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Abstract
From the point of view of coupled systems developed by Stewart, Golubitsky
and Pivato, lattice differential equations consist of choosing a phase space Rk

for each point in a lattice, and a system of differential equations on each of these
spaces Rk such that the whole system is translation invariant. The architecture
of a lattice differential equation specifies the sites that are coupled to each other
(nearest neighbour coupling (NN) is a standard example). A polydiagonal is a
finite-dimensional subspace of phase space obtained by setting coordinates in
different phase spaces as equal. There is a colouring of the network associated
with each polydiagonal obtained by colouring any two cells that have equal
coordinates with the same colour. A pattern of synchrony is a colouring
associated with a polydiagonal that is flow-invariant for every lattice differential
equation with a given architecture. We prove that every pattern of synchrony
for a fixed architecture in planar lattice differential equations is spatially
doubly-periodic, assuming that the couplings are sufficiently extensive. For
example, nearest and next nearest neighbour couplings are needed for square
and hexagonal couplings, but a third level of coupling is needed for the
corresponding result to hold in rhombic and primitive cubic lattices. On planar
lattices this result is known to fail if the network architecture consists only of
NN. The techniques we develop to prove spatial periodicity and finiteness can
be applied to other lattices as well.

Mathematics Subject Classification: 34C99, 37G99, 82B20

1. Introduction

Many physical and biological systems can be modelled by networks of systems of differential
equations. Networks of differential equations possess additional structure, namely, canonical
observables—the dynamical behaviour of the individual network nodes [18]. These
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observables can be compared, revealing such features as synchrony, or in periodic solutions,
specified phase-relations. These features are important in many applications and any theoretical
treatment of network dynamics must take this additional structure into account.

Stewart and co-workers [19, 23] formalized the concept of a coupled cell network, where
a cell is a system of ordinary differential equations (ODEs) and a coupled cell system consists
of cells whose equations are coupled. Stewart et al defined the architecture of coupled cell
networks and developed a theory that shows how network architecture leads to synchrony. The
architecture of a coupled cell network is a graph which indicates which cells have the same
phase space, which cells are coupled to which and which couplings are the same (see also the
development by Field [15]).

Synchrony is one of the most interesting features of coupled cell systems, and in order to
study this, the concept needs to be formalized. We use a strong form of network synchrony,
namely, robust synchrony, which we now define. A polydiagonal � is a subspace of the
phase space of a coupled cell system that is defined by the equality of cell coordinates. The
polydiagonal � is robustly polysynchronous if � is flow-invariant for every coupled cell system
with the given network architecture. Solutions in a flow-invariant � have a collection of
coordinates equal for all time. If we colour two cells the same when the coordinates are equal,
then we can associate robustly polysynchronous polydiagonals with patterns of synchrony.
A k-colour pattern of synchrony is that which is defined by exactly k colours.

Stewart et al [23, theorem 6.1] prove that a polydiagonal is robustly polysynchronous
if, and only if, the colouring (given by colouring cells that have the same coordinates with
the same colour) is balanced. (The definition of balanced is given in definition 2.11.) Thus,
classifying robustly polysynchronous polydiagonals is equivalent to the combinatorial question
of classifying balanced colourings.

Earlier works [14,16], study periodic patterns of synchrony on one- and two-dimensional
lattices using techniques from the equivariant bifurcation theory. These results depend on
the fact that fixed-point subspaces of equivariant systems are always flow-invariant, and are
therefore special cases of robustly polysynchronous polydiagonals. We emphasize that [14,16]
assume spatial periodicity, whereas in this study we show that periodicity is a consequence of
flow invariance.

A lattice dynamical system is an infinite system of ODEs, indexed by points in a lattice
(such as the n-dimensional integer lattice Zn). Since lattices have spatial structure, lattice
differential equations resemble partial differential equations, although the former may also
exhibit phenomena not found in the latter.

Studies done on lattice differential equations often focus on equilibria or travelling waves.
In the case of equilibria, these studies discuss the spatial features associated with stable
equilibria. Such features can take the form of regularly ordered patterns (pattern formation)
on the one hand, and spatially disordered displays (spatial chaos) on the other. See Chow [6]
for a review of the theory of lattice differential equations and also the survey papers of Chow
et al [7, 8] and Mallet-Paret and co-workers [21, 22].

