1.12), (2.25) implies

φτx = (I − E) (dΦτ (v1)) .

Observe that

dΦτ (v1) =
dv1

ds
= −v2,

since dΦτ = d
ds and by (2.17). Since v2 ∈ K ⊂ R = ker(I − E), it follows that φτx = 0 and

therefore that pτ (0, 0, 0) = qτ (0, 0, 0) = 0. This verifies (1.12).
To verify (1.13), (2.25) implies

φλx = (I − E) (dΦλ(v1)) .

Observe that

Φλ(x, λ, τ) = −Fλ(x, λ)(2.26)

and that F (x, λ) can be written as

F (x, λ) = J(λ)x + h.o.t.
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Thus Fλ(x, λ) = J ′(λ)x + h.o.t., and therefore, evaluating at the origin,

dΦλ = −dFλ(x, λ)|0 = −J ′(0).(2.27)

In (2.28) in Lemma 2.5, below, we prove that

J ′(0)c = (σ′(0) + iω′(0))c− (J − iIn)c′(0),

from which it follows that

J ′(0)v1 = Re{eisJ ′(0)c}
= σ′(0)Re{eisc} + ω′(0)Re{ieisc} − Re{(J − iIn)c′(0)}
= σ′(0)v1 − ω′(0)v2 − Re{eis(J − iIn)c′(0)}.

So, recalling from (2.18) that 〈v∗i , vj〉 = 0,〈
v∗j ,dΦλ(v1)

〉
=

〈
v∗j , σ

′(0)v1 − ω′(0)v2

〉
−

〈
v∗j ,Re{eis(J − iIn)c′(0)}

〉
=

〈
v∗j ,Re{eis(J − iIn)c′(0)}

〉
.

Observe that

[(J − iIn)c′(0)]td̄ = c′(0)t(J − iIn)td̄ = 0,

since d̄ is an eigenvector of J t with eigenvalue i. Therefore,

〈
v∗1,Re{eis(J − iIn)c′(0)}

〉
=

1

2
Re{[(J − iIn)c′(0)]td̄} = 0,

〈
v∗2,Re{eis(J − iIn)c′(0)}

〉
= −1

2
Im{[(J − iIn)c′(0)]td̄} = 0,

which verifies (1.13).
The following calculations are needed.
Lemma 2.5. Let μ(λ) = σ(λ) + iω(λ) be the eigenvalue of J(λ) such that μ(0) = i with

eigenvector c(λ) such that c(0) = c. Let b(λ) be the corresponding generalized eigenvector such
that J(λ)b(λ) = μ(λ)b(λ) + c(λ). Then

J ′(0)c = μ′(0)c− (J − iIn)c′(0),(2.28)

J ′′(0)c = μ′′(0)c− 2(J ′(0) − μ′(0)In)c′(0) − (J − iIn)c′′(0),(2.29)

J ′(0)b = μ′(0)b− (J − iIn)b′(0) + c′(0).(2.30)

Proof. Since c(λ) is an eigenvector of J(λ) with eigenvalue μ(λ),

J(λ)c(λ) = μ(λ)c(λ).(2.31)

Differentiating (2.31) with respect to λ and evaluating at λ = 0 gives

J ′(0)c(0) + Jc′(0) = μ′(0)c(0) + μ(0)c′(0) = μ′(0)c(0) + ic′(0),
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since μ(0) = i, and this rearranges to give (2.28).
Differentiating (2.31) twice with respect to λ, we obtain

J ′′(0)c(0) + 2J ′(0)c′(0) + Jc′′(0) = μ′′(0)c(0) + 2μ′(0)c′(0) + ic′′(0),

which rearranges to give (2.29).
Similarly, for the generalized eigenvector we have

J(λ)b(λ) = μ(λ)b(λ) + c(λ),

and differentiating this with respect to λ and evaluating at the origin, we obtain

J ′(0)b(0) + Jb′(0) = μ′(0)b(0) + μ(0)b′(0) + c′(0),

which rearranges to give (2.30).

2.3. Quadratic terms in the reduced equation. To prove Proposition 1.2 we require
Lemmas 2.6 and 2.7, which we prove at the end of the section.

Lemma 2.6. For any vector field with nilpotent linearization

Wτx = −u2,(2.32)

Wλx = −σ′(0)u1 + ω′(0)u2 + Re{eis(c′(0) − ζc)},(2.33)

where

ζ =
1

‖c‖2 c
′(0)tc̄(2.34)

so that ζc is the projection of c′(0) onto the critical eigenspace of J .
Lemma 2.7. Suppose that F is a coupled cell system such that (dF )0 is nilpotent and that
(a) each cell in the network has identical linearized internal dynamics,
(b) the linearized coupling between any two cells takes the form mB(λ), where B(λ) is a

k × k matrix and m ∈ R.
Then

c(l)(0)td̄ = 0 for all l ≥ 0,(2.35)

[J (k)(0)c(l)(0)]td̄ = 0 for all k, l ≥ 0,(2.36)

where

J (k)(0) =
∂kJ(λ)

∂λk

∣∣∣∣
λ=0

and c(l)(0) =
∂lc(λ)

∂λl

∣∣∣∣
λ=0

.

Remark 2.8. Assumptions (a) and (b) in Lemma 2.7 are instant if the network is homo-
geneous.

Proof of Proposition 1.2. The general formula for φαβx is given by (A.6), but the same
arguments that we used to derive (2.25) can be used to obtain

φαβx = (I − E)
(
dΦαβ(v1) + dΦα(Wβx) + dΦβ(Wαx)

)
.(2.37)
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To verify (1.14), we have from (2.37)

φττx = (I − E)
(
dΦττ (v1) + 2dΦτ (Wτx)

)
= (I − E)

(
2

d

ds
Wτx

)
,

where the second equality follows because dΦτ = d
ds and Φττ = 0. By the formula for Wτx in

(2.32) and the derivative given in (2.17),

d

ds
Wτx = − d

ds
u2 = −u1.

So, by (2.18), the jth component of φττx is

φττx,j = −2
〈
v∗j , u1

〉
= −2δj1, j = 1, 2.

For the λλ derivative in (1.15), we have from (2.37)

φλλx = (I − E)
(
dΦλλ(v1) + 2dΦλ(Wλx)

)
.(2.38)

Consider the first term (I−E)(dΦλλ(v1)), and note that (2.27) can be extended to the second
λ derivative, to yield

dΦλλ(v1) = −dFλλ(v1) = −J ′′(0)v1 = −Re{eisJ ′′(0)c}.

Thus, since [J ′′(0)c]td̄ = 0 by (2.36), we have

φλλx,j =
〈
v∗j ,dΦλλ(v1)

〉
= −

〈
v∗j ,Re{eisJ ′′(0)c}

〉
= 0.

Therefore by (2.27), equation (2.38) becomes

φλλx = 2(I − E)
(
dΦλ(Wλx

)
= −2(I − E)

(
J ′(0)Wλx

)
,

and by formula (2.33) for Wλx

J ′(0)Wλx = −σ′(0)Re{eisJ ′(0)b} + ω′(0)Im{eisJ ′(0)b} + Re{eisJ ′(0)(c′(0) − ζc)}.

Using (2.30) for J ′(0)b and rearranging, this becomes

J ′(0)Wλx = −Re
{
eis

(
μ′(0)2b− μ′(0)(J − iIn)b′(0) + μ′(0)c′(0) − J ′(0)(c′(0) − ζc)

)}
,

so that

φλλx,1 = −2
〈
v∗1, J

′(0)Wλx

〉
= Re

{
μ′(0)2btd̄− μ′(0)[(J − iIn)b′(0)]td̄

+ μ′(0)c′(0)td̄− [J ′(0)c′(0)]td̄ + [ζJ ′(0)c]td̄
}
,

(2.39)

with φλλx,2 being minus the imaginary part of the same expression.
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Observe that the last three terms in (2.39) vanish by Lemma 2.7 and that the second term
vanishes because

[(J − iIn)b′(0)]td̄ = b′(0)t[(J − iIn)td̄] = 0,

since d̄ is an eigenvector of J t with eigenvalue i. Hence,

φλλx,1 = −2
〈
v∗1, J

′(0)Wλx

〉
= Re{μ′(0)2btd̄},

φλλx,2 = −2
〈
v∗2, J

′(0)Wλx

〉
= −Im

{
μ′(0)2btd̄},

which, given that btd̄ = 2 by (2.15), proves (1.15).
Turning now to (1.16), we have from (2.37)

φλτx = (I − E)
(
dΦλτ (v1) + dΦλ(Wτx) + dΦτ (Wλx)

)
.(2.40)

First note that dΦλτ = 0. For the second term in (2.40), (2.27) and (2.32) imply that

dΦλ(Wτx) = J ′(0)u2 = Im(eisJ ′(0)b).

Expanding J ′(0)b by (2.30), we obtain

dΦλ(Wτx) = Im{eis(μ′(0)b− (J − iIn)b′(0) + c′(0))}
= ω′(0)u1 + σ′(0)u2 − Im{eis[(J − iIn)b′(0) + c′(0)]}.

(2.41)

For the third term in (2.40), we have from (2.33) and the fact that dΦτ = d
ds that

dΦτ (Wλx) = −σ′(0)u̇1 + ω′(0)u̇2 + Re{ieis(c′(0) − ζc)}
= ω′(0)u1 + σ′(0)u2 − Im{eis(c′(0) − ζc)}.

Putting this together with (2.41) and taking inner products yields〈
v∗j ,dΦλ(Wτx) + dΦτ (Wλx)

〉
= 〈v∗j , 2ω′(0)u1 + 2σ′(0)u2

− Im{eis[(J − iIn)b′(0) + c′(0) + c′(0) − ζc]}〉
= 2ω′(0)

〈
v∗j , u1

〉
+ 2σ′(0)

〈
v∗j , u2

〉
,

where the second line follows because c′(0)td̄ = 0 = ctd̄ and [(J − iIn)b′(0)]td̄ = b′(0)t(J −
iIn)td̄ = 0. The formulas in (1.16) then follow from Lemma 2.3.