Lattice differential equations arise in many applications. For example, in the field of
electrical circuit theory, much work has been done by Chua and his collaborators, particularly
in their studies of cellular neural networks (CNN). The CNN is a lattice dynamical system, in
which each cell connects only to neighbouring cells that are within a finite radius (see Chua
and Roska [10] and Chua and Yang [11]). CNN can be realized as VLSI chips and can operate
at very high speeds and complexity [5]; they have been used to solve image processing and
pattern recognition problems (see [3, 12]). Lattice differential equations have also been used
in metallurgy and specifically, to model solidification of alloys (see Cahn [4], Cook et al [13]
and Hillert [20]).
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Many lattice differential equations arise from the discretization of a system of partial
differential equations. For example, the discretization of a reaction–diffusion system in one
space variable leads to

u̇i = −β�ui − f (ui) i ∈ Z, (1.1)

where β > 0 and

�ui = ui+1 + ui−1 − 2ui

is the discrete Laplace operator. Discretization of a planar system leads to

u̇i,j = −β+ �+ui,j − β× �×ui,j − f (ui,j ) (i, j) ∈ Z2, (1.2)

where β+ > β× > 0 and �+ and �× are the discrete two-dimensional Laplace operators on
Z2 based on the nearest neighbours and next nearest neighbours, respectively, and are given by

�+ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j ,

�×ui,j = ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1 − 4ui,j .

In these equations the parameters β, β+, β× are coupling parameters and f is a given
nonlinearity representing the ‘internal dynamics.’ These equations are special examples of
lattice differential equations since the coupling is linear and the lattices are the simplest possible.
Note that (1.2) is equivariant with respect to rotations, reflections and translations that preserve
the lattice.

We shall define lattice dynamical systems in a general sense to include nonlinear coupling
and all lattices. Properties of these general lattice dynamical systems include the following:

(i) the coupling between pairs of lattice points is a function of the distance between the pair
of points,

(ii) the range of coupling is finite.

It follows that lattice differential equations are equivariant with respect to rotations, reflections
and translations that preserve the lattice.

Using the formalism of coupled cell systems, it is possible to give such a general definition.
Given a lattice L, we consider a coupled cell network GL, indexed by the points of L. Each cell
has an ordered finite set of cells I (c), that are coupled to c. (For convenience we assume that
the cells in I (c) are ordered so that cells of the same coupling type are contiguous, and lattice
translation symmetries preserve the orderings in input sets.) A standard example of network
architecture is given by nearest neighbour coupling (NN) in which case I (c) consists of those
cells in the lattice that are nearest to c. We can associate systems of differential equations with
GL, as follows.

ẋc = g(xc, xI (c)) c ∈ L, (1.3)

where xc ∈ Rn, I (c) = (c1, . . . , ck), xI (c) = (xc1 , . . . , xck
) ∈ (Rn)k and g : (Rn)k+1 → Rn is a

GL-admissible map, that is, a map that is invariant under any permutation of the cells in I (c).
One important consequence of this construction is that the system of differential equations so
defined is equivariant with respect to the symmetries of the lattice consisting of translations,
rotations and reflections.

Golubitsky et al [17] give an infinite class of two-colour patterns of synchrony on
square lattice systems with NN. Wang and Golubitsky [25] classify all possible two-colour
patterns of synchrony of square and hexagonal lattice differential equations with two different
architectures—both NN and next nearest neighbour coupling (NNN). It follows from these
results that in the NNN architecture, balanced 2-colourings are finite in number and spatially
doubly-periodic. Thus, there is a profound difference between balanced 2-colourings in the
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NN and NNN cases: one classification is finite, the other infinite; one set has spatially periodic
and nonperiodic colourings, the other only periodic colourings.

In this paper, we show that each balanced k-colouring on a square and hexagonal
lattice with NNN architecture is spatially periodic and that there are only a finite number
of k-colourings for each k (see theorem 4.1). We developed general techniques to prove
similar theorems for other lattices as well; the general principle seems to be that if there is
enough coupling, then k-colourings are spatially periodic.

Chow et al [8,9] and Thiran et al [24] considered a related notion of a ‘mosaic’ solution to
a square lattice dynamical system. Mosaic solutions are equilibria that take on a finite number
of values � and, as such, lie in a polydiagonal defined by � colours. These authors considered
only mosaic solutions where � = 2, 3. We note that the polydiagonal associated with a mosaic
solution may or may not always be flow-invariant; that is, the �-colouring may or may not
be balanced. There is, however, a somewhat surprising relationship between robust mosaic
solutions and balanced �-colourings. A mosaic solution is robust if it is hyperbolic and all
equilibria obtained by a small perturbation in the lattice differential equation are also mosaic
solutions with the same pattern. In this case, the associated �-colouring is balanced [19].

In section 2 we discuss the general structure of lattice differential equations. The
techniques that we use to prove spatial periodicity and finiteness (namely, the notions of
‘window’ and ‘determining boundaries’) are discussed in section 3. The theorems on planar
lattices are given in section 4 and a cubic lattice is discussed in section 5.

2. Lattice dynamical systems

In this section, we generalize the abstract definition of a coupled cell network given in [19]
to include networks with a countable number of cells and define several terms associated
with these networks. Each cell network corresponds to a class of differential equations called
admissible coupled cell systems. A coupled cell system is itself a collection of dynamical
systems (cells) coupled together. The architecture of that network can be represented
schematically by a directed graph whose nodes correspond to cells, and whose edges represent
coupling. Hence, one cell is coupled to another if the output of the first cell affects the time-
evolution of the second one. This approach provides a framework within which statements
about all coupled cell systems corresponding to a given coupled cell network can be proved.
Our purpose here is to give a precise definition of a lattice dynamical system (see definition 2.5)
and then, in later sections, to prove that under certain assumptions about the extent of coupling,
all balanced k-colourings are spatially periodic.

Definition 2.1. A coupled cell network G consists of:

(a) a countable set C of cells,
(b) an equivalence relation ∼C on cells in C,
(c) a countable set E of edges or arrows,
(d) an equivalence relation ∼E on edges in E . The edge type of edge e is the ∼E-equivalence

class of e,
(e) (local finiteness) there is a head map H : E → C and a tail map T : E → C such that for

every c ∈ C the sets H−1(c) and T −1(c) are finite.

We also require the consistency condition:

(f) equivalent arrows have equivalent tails and heads; that is, if e1 ∼E e2 in E , then
H(e1) ∼C H(e2) and T (e1) ∼C T (e2).

We write G = (C, E, ∼C, ∼E). �
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Remark 2.2. In the abstract setting of [19], multiple connections between cells are permitted
since it is possible that H(e1) = H(e2) and T (e1) = T (e2) for e1 �= e2. Also self-coupling is
permitted since H(e) = T (e) is permitted. Owing to this, it is most natural to think of inputs as
arrows. This generality is not necessary in our discussion of lattice dynamical systems where
multiple connections and self-coupling are not considered; therefore, we can identify input
arrows by their tail and head cells, as was originally done in [23]. Indeed, we denote an arrow
e by the pair (T (e), H(e)).

Definition 2.3. Let G = (C, E, ∼C, ∼E) be a coupled cell network without self-coupling and
multiarrows.

(a) Let c ∈ C. The input set of c is

I (c) = T (H−1(c)), (2.1)

with a fixed ordering. An element of the finite set I (c) is called an input cell of c.
(b) Two input sets I (c) and I (d) are isomorphic if there is a coupling type preserving bijection

between the input sets; that is, there exists a bijection β : I (c) → I (d) such that for all
i ∈ I (c)

(i, c) ∼E (β(i), d).

(c) A coupled cell network is homogeneous if all input sets are isomorphic. �
Note that if G is homogeneous, then it follows from definition 2.1(f) that all cells are

cell-equivalent; that is, there is only one ∼C-equivalence class. However, a homogeneous cell
network can have many different ∼E-equivalence classes.

An n-dimensional lattice L is a subset of Rn of the form

L = {α1v1 + · · · + αnvn : αi ∈ Z},
where {v1, . . . , vn} is a set of linearly independent vectors in Rn called the generators of the
lattice L. Note that L is a discrete subgroup of Rn.

Definition 2.4. We call a lattice L Euclidean if it satisfies the following:

(a) all generators of L have the same length,
(b) the generators of L are exactly those lattice vectors that are nearest to the origin in

Euclidean distance. �
Euclidean lattices are most relevant for applications of the bifurcation theory [18]. While

planar square and hexagonal lattices are Euclidean, only certain rhombic lattices are so. The
generators v1, v2 of a rhombic lattice can be assumed to be in the first quadrant. A rhombic
lattice satisfies (b) only when the angle between v1 and v2 is greater than π/3. See, for example,
Armstrong [2] (chapter 25), for details on planar lattices.

Let r0 < r1 < · · · be the possible lengths of vectors in a fixed lattice L. We can partition
the vectors in L by length as follows.

Let

Ji = {v ∈ L : |v| = ri},
where |v| denotes the Euclidean norm of v. The vectors in L can be divided into classes
of neighbours as follows: the nearest neighbours to a vector c ∈ L are the set of vectors
{c + v : v ∈ J1}. The next nearest neighbours to c are the set of vectors {c + v : v ∈ J2}. The
pth nearest neighbours to c are the set of vectors {c + v : v ∈ Jp}.
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Figure 1. Left: square lattice network with NN (——). Centre: square lattice network with NN
and NNN (- - - -). Right: rhombic lattice network with NN, NNN and next NNN (· · · · · ·).