Proof of Lemma 2.6. To show (2.32), we have from formula (A.14) and from the facts
that Wx = Wτ = 0, dΦτ = d

ds , and Lu2 = −v2 that

Wτx = −L−1E(dΦτ (v1)) = −L−1E

(
dv1

ds

)
= L−1E(v2) = −u2,

as required.
To prove (2.33), we use (A.14) and (2.27) to obtain

Wλx = −L−1E(dΦλ(v1)) = L−1E(J ′(0)v1).
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So, using formula (2.28) for J ′(0)v1 = Re{eisJ ′(0)c}, Wλx is the solution to the differential
equation

LWλx = σ′(0)v1 − ω′(0)v2 − Re{eis(J − iIn)c′(0)}.(2.42)

Write c′(0) = c0 + c1, where c0 ∈ ker(J − iIn) and c1 ∈ ker(J − iIn)⊥. Then

c0 =
c′(0)tc̄

‖c‖2 c

and

Re{eis(J − iIn)c′(0)} = Re

{
eis(J − iIn)

(
c′(0) − c′(0)tc̄

‖c‖ c

)}
.

With this substitution it is straightforward to check that (2.42) is solved for Wλx as in
(2.33).

Proof of Lemma 2.7. For any two matrices M and N we define [N ]M to be the matrix
obtained by replacing every entry mij in M with the block mijN . Using this notation, the
Jacobian of a coupled cell system satisfying (a) and (b) has the form

J(λ) =

⎛
⎜⎝

A(λ) · · · 0
...

. . .
...

0 · · · A(λ)

⎞
⎟⎠ +

⎛
⎜⎝

m11B(λ) · · · m1nB(λ)
...

. . .
...

mn1B(λ) · · · mnnB(λ)

⎞
⎟⎠

= [A(λ)]In + [B(λ)]M ,

(2.43)

where A(λ) is the linearized internal dynamics, B(λ) is the linearized coupling, and mij ∈ R.
As shown in [6], the eigenvalues of a homogeneous network are the eigenvalues of the

k × k matrices A(λ) + μjB(λ), where μ1, . . . , μn are the eigenvalues of M . Fix μc such that
A(0) + μcB(0) has a critical eigenvalue, and observe that μc is independent of λ. Note that
μc has algebraic multiplicity 2 and geometric multiplicity 1. Then A(0)t + μcB(0)t also has a
critical eigenvalue.

The eigenvectors u(λ) of J(λ) have the form

u(λ) =

⎛
⎜⎝

v1w(λ)
...

vnw(λ)

⎞
⎟⎠ = [w(λ)]v,

where w(λ) ∈ Ck is an eigenvector of A(λ)+μjB(λ) and v ∈ Cn is an eigenvector of M . Note
that v does not depend on λ since the matrix M does not depend on λ. Thus we can write

c(λ) = [β(λ)]α and d(λ) = [δ(λ)]γ ,

where α and γ are respectively the appropriate eigenvectors of M and M t with eigenvalues
μc, and β(λ) and δ(λ) are respectively the eigenvectors of A(λ)+μcB(λ) and A(λ)t +μcB(λ)t

with eigenvalues σ(λ) + iω(λ). Then

c(λ)td̄(λ) = ([β(λ)]α)t[δ̄(λ)]γ̄ = (αtγ̄)(β(λ)tδ̄(λ)).(2.44)
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Observe that β(0)tδ̄(0) �= 0 since β(0) and δ̄(0) are respectively the eigenvectors of A(0) +
μcB(0) and (A(0) + μcB(0))t with the same simple eigenvalue i, and recall from Lemma 2.2
that ctd̄ = 0 since (dF )0 is nilpotent. Then (2.44) implies αtγ̄ = 0.

Hence,

c(l)(0)td̄(0) = ([β(l)(0)]α)t[δ̄(0)]γ̄ = (αtγ̄)(β(l)(0)tδ̄(0)) = 0,

which proves (2.35). To show (2.36), use (2.43) to calculate

[J (k)(0)c(l)(0)]td̄(0) =
(
J (k)(0)[β(l)(0)]α

)t
[δ̄(0)]γ̄

= (αtγ̄)
(
(A(k)(0) + μcB

(k)(0))β(l)(0)
)t
δ̄(0)

= 0

since αtγ̄ = 0.

3. Hopf bifurcation with linear u terms. In this section we consider nilpotent Hopf bifur-
cations in coupled cell systems that satisfy (1.17). Note that we are making two assumptions
in (1.17); that the network architecture does not force qu(0) to vanish, and that the bifurcation
is generic for that network. Theorem 1.3 is proved below, and the corresponding bifurcation
diagram is shown in Figure 4. We then show that there exists a vector field on the five-cell
network of Figure 3 such that qu(0) �= 0. Hence, by Theorem 1.3, this system has two branches
of solutions that grow linearly with λ.

Proof of Theorem 1.3. By Propositions 1.1 and 1.2, we can write

p(u, λ, τ) = pu(0)u− τ2 + (σ′(0)2 − ω′(0)2)λ2 + 2ω′(0)λτ + · · · ,(3.1)

q(u, λ, τ) = qu(0)u− 2σ′(0)ω′(0)λ2 + 2σ′(0)λτ + · · · ,(3.2)

and we require solutions to p = q = 0. Assuming (1.17) and applying the implicit function
theorem, we can solve q = 0 near the origin for

u =
2σ′(0)λ

qu(0)
(ω′(0)λ− τ) + · · · .

Substituting this into (3.1) and setting p = 0 yields the following equation in τ and λ:

τ2 + 2

(
pu(0)

qu(0)
σ′(0) − ω′(0)

)
λτ +

(
ω′(0)2 − 2pu(0)

pu(0)
σ′(0)ω′(0) − σ′(0)2

)
λ2 + · · · = 0,

where quadratic terms are solved for

τ =

[
ω′(0) − σ′(0)

qu(0)

(
pu(0) ±

√
pu(0)2 + qu(0)2

)]
λ.(3.3)

Since these solutions are real and distinct we can apply the recognition problem for simple
bifurcation using τ as the state variable and λ as the bifurcation parameter to prove that
higher order terms are unimportant. See [3, Proposition 9.3, p. 95].

Substitute (3.3) into q = 0, for q as in (3.2), and rearrange to obtain

u =
2σ′(0)2

qu(0)2

(
pu(0) ±

√
pu(0)2 + qu(0)2

)
λ2.

Note that only the + sign is relevant, since we require u = x2 > 0. Thus, since u = x2 grows
as O(λ2), x grows as O(λ), and we obtain the bifurcation diagram in Figure 4.
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λ

x

Figure 4. Bifurcation diagram for nilpotent Hopf bifurcation with qu(0) �= 0.

The five-cell network of Figure 3. To illustrate the results of this section we consider the
five-cell system shown in Figure 3 and defined by (1.6) with the vector field defined by

f(xi;xj , xk, xl) = λxi − xj − xk − xl − x3
i .(3.4)

We compute pu(0) and qu(0) for this system and show that pu(0) �= 0 �= qu(0).

Recall that

pu(0) =
1

2
pxx(0) =

1

2

∂3φ1

∂x3
(0) and qu(0) =

1

2
qxx(0) =

1

2

∂3φ2

∂x3
(0).

By (A.1) we have

φxxx = (I − E)(d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx))(3.5)

since dΦ(Wxxx) ∈ R = ker(I − E).

As a reminder of the higher order differentials of Φ, let u1, . . . , um be any functions in C2π,
and let ui,j denote the jth component of ui. By definition, evaluating all derivatives at the
origin, we have

(dmΦ)0,0,0(u1, . . . , um) =
∂

∂t1
· · · ∂

∂tm
Φ(t1u1 + · · · + tmum, 0, 0)

∣∣∣∣
t=0

= −
n∑

i1,...,im=1

∂mF

∂xi1 . . . ∂xim

∣∣∣∣∣∣
0,0

u1,i1 · · ·um,im

= −(dmF )0,0,0(u1, . . . , um).

See [3, pp. 31–32]. Letting v1,j denote the jth component of v1 gives

d3Φ(v1, v1, v1) = −
n∑

i,j,k=1

∂3F

∂xi∂xj∂xk

∣∣∣∣
0

v1,iv1,jv1,k

= −1

4
Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}(3.6)

since

v1,iv1,jv1,k =
1

8
(eisci + e−isc̄i)(e

iscj + e−isc̄j)(e
isck + e−isc̄k)

=
1

4
Re{e3iscicjck + eis(cicj c̄k + cic̄jck + c̄icjck)}.
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Therefore, since second derivatives of F in (3.4) vanish, formula (3.5) becomes

φxxx = (I − E)d3Φ(v1, v1, v1) = −1

4
(I − E)Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}
.

Thus the components of φxxx on K∗ are

pu(0) = −1

8

〈
v∗1,Re{e3isd3F (c, c, c) + eis3d3F (c, c, c̄)}

〉
= − 3

16
Re{d3F (c, c, c̄)td̄},

qu(0) = −1

8

〈
v∗2,Re{e3isd3F (c, c, c) + eis3d3F (c, c, c̄)}

〉
=

3

16
Im{d3F (c, c, c̄)td̄}.

To compute d3F (c, c, c̄), rewrite the equations in the form ẋi = fi(x) for i = 1, . . . , 5 and
observe that

∂3fi
∂x3

i

= −6 for i = 1, . . . , 5 and
∂3fi
∂x3

j

= 0 if i �= j.