Definition 2.5. An n-dimensional lattice network consists of:

(a) an n-dimensional lattice L,
(b) a homogeneous coupled cell network GL whose cells are indexed by L,
(c) the set I (0) = J1 ∪ · · · ∪ Jp for some p. This set is ordered so that the cells in Ji precede

those in Ji+1,
(d) the arrows connecting any two cells in I (0) to 0 have the same edge type if, and only if,

the cells are in the same set Ji for some i. �

We say that a lattice in which the cells are coupled to neighbours of order less than or
equal to p is a lattice with pth NN. In particular, if p = 1 we have a lattice with NN and if
p = 2 we have a lattice with NN and NNN. Figure 1 shows examples of two-dimensional
lattice networks.

Remarks 2.6.

(a) Lattice networks are bidirectional, that is, for each arrow from c to d there is an arrow of
the same type from d to c. This follows from definition 2.5.

(b) The symmetry group of the lattice is the symmetry group of the lattice network.
In particular, translation by any vector in the lattice is a symmetry of the lattice network.

Example 2.7. Up to equivalence, there is exactly one lattice L in R. If we normalize the length
of the generator of the lattice to be 1, L ∼= Z. In a network defined on Z, each cell i has exactly
two neighbours of order p, namely the left (i − p) and the right (i + p). �

Next, we make a precise connection between lattice dynamical systems and lattice
networks. Again, we follow the treatment of Stewart and co-workers [19, 23] adapted to
lattice networks. Given a lattice network GL, we wish to define a class of ‘admissible’ vector
fields corresponding to GL. This class consists of all vector fields that are compatible with the
labelled graph structure. With each cell c, we associate a cell phase space which we assume
is Pc = Rk . Moreover, since a lattice network is homogeneous, we have that all cells are
cell-equivalent. Hence we choose the same phase space for all cells. A point x in the total
phase space has coordinates xc in cell c. Let D = (c1, . . . , c�) be any finite ordered set of �

cells in L and define

xD = (xc1 , . . . , xc�
),

where xci
∈ Pci

= Rk .
Given c, d ∈ L there is a bijection β : I (c) → I (d) preserving coupling types such that

I (d) = β(I (c)). Note that from definition 2.5(d), any such isomorphism has to map each
class of p-neighbours of c to the class of p-neighbours of d. In particular, if c = d then any
such β is a permutation of I (c) leaving invariant each class of neighbours of c. Recall from
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the paragraph preceding (1.3) that we order cells in I (c) so that cells in c + Ji are contiguous
for each 1 � i � p.

Definition 2.8. An n-dimensional lattice dynamical system is a system of ODE associated with
a n-dimensional lattice network GL, given by

ẋc = f (xc, xI (c)) c ∈ L,

where xc ∈ Rk , I (c) = (c1, . . . , c�), xI (c) = (xc1 , . . . , xc�
) ∈ Rk � and the map

f : Rk(�+1) → Rk is smooth and invariant under all permutations of the variables that map
each class of neighbours of c into itself. The corresponding vector field is said to be
GL-admissible. �

Example 2.9. Let GL be the square lattice network with NN and NNN in figure 1 (centre).
If we normalize the length of the generators of the lattice to be 1, L ∼= Z2. A square lattice
dynamical system with NN and NNN corresponding to it has the form

ẋi,j = f (xi,j , xi+1,j , xi−1,j , xi,j+1, xi,j−1, xi+1,j+1, xi−1,j+1, xi+1,j−1, xi−1,j−1),

where (i, j) ∈ Z2, xi,j ∈ Rk and f is invariant under all permutations of the variables under
the bars. The invariance of f under permutation of the four coordinates xi+1,j , xi−1,j , xi,j+1 and
xi,j−1 reflects the fact that the edge types of the nearest neighbours of cell (i, j) are the same.
Similarly, the invariance of f under permutation of the coordinates xi+1,j+1, xi−1,j+1, xi+1,j−1

and xi−1,j−1 derives from the same edge type of the next nearest neighbours of cell (i, j). �

Given an equivalence relation �� on the cells L, the polydiagonal is defined as

��� = {x ∈ Rk(�+1) : xc = xd whenever c, d ∈ L and c �� d}.
Note that if ��� is flow-invariant subspace for a given lattice dynamical system, then the
solutions in ��� have a collection of coordinates equal for all time. A robustly polysynchronous
equivalence relation is an equivalence relation �� on cells such that the associated polydiagonal
��� is flow-invariant under every GL-admissible vector field. We call the colouring associated
with a robustly synchronous equivalence relation, a pattern of synchrony.