Hence

d3F (c, c, c̄) =

5∑
i,j,k=1

∂3F

∂x3
i

∣∣∣∣
0

cicj c̄k = −6

⎛
⎜⎜⎜⎜⎝

c1c1c̄1
c2c2c̄2
c3c3c̄3
c4c4c̄4
c5c5c̄5

⎞
⎟⎟⎟⎟⎠ .

The critical eigenspace is spanned by the real and imaginary parts of

c = (2,−2 + 2i,−4i,−1 − i, 2)t,

and therefore

d3F (c, c, c̄) = −12(4,−8 + 8i,−32i,−1 − i, 4)t.

The generalized eigenvector orthogonal to c is

b =
1

17
(−45 − 27i, 4 − 18i, 14 − 12i,−8 + 36i, 57 + 7i),

and the eigenvector of J t with eigenvalue −i is

d =
1

20
(−3 − i, 1 − 3i, 1 − 3i,−2 + 6i, 3 + i)t,

which is chosen so that btd̄ = 2, as in (2.15). Hence

d3F (c, c, c̄)td̄ = −36 + 24i,

and therefore, since pu(0) = 1
2pxx(0) and qu(0) = 1

2qxx(0),

pu(0) = − 3

16
Re{−36 + 24i} =

27

4
and qu(0) =

3

16
Im{−36 + 24i} =

9

2
.

Since qu(0) �= 0, Theorem 1.3 guarantees linear growth near to a bifurcation.
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4. Hopf bifurcation with quadratic u terms. In this section we consider nilpotent Hopf
bifurcations in networks that satisfy (1.18) and (1.19). In section 4.1 we prove Theorem 1.4.
Then in section 4.2 we discuss the implications of (1.23) for the Liapunov–Schmidt reduction
and derive expressions for the partial derivatives of the reduced mapping. Finally, in section 4.3
we show that the network in Figure 2 satisfies (1.23) and, using the formulas derived in
section 4.2, that admissible vector fields can be chosen to give either two or four branches, as
stated in Theorem 1.4, with any combination of super- and subcritical branches.

The number of branches is determined by the number of points in the intersection of two
quadratics in the (u, τ)-plane. These quadratics are not arbitrary because, as we show in
Lemma 4.2, the null intersection is not possible. However, in the two or four branch cases any
configuration of super- and subcritical branches may be obtained by admissible vector fields
for the network in Figure 2.

4.1. Proof of Theorem 1.4. Proposition 1.2 and (1.18) imply that p and q can be written
as

p(u, λ, τ) = 1
2puu(0)u2 + puτ (0)uτ + puλ(0)uλ− τ2

+ (σ′(0)2 − ω′(0)2)λ2 + 2ω′(0)λτ + · · · ,
q(u, λ, τ) = 1

2quu(0)u2 + quτ (0)uτ + quλ(0)uλ

− 2σ′(0)ω′(0)λ2 + 2σ′(0)λτ + · · · .

(4.1)

We seek solutions to p(u, λ, τ) = q(u, λ, τ) = 0.
The first step in finding solutions to (4.1) is to introduce changes of coordinates that

simplify the equations but do not affect the branching behavior at the bifurcation.
Lemma 4.1. The mapping (p, q) in (4.1) is strongly equivalent to

p(u, λ, τ) = αu2 + γuλ− τ2 + σ′(0)2λ2 + · · · ,
q(u, λ, τ) = au2 + buτ + cuλ + 2σ′(0)λτ + · · · ,

(4.2)

where

α =
1

4

(
2puu(0) + puτ (0)2

)
, a =

1

2

(
quu(0) + puτ (0)quτ (0)

)
,

b = quτ (0),

γ = puλ(0) + ω′(0)puτ (0), c = quλ(0) + σ′(0)puτ (0) + ω′(0)quτ (0).

(4.3)

Furthermore, the nondegeneracy conditions in (1.19) imply that all coefficients in (4.2) are
nonzero, and condition (1.20) implies that when λ = 0 the only solution to p = q = 0 near the
origin is the origin itself.

We assume that the coefficients in (4.2) are independent and arbitrary. In section 4.3 we
use the results derived in section 4.2 to show that this assumption is valid for the network
shown in Figure 2.

The second step in finding solutions to (4.1) is to truncate p and q at quadratic order and
to introduce similarity variables

û = λu and τ̂ = τλ.(4.4)
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We then prove that generically there are two or four branches of solutions to p = q = 0 in two
stages. Consider the equations

p̂(û, τ̂) ≡ αû2 + γû− τ̂2 + σ′(0)2 = 0,

q̂(û, τ̂) ≡ aû2 + bûτ̂ + cû + 2σ′(0)τ = 0.
(4.5)

Note that solutions to (4.5) correspond to lines of solutions (parametrized by λ) in the zeros
for the quadratic truncations of p and q in (4.2). We prove the following.

Lemma 4.2. Assume (1.19). Then, generically, solutions to (4.5) consist of either two or
four points, with the precise number depending on the coefficients in (4.3).

Recall that the only solutions to (4.2) of interest are those with u = x2 > 0, since we
require real solutions for x. However, any solution (û0, τ̂0) to (4.5) corresponds to a ray of
solutions to the quadratic truncations of p and q. If û0 > 0, the ray consists of points u0 = û0λ
and τ0 = τ̂0λ, where λ ≥ 0. On the other hand, if û0 < 0, the ray consists of (u0, τ0), where
λ < 0. Each ray of solutions in (u, τ) space corresponds to a parabola of solutions in (x, τ, λ)
space, where the solutions are supercritical if û0 > 0 and subcritical if û0 < 0.

Finally, we use hyperbolicity to justify truncating (4.2) at quadratic order.
Lemma 4.3. Generically in the coefficients (4.3), all solutions to (4.5) are hyperbolic.
Lemma 4.3 implies that higher order perturbations of the truncated equations merely move

the branches of solutions in (u, λ, τ) space and do not affect the existence of the branches.
The proof of Theorem 1.4 follows from Lemmas 4.1, 4.2, and 4.3.

Figures 5, 6, and 7 show that two or four branches with all choices of super- and subcritical
branches are indeed possible, given that the coefficients in (4.2) are arbitrary. Recall that
negative û solutions to (4.5) correspond to subcritical branches of solutions to p = q = 0 and
that positive solutions correspond to supercritical branches.

û

τ^

û

τ^

û

τ^

Figure 5. Two solutions to (4.5) with γ = −1, a = −1, c = 1, σ′(0) = 1. Left: Two solutions with û < 0;
α = 1, b = 3. Center: One solution with û < 0 and one with û > 0; α = −1, b = 3. Right: Two solutions with
û > 0; α = 1, b = −3.

Proof of Lemma 4.1. For strong equivalence (see [4]) we may make changes of coordinates
of the form

g(x, τ, λ) = S(x, τ, λ)φ(X(x, τ, λ), T (x, τ, λ), λ).

Thus we can transform τ by

τ 
→ τ +
puτ (0)

2
u + ω′(0)λ,
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û

τ^

û

τ^

û

τ^

Figure 6. Four solutions to (4.5) with a = −1, c = 1, σ′(0) = 1. Left: Three solutions with û < 0 and one
with û > 0; α = −1, γ = −1, b = 6. Center: Two solutions with û < 0 and two with û > 0; α = 1, γ = 2.5,
b = −3. Right: One solution with û < 0 and three with û > 0; α = −1, γ = −1, b = −6.

û

τ^

û

τ^

Figure 7. Four solutions to (4.5) with α = 1, a = −1, c = 1, σ′(0) = 1. Left: Four solutions with û < 0;
γ = 2.025, b = 10. Right: Four solutions with û > 0; γ = −2.025, b = −6.

which yields

p(u, λ, τ) = 1
4

(
2puu(0) + puτ (0)2

)
u2 +

(
puλ(0) + ω′(0)puτ (0)

)
uλ

− τ2 + σ′(0)2λ2 + · · · ,
q(u, λ, τ) = 1

2

(
quu(0) + puτ (0)quτ (0)

)
u2 + quτ (0)uτ

+
(
quλ(0) + ω′(0)quτ (0) + σ′(0)puτ (0)

)
uλ + 2σ′(0)λτ + · · · .

(4.6)

This gives (4.2) and the coefficients in (4.3). Moreover, (1.19) implies that all coefficients are
nonzero.

Note that if λ = 0, then

p(u, 0, τ) = αu2 − τ2 + · · · and q(u, 0, τ) = au2 + buτ + · · · .

Use the implicit function theorem to solve q = 0 to quadratic order for τ = −a
bu + · · · , and

substitute into p = 0, giving (
α− a2

b2

)
u2 + · · · = 0,

which has nonzero solutions for u only if αb2 − a2 = 0. By (4.3), αb2 − a2 �= 0 is equivalent to
(1.20). So the only solution for λ = 0 is the origin.
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Proof of Lemma 4.2. We show that (1.19) implies that there always exists at least one
solution. Therefore, generically, there must be either two or four solutions.

Observe that q̂ = 0 can be solved for

τ̂ = τ̂(û) = − aû2 + cû

bû + 2σ′(0)
.(4.7)

Substituting this into p̂ in (4.5) yields

p̂(û, τ̂(û)) =
1

(bû + 2σ′(0))2
[
(αû2 + γû + σ′(0)2)(bû + 2σ′(0))2 − (aû2 + cû)2

]
.

Thus p̂ = 0 only when

h(û) ≡ (αû2 + γû + σ′(0)2)(bû + 2σ′(0))2 − (aû2 + cû)2 = 0.(4.8)

Observe that

h(0) = 4σ′(0)4 > 0 and h

(
−2σ′(0)

b

)
= −(aû2 + cû)2 ≤ 0.

Hence, by the mean value theorem, there exists a û0 between 0 and −2σ′(0)/b such that
h(û0) = 0. Therefore, for τ̂0 = τ̂(û0) as given in (4.7), p̂(û0, τ̂0) = 0. Since there is at least
one solution to (4.5), generically there must be either two or four solutions.