Stewart et al [19, 23] prove that classifying robustly polysynchronous polydiagonals is
equivalent to the combinatorial issue of classifying certain equivalence relations on cells called
‘balanced’ and defined by the following definition.

Definition 2.10. An equivalence relation �� on L is balanced if for all c, d ∈ L with c �� d

and c �= d , there exists an isomorphism γ : I (c) → I (d) preserving coupling types such that
i �� γ (i) for all i ∈ I (c). �

It is proved in [19, 23] that an equivalence relation is robustly polysynchronous if, and
only if, it is balanced.

Suppose we have a finite number � of ��-equivalence classes and we colour the cells in the
lattice so that two cells have the same colour precisely when they are in the same ��-equivalence
class. That is, any equivalence relation can be represented by an �-colouring of the cells. Now
let K1, . . . , K� be the colours of an �-colouring of a lattice network GL. Using the colourings,
definition 2.10 can now be read as follows.

Definition 2.11. The �-colouring is balanced if and only if each cell of colour Ki receives the
same number of inputs from cells of colour Kj (j = 1, . . . , �) of each edge type. �
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3. Techniques for proving spatial periodicity

Definition 3.1. Let GL be a lattice network and let U ⊂ L be a subset. The closure of U

consists of all cells that are connected by some arrow to a cell in U , that is,

cl(U) = {T (e) : e ∈ E and H(e) ∈ U}.
The boundary of U is the set

bd(U) = cl(U)\U. �
Example 3.2. Let L be the square lattice of length 1 which we can identify with Z2. Let GL
be the associated lattice network such that each cell has four nearest neighbours at distance 1.
See figure 1 (left). Then the boundary of the set W2 in figure 2 is formed by the white cells
with a cross. �

For each Euclidean lattice network GL, there is a natural expanding sequence of finite
subsets that covers the lattice. Let

W0 = {0} and Wi+1 = cl(Wi), (3.1)

for i � 0. Since the input set of each cell contains the generators of the lattice, we have

L = W0 ∪ W1 ∪ · · · .
It follows that for any colouring of a lattice L by k colours, there is some j such that all
k colours are represented by cells in Wj . In fact, this is more true for balanced colourings.

Lemma 3.3. Let GL be a lattice network with a balanced k-colouring. Then Wk−1 contains
all k colours.

Proof. We claim that if � < k, then W� contains at least � + 1 colours. The proof proceeds by
induction on W�. W0 = {0} contains one cell and one colour.

Assume that the statement is true for � < k − 1; we prove that it is also true for � + 1.
Suppose that the number m of colours contained in W�+1 = cl(W�) is the same as the number
of colours in W�. Then every cell c ∈ W�+1 has a colour that is the same as the colour of a
cell d in W�. Therefore, all cells connected to d lie in W�+1 and are coloured by the m colours.
Therefore, the term balanced implies that the cells connected to c must also be coloured by
one of the m colours. It follows that the cells in W�+2 = cl(W�+1) are also coloured by these
m colours. By induction, the entire lattice is coloured by m colours; hence m = k. So if
m < k, the number of colours in W�+1 must be greater than the number of colours in W�. That
is, W�+1 contains at least � + 2 colours. It follows that Wk−1 contains all k colours. �

Definition 3.4. Let GL be a lattice network and let U ⊂ L be a subset of cells. We
say that U is connected if for every pair of cells c, d ∈ U there is a sequence of cells
c = e1, e2, . . . , ej = d ∈ U such that ei ∈ I (ei+1) for all i = 1, . . . , j − 1. �

In lemma 3.3 we show that if GL is a lattice network with a balanced k-colouring, then the
set Wk−1 defined by (3.1) contains all k colours. It follows then, that if we know the pattern on
Wk , given any colour of the pattern, there exists a cell e with that colour in Wk−1. Moreover, all
the neighbours of e are in Wk so that all their colours are known. We may now raise a question
about the extension of the pattern from Wk to the whole lattice, more specifically, about the
extension of the pattern from Wk to Wk+1. This leads us to the concept of ‘determinacy’ that we
define later. Recall that in a balanced k-colouring, for any two cells c and d of the same colour,
there is a bijection between I (c) and I (d) that preserves arrow type and colour. In particular,
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Figure 2. The set W2 (black cells) and its boundary (white cells with a cross).

if we know the colour of all cells in I (c) of a certain coupling type, and we also know the
colour of all cells of the same coupling type except one in I (d), then, since the colouring is
balanced, the colour of the last cell with that coupling type in I (d) can be determined.

Definition 3.5. Let GL be a lattice network and let U ⊂ GL be a finite connected set.

(a) Every cell c ∈ U is called 0-determined.
(b) A cell c ∈ bd(U) is p-determined, where p � 1 if there is a cell d ∈ U such that c is in

the input set of d and each cell in the input set of d that has the same coupling type as c,
except c itself, is q-determined for some q < p.

(c) A cell c ∈ bd(U) is determined if it is p-determined for some p.
(d) The set U determines its boundary if all cells in bd(U) are determined. �
Definition 3.6. Let GL be a lattice network. Then the set Wi0 is a window if Wi determines its
boundary for all i � i0. �
Remark 3.7. Note that if there are no 1-determined cells then, by induction, there are no p-
determined cells for any p. In particular, if there are no 1-determined cells, then windows do
not exist.

Example 3.8. Let L be the square lattice of length 1 which we can identify with Z2. Let GL
be the associated lattice network such that each cell has four nearest neighbours at distance 1.
See figure 1 (left). This network has no window, as we show. (Note that in this case, it is
shown in [25] that there are infinitely many balanced 2-colourings.)

We claim that no set Wi is a window. Remark 3.7 suffices to show that there are no
1-determined cells. For example, consider W2 and its boundary (figure 2). Since the cells on
the boundary are in a diagonal line, it is not possible for them to be the only cell in the input set
of a cell in W2 that is not in W2. Note that when i > 2 the set Wi has the same ‘diamond shape’
as W2. Therefore, there are no 1-determined cells in bd(Wi). By remark 3.7, this network has
no window. �
Example 3.9. Let GL be the lattice network associated with the square lattice L = Z2 such
that each cell has four nearest neighbours at distance 1, and four next nearest neighbours at
distance

√
2 (see figure 1 (centre)).

Let W0, W1, . . . be the sequence of sets generated by cell 0. It is clear that each set Wi is
a square of size 2i + 1. The size of a square is the number of cells in one (and hence all) of its
sides.

We show that the sets Wi for i � 2 determine their boundaries. To show this, one of
the corners of such a square should be analysed (by symmetry) because all the cells on each
side, except the last two on both extremes, are 1-determined, since they are the only nearest
neighbours outside the square (figure 3).
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Figure 3. The set W2 (black cells) and the 1-determined cells of its boundary (white cells with a
cross).

Figure 4. The corner of a set Wi (black cells), the 1-determined cells (white cells with a cross) and
2-determined cells (white cells connected to black cells by dashed lines).

The three cells in the corners of the square are 2-determined using the NNN as long as the
square has size greater than 3 (see figure 4). �

Definition 3.10. Let GL be a lattice network and let U ⊂ L be a subset. The interior of U

consists of all cells c ∈ U such that any cell connected to c is also in U , that is,

int(U) = {c ∈ U : I (c) ⊆ U}. �
Lemma 3.11. Let GL be a lattice network where L is a Euclidean lattice and assume that
Wi0 is a window. Suppose that a balanced k-colouring restricted to int(Wi) for some i � i0

contains all k colours. Then the k-colouring is uniquely determined on the whole lattice by its
restriction to Wi .

Proof. Let K be a balanced k-colouring. Then for any two cells c and d of the same colour,
there is a bijection β : I (c) → I (d) that preserves arrow type and colour. So if we know the
colours of all cells in I (c) and we know the colours of all cells except one in I (d), then the
fact that the colouring is balanced reveals the colour of the last cell in I (d).

Since the colours of all cells in Wi are known, we can assume that the colours of all
q-determined cells have been determined, where 0 � q < p. Suppose c ∈ bd(Wi) is
p-determined, then there exists d ∈ Wi and c ∈ I (d) such that all other input cells in I (d) that
have the same coupling type as c are q-determined for some q < p. Since int(Wi) contains
all k colours, there exists a cell e ∈ int(Wi) with the same colour as d. Since all neighbours of
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e are in Wi (by definition of interior), their colours are known. Now we apply the reasoning
in the previous paragraph to deduce the colour of cell c.

Finally, we continue inductively to colour Wi+� for � � 1. It follows that the balanced
k-colouring restricted to Wi can be uniquely extended to the whole lattice. �

Theorem 3.12. Let L be a Euclidean lattice and GL a lattice network with a window. Fix
k � 1. Then there is a finite number of balanced k-colourings on L and each balanced
k-colouring is spatially multiply-periodic.