Proof of Lemma 4.3. We show that the Jacobian of the mapping

R(û, τ̂) = (p̂(û, τ̂), q̂(û, τ̂))

is singular at a solution to (4.5) only if û satisfies a quartic equation that is different from
h = 0. Hence, generically, a point û0 will not solve both equations simultaneously.

Observe that the Jacobian of R is

dû,τ̂R =

(
∂p̂
∂û

∂p̂
∂τ̂

∂q̂
∂û

∂q̂
∂τ̂

)
=

(
2αû + γ −2τ̂

2aû + bτ̂ + c bû + 2σ′(0)

)
.

Thus dR is singular only if its determinant

(2αû + γ)(bû + 2σ′(0)) + 2τ̂(2aû + bτ̂ + c) = 0.

Evaluating this on the manifold of solutions τ̂ = τ̂(û) to q̂ = 0 given by (4.7) yields a second
quartic equation:

2(aû + c)
(
b(aû + c)û− (2aû + c)(bû + 2σ′(0))

)
û + (2αû + γ)(bû + 2σ′(0))3 = 0.(4.9)

Generically in the coefficients, the two quartics (4.8) and (4.9) will not have any simultaneous
roots. Therefore, solutions will generically be hyperbolic.
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4.2. Liapunov–Schmidt reduction with a flow-invariant synchrony subspace. In this
section we discuss the effect that (1.23) has on the derivatives of the reduced mapping φ. The
existence of a flow-invariant synchrony subspace S forces certain derivatives of the reduced
equation φ to vanish because trajectories in S are trapped in S for all time. The space of
2π-periodic solutions that lie inside S forms a subspace of C2π, and so we define

S2π = {u ∈ C2π : u(s) ∈ S for all s} .(4.10)

The essential point is that if u1, . . . , uk ∈ S2π, then dkΦ(u1, . . . , uk) ∈ R and thus vanishes
under the projection (I − E) onto K∗. This and related results are given by the following
lemma.

Lemma 4.4. Suppose that a coupled cell network has a synchrony subspace S satisfying
(1.23). Then

(a) if w ∈ S, then

wtd̄ = 0;(4.11)

(b) if c1, . . . , ck ∈ S, then

dkF (c1, . . . , ck) ∈ S;(4.12)

(c) if u1, . . . , uk ∈ S2π, then

dkΦ(u1, . . . , uk) ∈ S2π;(4.13)

(d)

S2π ⊆ R.(4.14)

Proof. To prove (4.11), note that any synchrony subspace, being invariant under J , must
be the direct sum of eigenspaces of J . In the proof of Lemma 2.2 it was shown that the
only eigenvector to which d̄ is not orthogonal is the generalized eigenvector b, which is not
contained in S by hypothesis (1.23). Therefore d̄ is orthogonal to every vector in S.

The statement in (4.12) follows simply because S is invariant for F and hence for all
differentials of F . Similarly for (4.13), S2π is invariant for Φ and hence for all differentials
of Φ.

Finally, to prove (4.14) note that, by the definitions of v∗1 and v∗2 in (2.7), and by (4.11),
trajectories in S2π are orthogonal to v∗1 and v∗2. So S2π ⊆ (K∗)⊥ = R by (2.11).

With these results in mind we compute the second partial derivatives of p and q. To
simplify these calculations we assume that F is odd, since it turns out that this is sufficient
for our purposes in section 4.3. To begin, we require the following lemma.

Lemma 4.5. Assume that a coupled cell system satisfies (1.23) with flow-invariant subspace
S and that F is odd. Then

Wxx(0) = Wxxxx(0) = Wτxx(0) = Wλxx(0) = 0(4.15)
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and

Wxxx(0) = −1

4
Re{e3isη3 + eisη1},(4.16)

where η1 and η3 are such that

(J − iIn)η1 = 3d3F (c, c, c̄) and (J − 3iIn)η3 = d3F (c, c, c).(4.17)

Proof. The statements in (4.15) follow immediately from the assumption that F is odd.
This assumption also implies that formula (A.11) in the appendix becomes

Wxxx = −L−1(d3Φ(v1, v1, v1)).

By (3.6) it follows that Wxxx is the solution to the differential equation

LWxxx =
1

4
Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}
.

It is straightforward to verify that this solution is given by (4.16).

Then we have the following.

Proposition 4.6. Assume the same hypotheses as in Lemma 4.5. Then

puu(0) =
5

16
Re{ξt1d̄}, quu(0) = − 5

16
Im{ξt1d̄},(4.18)

puτ (0) = −1

8
Im{ξt2d̄}, quτ (0) = −1

8
Re{ξt2d̄},(4.19)

puλ(0) =
1

8
Re{ξt3d̄}, quλ(0) = −1

8
Im{ξt3d̄},(4.20)

where

ξ1 = 2d3F (c, c̄, η1) + d3F (c, c, η̄1),(4.21)

ξ2 = 6d3F (c, c̄, b) − 3d3F (c, c, b̄) + η1,(4.22)

ξ3 = 6μ′(0)d3F (c, c̄, b) + 3μ̄′(0)d3F (c, c, b̄) + J ′(0)η1,(4.23)

where μ′(0) = σ′(0) + iω′(0).

Proof. Applying Lemmas 4.4 and 4.5 to formula (A.2) yields

φxxxxx = 10(I − E)d3Φ(v1, v1,Wxxx).(4.24)

Using (4.16) and the linearity of d3Φ, we compute

d3Φ(v1, v1,Wxxx) = 1
16Re

{
e5isd3F (c, c, η3)

+ e3is
(
d3F (c, c, η1) + 2d3F (c, c̄, η3)

)
+ eis

(
2d3F (c, c̄, η1) + d3F (c, c, η̄1) + d3F (c̄, c̄, η3)

)}
.

(4.25)
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Note that, by (4.17), η3 ∈ S since d3F (c, c, c) ∈ S and S is invariant under J−3iIn. Therefore
eisd3F (c̄, c̄, η3) ∈ R by Lemma 4.4. Since only terms involving eis have nonzero projection
onto K∗, we obtain

φxxxxx,j = 10
〈
v∗j ,d

3Φ(v1, v1,Wxxx)
〉

=
5

8

〈
v∗j ,Re

{
eis

(
2d3F (c, c̄, η1) + d3F (c, c, η̄1)

)}〉
.

From this it is straightforward to verify that

φxxxxx,1 =
5

16
Re{ξt1d̄} and φxxxxx,2 = − 5

16
Im{ξt1d̄},

where ξ1 is as defined in (4.21).
Now consider the formulas in (4.19) and (4.20). Using formula (A.8) and recalling from

(2.21) and (4.15) that Wτ = Wλ = Wxx = 0, we obtain

φαxxx = (I − E)
(
3d3Φ(v1, v1,Wαx) + d3Φα(v1, v1, v1) + dΦα(Wxxx)

)
,(4.26)

where α is either τ or λ.
Consider the case where α = τ . By the fact that dkΦτ = d

ds if k = 1 and 0 if k > 1, we
obtain

d3Φτ (v1, v1, v1) = 0 and dΦτ (Wxxx) =
1

4
Im{3e3isη3 + eisη1}.(4.27)

Since Wτx = −u2 by (2.32) we compute

d3Φ(v1, v1,Wτx) =
1

4
Im

{
e3isd3F (c, c, b) + eis(2d3F (c, c̄, b) − d3F (c, c, b̄))

}
.(4.28)

Substituting (4.27) and (4.28) into (4.26), we obtain

φτxxx,j =
1

4

〈
v∗j , Im

{
eis

(
6d3F (c, c̄, b) − 3d3F (c, c, b̄) + η1

)}〉
and hence

φτxxx,1 = −1

8
Im{ξt2d̄} and φτxxx,2 = −1

8
Re{ξt2d̄},

where ξ2 is defined in (4.22).
In the case when α = λ we have from (4.26)

φλxxx = (I − E)
(
3d3Φ(v1, v1,Wλx) + d3Φλ(v1, v1, v1) + dΦλ(Wxxx)

)
.(4.29)

Observe that d3Φλ(v1, v1, v1) = −d3Fλ(v1, v1, v1) and note that Fλ is a vector field on the same
network as F and therefore has the same flow-invariant subspaces. Hence, by Lemma 4.4,
(I − E)d3Φ(v1, v1, v1) = 0 since v1 ∈ S2π. Then using formulas (2.33) for Wλx and (4.16) for
Wxxx we have

d3Φ(v1, v1,Wλx) =
1

4
Re

{
e3is

(
μ′(0)d3F (c, c, b) − d3F (c, c, c′(0) − ζc)

)
+ eis

(
2μ′(0)d3F (c, c̄, b) + μ̄′(0)d3F (c, c, b̄)

− 2d3F (c, c̄, c′(0) − ζc) − d3F (c, c, c̄′(0) − ζ̄ c̄)
)}

,

dΦλ(Wxxx) =
1

4
Re{e3isJ ′(0)η3 + eisJ ′(0)η1},
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where ζ is given by (2.34) and c(λ) is the continuation of the critical eigenvector for J(λ) so
that c(0) = c. Note that c(λ) ∈ S for all λ. Therefore, c′(0) ∈ S, and d3F (c, c, c′(0)− ζc) ∈ S
by (4.12). Thus we obtain

φλxxx,j =
1

4

〈
v∗j ,Re

{
eis

(
6μ′(0)d3F (c, c̄, b) + 3μ̄′(0)d3F (c, c, b̄) + J ′(0)η1

)}〉
.

It is now straightforward to verify that

φλxxx,1 =
1

8
Re{ξt3d̄} and φλxxx,2 = −1

8
Im{ξt3d̄},

where ξ3 is as in (4.23).