Proof. Let Wj be a window for GL where j � k. By lemma 3.3, the interior of Wj contains
all k colours. Then by lemma 3.11, a balanced k-colouring is uniquely determined by its
restriction to Wj . Since there is only a finite number of possible ways to distribute k colours
on the cells in Wj , it follows that there are only a finite number of balanced k-colourings.

Let K be a balanced k-colouring on GL and let v ∈ L. Let Tv(K) be the colouring
obtained by shifting the colouring K by v, that is, the colour of cell c in Tv(K) is the same as
the colour of cell c − v in K . Since translations are symmetries of the lattice network, Tv(K)

is also a balanced colouring.
Let v be a generator of the lattice and consider all translates of K in the direction of v.

Since there is only a finite number of balanced k-colourings and an infinite number of translates
of K , there must exist N ∈ Z+, such that K and TNv(K) exhibit exactly the same colouring.
It follows that K is invariant under the translation TNv . Hence K is periodic in the direction
of v. The same argument can be applied to all the generators of the lattice, thus, all balanced
k-colourings are spatially multiply-periodic. �

The fundamental property that we have identified in the course of the proof of the theorems
in this section is determinacy, which is related to the architecture of the network defined by
the choice of the structure of the input set.

Example 3.13. Consider the one-dimensional lattice L = Z. Let GL be the lattice network
with NN. The input set of a cell c consists of c plus its left and right neighbours. Let W0, W1, . . .

be the sequence of sets defined in (3.1). Then Wi = {−i, . . . , 0, . . . , i} is an interval of 2i + 1
consecutive cells. Note that the boundary of any interval has two cells that are not in the
interval and both of them are 1-determined. Therefore, the sets Wi for i � 1 are windows.
Theorem 3.12 implies the finiteness of balanced k-colourings and spatial periodicity of all
balanced k-colourings for the one-dimensional lattice network with NN. This special case is
proved directly in [1]. �

4. Planar lattices

The main result about balanced colourings of planar lattice networks is the following.

Theorem 4.1. Let

L = {αu + βv : α, β ∈ Z},
be a planar lattice, where the generators u and v are norm 1 linearly independent vectors.
Assume that the angle θ between u and v satisfies

π

3
� θ � π

2
.
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Figure 5. Hexagonal lattice network. NN (——) and NNN (- - - -). The dotted lines show the
hexagonal region W1.

Let GL be the associated network such that the input set of each cell c contains cells whose
distance from c is less than or equal to |u + v|. Then, for each k > 0 the network GL admits
only a finite number of balanced k-colourings each of which is spatially doubly-periodic.

Remark 4.2. Theorem 4.1 covers three types of lattices:

(a) square lattice: u = (1, 0) and v = (0, 1),
(b) hexagonal lattice: u = (1, 0) and v = (1,

√
3)/2,

(c) rhombic lattice: u = (1, 0) and v = (cos θ, sin θ) where π/3 < θ < π/2.

For each of these lattices we define the critical distance as |u + v|. The couplings allowed by
the critical distance are nearest and next nearest neighbour for all three lattices, and next next
nearest neighbour for the rhombic lattices. Theorem 4.1 is the best possible in the sense that
planar lattice networks with less coupling do admit an infinite number of aperiodic balanced
2-colourings. See [17, 25].

Proof. It is sufficient to show that the three types of lattices mentioned in the remark 4.2 have
windows. More precisely, let W0, W1, . . . be the sets defined in (3.1) for one of the lattices
satisfying the hypothesis of the theorem. We shall prove that Wi determines its boundary for
all i � 2 and is a window. The conclusion follows from theorem 3.12.

First, let L be the square lattice. We have already shown in example 3.9 that for all i � 2
the set Wi determines its boundary.

Second, let L be a rhombic lattice with π/3 < θ < π/2. Since this lattice is a deformation
of the square lattice, the same argument as used in example 3.9 shows that Wi determines its
boundary for all i � 2. The only new element is that the set of next nearest neighbours has four
elements in the square lattice which breaks into two sets of two elements each in the rhombic
lattice (see figure 1 (right)).

Third, let L be the hexagonal lattice. The input set of a cell c in the hexagonal lattice with
NN and NNN has 12 cells: 6 nearest neighbours at a distance 1 from c, and 6 next nearest
neighbours at a distance

√
3 from c (figure 5).

The set Wi+1 \Wi is a hexagonal annulus surrounding Wi . Indeed, the cells in the input
set of one cell c in Wi are within a distance less than or equal to

√
3 from c, so they must lie

inside this region (see figure 6). Another observation is that the three lines through 0, and the
next nearest neighbours of 0, divide each set Wi into six sectors. Since rotations by π/3 are
symmetries of the lattice, we can restrict the analysis to any one of these sectors.