4.3. The three-cell network of Figure 2. In this section we show that the network in
Figure 2 can have bifurcations with either two or four branches of solutions, depending on the
specific vector field, as stated in Theorem 1.4. Recall that S = {(u, u, v) : u, v ∈ Rn} is a
flow-invariant synchrony subspace for the network, and that the critical eigenvector has the
form c = (a, a,−a), where Aa = ia. The corresponding generalized eigenvector has the form

b = ζ

⎛
⎝ a

−a
0

⎞
⎠ +

⎛
⎝ w

w
−w

⎞
⎠ ,

where ζ and w are chosen so that (A− iIk)w = −(ζB − Ik)u. Hence, S contains the critical
eigenspace but not the generalized eigenspace, since (u,−u, 0) breaks synchrony. Therefore the
network satisfies (1.23), and thus Proposition 1.6 applies and (1.18) holds. In Proposition 4.7
we use the formulas in Proposition 4.6 to show that the second partial derivatives of p and q are
independent and arbitrary, and hence that (1.19) and (1.20) also hold generically. Therefore,
in this network the coefficients of (4.2) can be varied to obtain either two or four branches of
solutions, as stated in Theorem 1.4.

Proposition 4.7. The partial derivatives puu(0), puλ(0), puτ (0), quu(0), quλ(0), and quτ (0)
are arbitrary and can be varied independently for the network defined by (1.4).

Proof. We show that the real and imaginary parts of ξtj d̄ are arbitrary and independent,
for ξj defined in (4.21) to (4.23). In fact, we can do this in a very restricted setting to simplify
the calculations. Showing that the derivatives of p and q are arbitrary and independent under
restrictive assumptions clearly implies that the result holds for generic vector fields on this
network.

The first of these assumptions is that each cell has two-dimensional internal dynamics so
that

z1 =

(
x1

x2

)
, z2 =

(
x3

x4

)
, and z3 =

(
x5

x6

)
.

We also assume that

A(0) =

(
0 −1
1 0

)
and B(0) =

(
1 0
0 1

)
.
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The matrix A′(0) is left arbitrary.

Let a = (i, 1)t be the eigenvector of A with eigenvalue i, and set

c = (a, a,−a)t.(4.30)

Then since B = I2, the corresponding generalized eigenvector is

b = (a,−a, 0)t.(4.31)

Finally, observe that a = (i, 1)t is also an eigenvector of At such that Ata = −ia, so

d = (a,−a, 0)t

is an eigenvector of J t with eigenvalue −i.

We also make a number of assumptions about the higher derivatives of F . As in Lemma 4.5
and Proposition 4.6, we assume that F is odd. Since n = 2 we can write

f(u, v, w, λ) =

(
g(u, v, w, λ)
h(u, v, w, λ)

)
,

where g, h : R6 × R −→ R, with u being the internal variable and v and w being the input
variables. Now set all third derivatives equal to zero except for fu1u1u1 , which we fix at

fu1u1u1 =

(
gu1u1u1

hu1u1u1

)
=

(
2
0

)
,(4.32)

and

fu2u2v2 =

(
gu2u2v2

hu2u2v2

)
and fv1v1w2 =

(
gv1v1w2

hv1v1w2

)
,

which we leave arbitrary. Note that fu2u2v2 = fu2u2w2 and fv1v1w2 = fw1w1v2 by the invariance
of f .

First we compute η1 and show that [J ′(0)η1]
td̄ �= 0. Then it follows that ξt3d̄ is arbitrary

and independent of ξt1d̄ and ξt2d̄ due to the occurrence of the term J ′(0)η1 in (4.23). Finally
we show that under the above assumptions about F ,

(
ξt1d̄
ξt2d̄

)
= 3

(
−6i 6 −4i 4
−i 1 2i −2

)⎛
⎜⎜⎝

gu2u2v2

hu2u2v2

gv1v1w2

hv1v1w2

⎞
⎟⎟⎠ +

(
72
24

)
.(4.33)

Because the matrix in (4.33) has full rank, and because gu2u2v2 , hu2u2v2 , gv1v1w2 , and hv1v1w2

are arbitrary, the real and imaginary parts of ξt1d̄ and ξt2d̄ can be manipulated arbitrarily from
just these four derivatives of f . Therefore, the coefficients in (4.2) are arbitrary and can be
varied independently for this network.
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Recall from (4.17) that η1 is such that (J − iIn)η1 = 3d3F (c, c, c̄). Using (4.32), we
compute

d3F (c, c, c̄) =

⎛
⎝ ifu1u1u1

ifu1u1u1

−ifu1u1u1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2i
0

2i
0

−2i
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then it is easy to verify that

η1 = 3b− 3i

2
c̄(4.34)

by using the definitions of c and b in (4.30) and (4.31). Hence

[J ′(0)η1]
td̄ = 3[J ′(0)b]td̄− 3i

2
[J ′(0)c̄]td̄.

Observe that J ′(0)c̄ ∈ S since c̄ ∈ S and S is invariant for J ′(0). So by (4.11), [J ′(0)c̄]td̄ = 0.
Also observe that

J ′(0)b =

⎛
⎝ A′(0)a

−A′(0)a
0

⎞
⎠ +

⎛
⎝ B′(0)a

B′(0)a
−B′(0)a

⎞
⎠ ,

so that

[J ′(0)η1]
td̄ = 6[A′(0)a]tā

since (B′(0)a,B′(0)a,−B′(0)a)t ∈ S is orthogonal to d̄. Since the entries in A′(0) are arbitrary,
[J ′(0)η1]

td̄ is an arbitrary complex number, and therefore puλ(0) and quλ(0) can be varied
independently from each other. Furthermore, since only ξt3d̄ depends on this term, puλ(0) and
quλ(0) are independent of the other derivatives. We will therefore consider only ξt1d̄ and ξt2d̄
from here on.

By plugging (4.34) into the expressions for ξ1 and ξ2 in (4.21) and (4.22), using the linearity
of d3F , and observing that c̄td̄ = ctd̄ = 0, we obtain

ξt1d̄ = 12d3F (c, c̄, b)td̄ + 6d3F (c, c, b̄)td̄,

ξt2d̄ = 6d3F (c, c̄, b)td̄− 3d3F (c, c, b̄)td̄ + 12.
(4.35)

Using the definitions of c = (a, a,−a) and b = (a,−a, 0), we obtain by direct calculation

d3F (c, c̄, b) =

⎛
⎝ ifu1u1u1 + fv1v1w2 + 2fu2u2v2

−ifu1u1u1 + fv1v1w2 + fu2u2v2

−3fv1v1w2 − fu2u2v2

⎞
⎠ ,

d3F (c, c, b̄) =

⎛
⎝ ifu1u1u1 − fv1v1w2 + 2fu2u2v2

−ifu1u1u1 − 3fv1v1w2 + fu2u2v2

3fv1v1w2 − fu2u2v2

⎞
⎠ ,
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and thus we compute (4.35) as

ξt1d̄ = 6[6ifu1u1u1 + 3fu2u2v2 + 2fv1v1w2 ]
tā

= −18(igu2u2v2 − hu2u2v2) − 12(igv1v1w2 − hv1v1w2) + 72,

ξt2d̄ = 3[2ifu1u1u1 + fu2u2v2 − 2fv1v1w2 ]
tā + 12

= −3(igu2u2v2 − hu2u2v2) + 6(igv1v1w2 − hv1v1w2) + 24.

It is a straightforward matter to show that this can be written as (4.33).

5. Hopf bifurcation in the feed-forward chain. The proof of Theorem 1.5 divides into
two parts. First, in section 5.1 we prove the following.

Proposition 5.1. At a nilpotent Hopf bifurcation in the feed-forward chain there exist two
branches of near 2π-periodic solutions, one growing as λ

1
2 and the other growing as λ

1
6 .

Then in section 5.2 we prove the following.

Proposition 5.2. The branches given by Proposition 5.1 are generically the only branches.

Before we delve into the proofs of Propositions 5.1 and 5.2 we need to consider the various
invariant subspaces that play a role later on. Recall that the critical eigenvector of J is
c = (0, 0, a)t, where a is an eigenvector of A with eigenvalue i. The corresponding generalized
eigenvector is

b = (0, ζa, w),(5.1)

where ζ ∈ C and w ∈ Ck are chosen so that wtā = 0 and (A − iIn)w = −(ζB − In)a, and
hence c̄tb = 0.

Observe that

S =
{

(u, u, v) : u, v ∈ Rk
}
,

Ŝ =
{

(0, 0, u) : u ∈ Rk
}

(5.2)

are flow-invariant subspaces for (1.3), which both contain the critical eigenvector c but not
the generalized eigenvector given by (5.1). The feed-forward chain thus satisfies (1.23) for
both S and Ŝ. Thus Proposition 1.6 implies that there exists a branch of solutions in Ŝ that
grows as O(λ

1
2 ).

By analogy with (4.10), we define

Ŝ2π =
{
u ∈ C2π : u(s) ∈ Ŝ for all s

}
.

Recall from Lemma 4.4 that S2π ⊂ R. Thus we have

Ŝ2π ⊂ S2π ⊂ R.(5.3)

Suppose that (1.3) depends on a bifurcation parameter λ and undergoes a nilpotent Hopf
bifurcation at λ = 0. Assume that the eigenvalues of B = B(0) have negative real part and
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that z1 has reached its asymptotic state z1 = 0, so that we can restrict our attention to the
subsystem

ẏ = f(y, 0, λ) = g(y, λ),

ż = f(z, y, λ) = h(z, y, λ)
(5.4)

with linearization

J(λ) = (dF )0,λ =

(
A(λ) 0
B(λ) A(λ)

)
.

Let μ(λ) = σ(λ) + iω(λ) such that σ(0) = 0 and ω(λ) = 1 be the continuation of the critical
eigenvalue of A(0).

Proposition 5.1 is proved in [2, Lemma 6.1] with the assumption that the normal form of
the vector field on the center manifold is S1-equivariant, where S1 acts as

f(eiθy, eiθz) = eiθf(y, z).(5.5)

In section 5.1 we show that this assumption is satisfied generically, and so [2, Lemma 6.1]
holds in full generality. Specifically, we prove the following.

Proposition 5.3. Up to third order, the normal form of the subsystem (5.4) is

ẏ = μ(λ)y + c3(λ)y2ȳ + O(5),

ż = μ(λ)z + y + c3(λ)z2z̄ + αȳz2 + βyzz̄ + O(4),
(5.6)

which is S1-equivariant under the action given by (5.5).

Because of the work in [2], Proposition 5.3 suffices to prove Proposition 5.1 for the trun-
cated equations without higher order terms. For the truncated equations the λ1/6 branch is
also shown in [2] to consist of asymptotically stable solutions. Hence, a scaling argument may
be used to prove the result for (5.6).

The following two lemmas prove Proposition 5.2 and hence Theorem 1.5.

Lemma 5.4. At a nilpotent Hopf bifurcation in the feed-forward chain the reduced equation
(1.10) satisfies (1.21).

Lemma 5.5. The feed-forward chain generically satisfies (1.22).

These lemmas are proved in section 5.2 and use Liapunov–Schmidt reduction instead of
the normal form from (5.6). It may be possible to prove Theorem 1.5 using only normal
form methods, but this requires proving that (5.6) is equivariant to all orders. While we fully
expect this to be the case, a proof remains elusive.

5.1. Proof of Proposition 5.3. By [2, Lemma 6.2] there exists a center manifold M for
(5.4) such that the vector field on M is in skew-product form. On this center manifold we
can therefore change coordinates to put (dF )0,λ in complex Jordan form:

(dF )0,λ =

(
A(λ) 0
I2 A(λ)

)
,
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where

A(λ) = |μ(λ)|
(

eiθ(λ) 0

0 e−iθ(λ)

)
.

Thus we consider

ẏ = |μ(λ)|eiθ(λ)y + G(y, ȳ, λ),

ż = |μ(λ)|eiθ(λ)z + y + H(y, ȳ, z, z̄, λ),
(5.7)

where G and H are O(2).
First we make identical changes on y and z,

y 
→ y + φ(y, ȳ) and z 
→ z + φ(z, z̄),(5.8)

to put ẏ = g(y, λ) in standard normal form for Hopf bifurcation. Since the changes are the
same on both variables we have

(a) ẏ = μ(λ)y + c(|y|2, λ)y,

(b) ż = μ(λ)z + c(|z|2, λ)z + y + H2 + H3 + · · · ,
(5.9)

where Hj is order j in y, ȳ, z, and z̄, and

Hj(0, 0, z, z̄, λ) = 0(5.10)

since all the terms depending only on z and z̄ appear in c(|z|2, λ)z.
Next we make changes of the form

y 
→ y and z 
→ φ(y, ȳ, z, z̄),(5.11)

where φ is order 2. Substituting this into (5.9b), we obtain

ż = μz + y + μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + H2 + O(3),

and so second order terms can be eliminated if we can choose φ so that

μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + H2 = 0.

Let Mk denote the space of order k monomials in y, ȳ, z, and z̄, and define

M̃k = Mk−1y + Mk−1ȳ.

Then

M̃2 = span
{
y2, yȳ, yz, yz̄, ȳ2, ȳz, ȳz̄

}
,(5.12)

and H2 is a linear combination of elements of M̃2 by (5.10).
Define the map Ψ2 : M̃2 −→ M̃2 by

Ψ2(φ) = μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ.
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Then we seek solutions to the linear equation

Ψ2(φ) + H2 = 0.

The action of Ψ2 on the basis elements in (5.12) yields

y2 
→ −μy2, yȳ 
→ −μ̄yȳ,

yz 
→ −μyz − y2, yz̄ 
→ −μ̄yz̄ − yȳ,

ȳ2 
→ (μ− 2μ̄)ȳ2, ȳz 
→ −μ̄ȳz − yȳ.

ȳz̄ 
→ (μ− 2μ̄)ȳz̄ − ȳ2,

Thus, with respect to this basis, Ψ2 can be written as

y2 yȳ yz yz̄ ȳ2 ȳz ȳz̄

y2 −μ · −1 · · · ·
yȳ · −μ̄ · −1 · −1 ·
yz · · −μ · · · ·
yz̄ · · · −μ̄ · · ·
ȳ2 · · · · μ− 2μ̄ · −1
ȳz · · · · · −μ̄ ·
ȳz̄ · · · · · · μ− 2μ̄

Note that μ(0) �= 0 and μ(0) = −μ̄(0), so for sufficiently small λ, μ(λ) �= 0 and μ − 2μ̄ �= 0.
Therefore, for sufficiently small λ, range Ψ2 = M̃2, so all quadratics may be eliminated.

Moving on to cubic terms, we again make changes of the form (5.11), but with φ being
order 3. Making this substitution into (5.9b), we obtain

ż = μz + y + μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + c3z
2z̄ + H3 + O(4),

and so third order terms can be eliminated if we solve the linear equation Ψ3(φ) + H3 = 0,
where Ψ3 : M̃3 −→ M̃3 is defined by

Ψ3(φ) = μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ.

Observe that

M̃3 = span{y3, y2ȳ, yȳ2, y2z, y2z̄, yȳz, yȳz̄, yz2, yzz̄, yz̄2, ȳ3,

ȳ2z, ȳ2z̄, ȳz2, ȳzz̄, ȳz̄2}.
(5.13)
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Table 1
Matrix representation of the mapping Ψ3 : M̃3 −→ M̃3 with respect to the basis in (5.13), where α =

−(μ + μ̄) and β = μ− 3μ̄.

y3 y2ȳ yȳ2 y2z y2z̄ yȳz yȳz̄ yz2 yzz̄ yz̄2 ȳ3 ȳ2z ȳ2z̄ ȳz2 ȳzz̄ ȳz̄2

y3 −2μ · · −1 · · · · · · · · · · · ·
y2ȳ · α · · −1 −1 · · · · · · · · · ·
yȳ2 · · −2μ̄ · · · −1 · · · · −1 · · · ·
y2z · · · −2μ · · · −2 · · · · · · · ·
y2z̄ · · · · α · · · −1 · · · · · · ·
yȳz · · · · · α · · −1 · · · · −2 · ·
yȳz̄ · · · · · · −2μ̄ · · −2 · · · · −1 ·
yz2 · · · · · · · −2μ · · · · · · · ·
yzz̄ · · · · · · · · α · · · · · · ·
yz̄2 · · · · · · · · · −2μ̄ · · · · · ·
ȳ3 · · · · · · · · · · β · −1 · · ·
ȳ2z · · · · · · · · · · · −2μ̄ · · −1 ·
ȳ2z̄ · · · · · · · · · · · · β · · −2

ȳz2 · · · · · · · · · · · · · α · ·
ȳzz̄ · · · · · · · · · · · · · · −2μ̄ ·
ȳz̄2 · · · · · · · · · · · · · · · β

Then Ψ3 applied to each of the basis elements in (5.13) yields

y3 
→ −2μy3, y2ȳ 
→ −(μ + μ̄)y2ȳ,

yȳ2 
→ −2μ̄yȳ2, y2z 
→ −2μy2z − y3,

y2z̄ 
→ −(μ + μ̄)y2z̄ − y2ȳ, yȳz 
→ −(μ + μ̄)yȳz − y2ȳ,

yȳz̄ 
→ −2μ̄yȳz̄ − yȳ2, yz2 
→ −2μyz2 − 2y2z,

yzz̄ 
→ −(μ + μ̄)yzz̄ − y2z̄ − yȳz, yz̄2 
→ −2μ̄yz̄2 − 2yȳz̄,

ȳ3 
→ (μ− 3μ̄)ȳ3, ȳ2z 
→ −2μ̄ȳ2z − yȳ2,

ȳ2z̄ 
→ μȳ2z̄ − 2μ̄ȳ2z̄ − ȳ3, ȳz2 
→ −(μ + μ̄)ȳz2 − 2yȳz,

ȳzz̄ 
→ −2μ̄ȳzz̄ − yȳz̄ − ȳ2z, ȳz̄2 
→ −(μ + μ̄)ȳz̄2 − 2ȳ2z̄.

Thus Ψ3 can be represented by the matrix shown in Table 1.

Observe that

−2μ(0) = −2i, −2μ̄(0) = 2i, μ(0) − 3μ̄(0) = 4i, and μ(0) + μ̄(0) = 0.

Thus for λ sufficiently close to 0

−2μ(λ) �= 0, −2μ̄(λ) �= 0, and μ(λ) − 3μ̄(λ) �= 0.

It is straightforward to check that

ker Ψ|λ=0 =
{
ȳz2, yzz̄

}
.

Thus for λ sufficiently small, third order terms other than ȳz2 or yzz̄ can be eliminated.
Therefore the normal form up to third order is as in (5.6).

It is straightforward to verify that h(y, z) = αȳz2+βyzz̄ is S1-equivariant under the action
of (5.5). Thus it follows that (5.6) is also S1-equivariant.
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5.2. Proof of Lemmas 5.4 and 5.5.
Proof of Lemma 5.4. Observe that Proposition 1.6 implies that pu(0) = qu(0) = 0 since

the feed-forward chain satisfies (1.23) for S and Ŝ. Then by Propositions 1.1 and 1.2 the
general form of the Liapunov–Schmidt reduced equation is

0 = p(u, λ, τ) = up̂(u, λ, τ) − τ2 + λ2 + O(|τ, λ|3),
0 = q(u, λ, τ) = uq̂(u, λ, τ) + 2τλ + O(|τ, λ|3).

(5.14)

Consider the branch of solutions on which u = x2 grows at O(λ
1
3 ), and introduce a scaling

parameter s such that λ = s3. Then since τ scales linearly with λ we have

u = sv(s) and τ = s3τ̃(s),

where v(0) �= 0 and τ̃(0) �= 0. Then (5.14) becomes

0 = svp̂(sv, s3, s3τ̃) − s6τ̃2 + s6 + O(s9),

0 = svq̂(sv, s3, s3τ̃) + 2s6τ̃ + O(s9).
(5.15)

Expanding p̂ and q̂ in powers of s, we obtain

p̂(sv, s3, s3τ̃) = sp̂uv + s2p̂uuv + O(s3),

q̂(sv, s3, s3τ̃) = sq̂uv + s2q̂uuv + O(s3),

and so (5.15) becomes

0 = s2p̂uv
2 + s3p̂uuv

2 + O(s4),

0 = s2q̂uv
2 + s3q̂uuv

2 + O(s4).

Equating powers of s, we obtain

p̂u = p̂uu = q̂u = q̂uu = 0,

which implies the result, by definition of p̂ and q̂ in (5.14).

Proof of Lemma 5.5. Since the feed-forward chain satisfies (1.23) for S and Ŝ, Lemma 4.4
applies. However, the skew-product form of the feed-forward chain and the fact that Ŝ is not
polydiagonal lead to the following stronger form of Lemma 4.4.

Lemma 5.6. If one of the arguments c1, . . . , cm lies in Ŝ, then

dmF (c1, . . . , cm) ∈ Ŝ.(5.16)

If one of the arguments u1, . . . , um lies in Ŝ2π, then

dmΦ(u1, . . . , um) ∈ Ŝ2π.
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Proof. Suppose that one of the arguments c1, . . . , cm lies in Ŝ. Since dmF is symmetric
in c1, . . . , cm we can assume without loss of generality that this is the first component. Then
c1,j = 0 if j ≤ 2k, so

dmF (c1, . . . , cm) =
∑

i1=2k+1,...,3k
i2,...,im=1,...,3k

∂mF

∂xi1 · · · ∂xim

∣∣∣∣
0

c1,i1 · · · cm,im ,(5.17)

since all terms with i1 ≤ 2k vanish.
Observe that for i1 = 2k + 1, . . . , 3k,

∂mF

∂xi1 · · · ∂xim

∣∣∣∣
0

=

⎛
⎜⎜⎜⎝

∂mf(z1,z1)
∂xi1

···∂xim

∂mf(z2,z1)
∂xi1

···∂xim

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎟⎟⎠

0

=

⎛
⎜⎝

0
0

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎠

0

,

and so (5.17) becomes

dmF (c1, . . . , cm) =
∑

i1=2k+1,...,3k
i2,...,im=1,...,2k

⎛
⎜⎝

0
0

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎠

0

c1,i1 · · · cm,im ,

which lies in Ŝ by the definition in (5.2).
Similarly, suppose that u1 ∈ Ŝ2π. Then each u1 is a linear combination of terms of the

form elisc1 for some c1 ∈ Ŝ, l ∈ Z. So dmΦ(u1, . . . , um) is a linear combination of terms of
the form

elisdmF (c1, . . . , cm),

which lie in Ŝ2π since dmF (c1, . . . , cm) ∈ Ŝ by (5.16).
In line with previous calculations, we assume that F is odd: if the result is true in this

restricted case, then it will certainly be true generically. To simplify notation, let φ(k) and
W(k) denote the kth x derivatives of φ and W . Then using the formula for φ(9) given in (A.4)
along with Lemmas 4.5 and 5.6 and the fact that dΦ(W(9)) ∈ R by definition, we obtain

φ(9) = 280(I − E)d3Φ(W(3),W(3),W(3)).(5.18)

We claim that 〈
v∗j ,d

3Φ(W(3),W(3),W(3))
〉

=
〈
v∗j ,Re{eisd3F (η1, η1, η̄1)}

〉
.(5.19)

To see this, observe that c = (0, 0, a) ∈ Ŝ, and thus d3F (c, c, c) and d3F (c, c, c̄) both lie in Ŝ by
(5.16). Now consider the occurrence of η3 in the formula for W(3) in Lemma 4.5 and observe

that η3 = (J − 3iIn)−1d3F (c, c, c) also lies in Ŝ because Ŝ is invariant for (J − 3iIn)−1. Thus
any terms in the expansion of d3Φ(W(3),W(3),W(3)) of the form e±misd3F (η3, ·, ·) will lie in Ŝ2π
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by Lemma 5.6 and vanish in the projection onto K∗ by (5.3). Furthermore, e±3isd3F (η1, η1, η1)
also vanishes in the projection, and we are left with (5.19). Therefore, if we show that

d3F (η1, η1, η̄1)
td̄ �= 0,(5.20)

then the result will follow.

Recall from (4.17) that

(J − iIn)η1 = 3d3F (c, c, c̄).

Since d3F (c, c, c̄) ∈ Ŝ, and since there are no other constraints on d3F (c, c, c̄), the projection
onto the critical eigenspace Ei will generically be nonzero. Note also that (J − iIn) is not
invertible. The kernel of (J − iIn) is Ei, and the preimage of Ei under (J − iIn) is the
generalized eigenspace Gi. Hence, the projection of η1 onto Gi will also be generically nonzero
in order to pick up the component of d3F (c, c, c̄) in Ei. Thus we can write

η1 = αb + w,

where α ∈ C and w ∈ Ŝ − Ei. Therefore η1 /∈ S since b /∈ S.

Thus, using the linearity of d3F , we have

d3F (η1, η1, η̄1)
td̄ = α3d3F (b, b, b̄)td̄

since any terms d3F (w, ·, ·) lie in Ŝ by (5.16) and are therefore orthogonal to d by (4.11).
Generically α3d3F (b, b, b̄)td̄ �= 0, because btd̄ �= 0 by (2.15). This proves (5.20), and hence
Proposition 5.5.

6. Further examples of nilpotent Hopf bifurcation. In this section we consider three
additional examples of three-cell networks, shown in Figures 8, 9, and 10, that can have
nilpotent Hopf bifurcations.

1

3 2

Figure 8. Another three-cell network with two or four branches at a nilpotent Hopf bifurcation.

6.1. Another network with multiple O(λ
1
2 ) branches. The network in Figure 8 is defined

by

ẋ1 = f(x1, x2, x2),

ẋ2 = f(x2, x1, x3),

ẋ2 = f(x3, x1, x2)

(6.1)
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1

3 2

Figure 9. A feed-forward-like three-cell network.

and has Jacobian

J =

⎛
⎝ A 2B 0

B A B
B B A

⎞
⎠ .

The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(−2u, u, u)t A−B 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A − B and v is an eigenvector of A + 2B. It follows that when
k ≥ 2, (6.1) can have a codimension one nilpotent Hopf bifurcation if A − B has a purely
imaginary pair of eigenvalues.

Suppose that a is the critical eigenvector of A−B. Then the critical eigenvector of J and
the corresponding generalized eigenvector are

c =

⎛
⎝ −2a

a
a

⎞
⎠ and b = ζ

⎛
⎝ 2a

−7a
11a

⎞
⎠ +

⎛
⎝ −2w

w
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A−B − iIk)w = −(6ζB − Ik)a.
Observe that S = {(u, v, v) : u, v ∈ Rk} is a synchrony subspace for this network and

that S contains the critical eigenspace but not the generalized eigenspace. Hence this network
satisfies (1.23). Therefore, Proposition 1.6 implies that there exists a branch of solutions that

grows at O(λ
1
2 ), and that (1.18) holds. Thus, in the absence of any further constraints that

force puu = quu = 0, it follows from Theorem 1.4 that there exist two or four solutions, each
growing at O(λ

1
2 ). We do not verify the absence of such constraints here, but we note that the

absence of any other flow-invariant subspaces suggests, by analogy with the networks studied
previously, that the second derivatives of p and q are indeed unconstrained.

6.2. Two networks with branches that grow at O(λ
1
6 ). In addition to the three-cell

feed-forward chain of section 5, there are two other three-cell networks, shown in Figures 9
and 10, that can have branches of solutions that grow at O(λ

1
6 ).

The network in Figure 9 is defined by

ẋ1 = f(x1, x1, x1),

ẋ2 = f(x2, x1, x1),

ẋ3 = f(x3, x1, x2)

(6.2)
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2 1 3

Figure 10. Another feed-forward-like three-cell network.

and has Jacobian

J =

⎛
⎝ A + 2B 0 0

2B A 0
B B A

⎞
⎠ .

The network in Figure 10 is defined by

ẋ1 = f(x1, x1, x2),

ẋ2 = f(x2, x1, x2),

ẋ3 = f(x3, x1, x1)

(6.3)

and has Jacobian

J =

⎛
⎝ A + B B 0

B A + B 0
2B 0 A

⎞
⎠ .

In both cases, the 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(0, 0, u)t A 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A and v is an eigenvector of A + 2B. It follows that when
k ≥ 2, (6.2) and (6.3) can have a codimension one nilpotent Hopf bifurcation if A has a purely
imaginary pair of eigenvalues.

Consider first the network shown in Figure 9 and defined by (6.2). Suppose that a is the
critical eigenvector of A. Then the critical eigenvector of J and the corresponding generalized
eigenvector are

c =

⎛
⎝ 0

0
a

⎞
⎠ and b =

⎛
⎝ 0

ζa
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A− iIk)w = −(ζB − Ik)a.

Observe that S = {(u, u, v) : u, v ∈ Rk} and Ŝ = {(0, 0, v) : v ∈ Rk} are invariant
subspaces for this network, which both contain the critical eigenspace but not the generalized
eigenspace. Hence this network satisfies (1.23), and Proposition 1.6 implies that there exists

a branch of solutions that grows at O(λ
1
2 ) and that (1.18) holds. This branch is obtained by



248 TOBY ELMHIRST AND MARTIN GOLUBITSKY

restricting the system to Ŝ so that x1 = x2 = 0 and observing that cell 3 undergoes a standard
Hopf bifurcation.

This branch of solutions is unstable because the origin is unstable for cell 2. However,
the same argument used in [2, Lemma 6.1] can be employed to show that there exists an

additional branch of solutions that grows at O(λ
1
6 ). Suppose that the eigenvalues of B are

negative so that the origin in the first cell is stable for ẋ1 = f(x1, x1, x1, λ) if λ is sufficiently
small. Thus we may assume that x1 = 0.

ẋ2 = f(x2, 0, 0, λ) = g(x2, λ),

ẋ3 = f(x3, 0, x2, λ) = h(x3, x2, λ),

which is precisely the form of the reduced feedforward network in (5.4). Thus the same S1-
equivariant normal form can be obtained as in section 5.1, and hence the arguments of [2,
Lemma 6.1] are applicable.

Now consider the network shown in Figure 10 and defined by (6.3). Suppose that a is the
critical eigenvector of A. Then the critical eigenvector of J and the corresponding generalized
eigenvector are

c =

⎛
⎝ 0

0
a

⎞
⎠ and b =

⎛
⎝ ζa

−ζa
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A− iIk)w = −(2ζB − Ik)a.

Again, observe that S = {(u, u, v) : u, v ∈ Rk} and Ŝ = {(0, 0, v) : v ∈ Rk} are invariant
subspaces that satisfy (1.23), so that Proposition 1.6 implies a branch of solutions that grows

at O(λ
1
2 ) and that (1.18) holds.

Observe that cells 1 and 2 form a Z2-equivariant subsystem that is not influenced by cell 3.
A synchrony-breaking Hopf bifurcation in this subsystem yields a branch of periodic solutions
that grows as λ

1
2 and satisfies

x1(t) = x2

(
t + 1

2

)
.

Thus the bifurcation in cell 3 is forced by x1(t) in exactly the same way as it is forced by
cell 2 in the feed-forward chain. Assuming that the normal form on the center manifold is
S1-equivariant under the action in (5.5), it follows from the proof of [2, Lemma 6.1] that there

exists a branch that grows at O(λ
1
6 ).

Appendix. Derivatives of the reduced mapping. The following is a collection of all the
derivatives of the reduced mapping φ. These are derived by definition; see [3, pp. 31–33].
For higher derivatives we use the notation φ(k) and W(k) to signify the kth x derivative of φ
and W . In order to keep these formulas as readable as possible we have used the fact that
Wx(0, 0, 0) = 0, but it should be remembered that in deriving φ(k+1) from φ(k), an argument
of v1 should be read as v1 + Wx.

φxxx = (I − E)(d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx) + dΦ(Wxxx))(A.1)
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φ(5) = (I − E)
(
d5Φ(v1, v1, v1, v1, v1) + 10d4Φ(v1, v1, v1,Wxx)

+ 15d3Φ(v1,Wxx,Wxx) + 10d3Φ(v1, v1,Wxxx)

+ 10d2Φ(Wxx,Wxxx) + 5d2Φ(v1,W(4)) + dΦ(W(5))
)(A.2)

φ(7) = (I − E)
(
d7Φ(v1, v1, v1, v1, v1, v1, v1) + 21d6Φ(v1, v1, v1, v1, v1,Wxx)

+ 105d5Φ(v1, v1, v1,Wxx,Wxx) + 35d5Φ(v1, v1, v1, v1,Wxxx)

+ 105d4Φ(v1,Wxx,Wxx,Wxx) + 210d4Φ(v1, v1,Wxx,Wxxx)

+ 35d4Φ(v1, v1, v1,W(4)) + 105d3Φ(Wxx,Wxx,Wxxx)

+ 70d3Φ(v1,Wxxx,Wxxx) + 105d3Φ(v1,Wxx,W(4))

+ 21d3Φ(v1, v1,W(5)) + 35d2Φ(Wxxx,W(4))

+ 21d2Φ(Wxx,W(5)) + 7d2Φ(v1,W(6)) + dΦ(W(7))
)

(A.3)

φ(9) = (I − E)
(
d9Φ(v1, v1, v1, v1, v1, v1, v1, v1, v1) + 36d8Φ(v1, v1, v1, v1, v1, v1, v1,Wxx)

+ 378d7Φ(v1, v1, v1, v1, v1,Wxx,Wxx) + 84d7Φ(v1, v1, v1, v1, v1, v1,Wxxx)

+ 1260d6Φ(v1, v1, v1,Wxx,Wxx,Wxx) + 1260d6Φ(v1, v1, v1, v1,Wxx,Wxxx)

+ 126d6Φ(v1, v1, v1, v1, v1,W(4)) + 945d5Φ(v1,Wxx,Wxx,Wxx,Wxx)

+ 3780d5Φ(v1, v1,Wxx,Wxx,Wxxx) + 840d5Φ(v1, v1, v1,Wxxx,Wxxx)

+ 1260d5Φ(v1, v1, v1,Wxx,W(4)) + 126d5Φ(v1, v1, v1, v1,W(5))

+ 1260d4Φ(Wxx,Wxx,Wxx,Wxxx) + 2520d4Φ(v1,Wxx,Wxxx,Wxxx)

+ 1890d4Φ(v1,Wxx,Wxx,W(4)) + 1260d4Φ(v1, v1,Wxxx,W(4))

+ 756d4Φ(v1, v1,Wxx,W(5)) + 84d4Φ(v1, v1, v1,W(6))

+ 280d3Φ(Wxxx,Wxxx,Wxxx) + 1260d3Φ(Wxx,Wxxx,W(4))

+ 378d3Φ(Wxx,Wxx,W(5)) + 315d3Φ(v1,W(4),W(4))

+ 504d3Φ(v1,Wxxx,W(5)) + 252d3Φ(v1,Wxx,W(6))

+ 36d3Φ(v1, v1,W(7)) + 126d2Φ(W(4),W(5)) + 84d2Φ(Wxxx,W(6))

+ 36d2Φ(Wxx,W(7)) + 9d2Φ(v1,W(8)) + dΦ(W(9))
)

(A.4)

The following are differentials involving parameters α and β:

φαx = (I − E)
(
dΦα(v1) + dΦ(Wαx) + d2Φ(v1,Wα)

)
,(A.5)

φαβx = (I − E)
(
dΦαβ(v1) + dΦα(Wβx) + dΦβ(Wαx) + dΦ(Wαβx)

+ d2Φα(v1,Wβ) + d2Φβ(v1,Wα) + d2Φ(Wαx,Wβ)

+ d2Φ(Wβx,Wα) + d2Φ(v1,Wαβ) + d3Φ(v1,Wα,Wβ)
)
,

(A.6)

φαxx = (I − E)
(
d3Φ(v1, v1,Wα) + 2d2Φ(v1,Wαx) + d2Φ(Wxx,Wα)

+ dΦ(Wαxx) + d2Φα(v1, v1) + dΦα(Wxx)
)
,

(A.7)
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φαxxx = (I − E)
(
d4Φ(v1, v1, v1,Wα) + 3d3Φ(v1, v1,Wαx)

+ 3d3Φ(v1,Wxx,Wα) + 3d2Φ(v1,Wαxx)

+ 3d2Φ(Wxx,Wαx) + d2Φ(Wxxx,Wα) + dΦ(Wαxxx)

+ d3Φα(v1, v1, v1) + 3d2Φα(v1,Wxx) + dΦα(Wxxx)
)
.

(A.8)

The following formulas for the W(k) are obtained by differentiating

EΦ(xv1 + W (xv1, λ, τ), λ, τ) ≡ 0(A.9)

k times with respect to x. This yields an expression of the form

E( · · · ) + EdΦ(W(k)) = 0,

which can be rearranged to give

dΦ(W(k)) = −E( · · · )

since dΦ(W(k)) ∈ R on which E acts as the identity, and hence

W(k) = −L−1E( · · · ).

In this way, we obtain

Wxx = −L−1E
(
d2Φ(v1, v1)

)
,(A.10)

Wxxx = −L−1E
(
d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx)

)
,(A.11)

Wxxxx = −L−1E
(
d4Φ(v1, v1, v1, v1) + 6d3Φ(v1, v1,Wxx)(A.12)

+ 3d2Φ(Wxx,Wxx) + 4d2Φ(v1,Wxxx)
)
.

Similarly, we obtain the following expressions for Wαx by differentiating (A.9) with respect
to α and x to obtain

E
(
d2Φ(v1 + Wx,Wα) + dΦ(Wαx) + dΦα(v1 + Wx)

)
= 0,(A.13)

which rearranges to give

Wαx = −L−1E
(
d2Φ(v1,Wα) + dΦα(v1)

)
.(A.14)

By further differentiation of (A.13) with respect to x and rearranging, we obtain

Wαxx = −L−1E
(
d3Φ(v1, v1,Wα) + d2Φα(v1, v1)

+ d2Φ(Wxx,Wα) + 2d2Φ(v1,Wαx) + dΦα(Wxx)
)
,

(A.15)

Wαxxx = −L−1E
(
d4Φ(v1, v1, v1,Wα) + 3d3Φ(v1, v1,Wαx)

+ 3d3Φ(v1,Wxx,Wα) + d3Φα(v1, v1, v1)

+ 3d2Φ(Wxx,Wαx) + d2Φ(Wxxx,Wα) + 3d2Φ(v1,Wαxx)

+ 3d2Φα(v1,Wxx) + d2Φα(Wxxx)
)
.

(A.16)
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