In the hexagonal lattice, the boundaries of the sets Wi in a given sector consist of three
lines of cells (see figure 7). Note that cells on the first line of Wi are nearest neighbours of cells
on the second line of Wi−1; cells on the second line of Wi are nearest neighbours of the cells
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Figure 6. The next nearest neighbours of 0 and the sets W1, W2 and W3 (hexagonal regions defined
by dotted lines). The six sectors defined by the next nearest neighbours are separated by solid lines.

Figure 7. One sector of the sets Wi+1 \ Wi with the three lines of cells connected by dots, dashes,
and solid.

on the third line of Wi−1; and cells on the third line of Wi are nearest neighbours of the cells
on the first line of Wi .

The first line of the boundary of a set Wi is 1-determined. This follows from the fact that
a cell c in the first line of bd(Wi) is a nearest neighbour of a cell d in the second line of Wi ,
and all other nearest neighbours of d are in Wi (see figure 8). The same argument illustrates
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Figure 8. One sector of the set Wi (black cells) and a sector of its boundary bd(Wi). The first line
of bd(Wi) is 1-determined.

Figure 9. The corner of one sector of the set Wi . The three remaining cells are determined.

that cells in the second line, with the exception of the two cells nearest the sector boundary,
are 2-determined; and cells in the third line of one sector, with the exception of the two cells
on the sector boundary and the two cells nearest the sector boundary, are 3-determined. So far,
we have shown that, except for six cells near or on the boundary of the sector, all cells are
determined.

Reflections on the above allow us to restrict ourselves to cells near one of the corners
of a sector. Thus, we show that the three remaining cells are determined. We now assume
that i � 2.

To see that cell c1 near the sector boundary on the second line of bd(Wi) is determined,
consider the next nearest neighbours of the cell d1 near the sector boundary on the second line
of bd(Wi−1). Since c1 is the only next nearest neighbour of d1 that has not yet been determined,
c1 is determined (see figure 9(a)).

To see that cell c2 on the third line but not on the sector boundary is determined, consider
the nearest neighbours of cell d2 nearest the second line of bd(Wi). Since c2 is the only nearest
neighbour of d2 that has not yet been determined, c2 is determined (see figure 9(b)).
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In order to determine cell c3 on the third line of bd(Wi) and the sector boundary, consider
the next nearest neighbours of cell d3 on the sector boundary and the third line of bd(Wi−1).
Since c3 is the only next nearest neighbour of d3 that has not yet been determined, c3 is also
determined (see figure 9(c)). �

5. The cubic lattice

In this section, we show that our techniques can work on three-dimensional lattices as well,
by considering the standard (or primitive) cubic lattice L = Z3. This lattice is the direct
generalization to R3 of the linear lattice in R, and the square lattice in R2.

Proposition 5.1. Let GL be the standard cubic lattice network with NN, second NN and third
NN. Then Ws determines its boundary for all s � 3 and GL admits a window.

Proof. Note that if a cell with coordinates y = (y1, y2, y3) is in the input set of a cell with
coordinates x = (x1, x2, x3), then the coordinates must satisfy

|yi − xi | � 1, for i = 1, 2, 3. (5.1)

Therefore,

Ws = {(x1, x2, x3) : −s � xi � s, xi ∈ Z}
is the cube centred at the origin whose sides have 2s + 1 cells. We prove that Ws (s � 3)

determines its boundary. Observe that

bd(Ws) = cl(Ws)\Ws

= Ws+1\Ws

= {(x1, x2, x3) ∈ Ws+1 : ∃ i ∈ {1, 2, 3} such that |xi | = s + 1}.
By symmetry it is sufficient to prove that all the cells in the set

Q = {(s + 1, x2, x3) : 0 � x3 � x2 � s + 1},
are determined by Ws . We partition Q into

Q = (P11 ∪ P12 ∪ P13 ∪ P14) ∪ (P21 ∪ P22) ∪ P3,

where

P11 = {(s + 1, x2, x3) : 0 � x3 � x2 � s − 1},
P12 = {(s + 1, s, x3) : 0 � x3 � s − 2},
P13 = {(s + 1, s, s)},
P14 = {(s + 1, s, s − 1)},
P21 = {(s + 1, s + 1, x3) : 0 � x3 � s − 1},
P22 = {(s + 1, s + 1, s)},
P3 = {(s + 1, s + 1, s + 1)}.

We show that all cells in each of these sets are determined.

P11 is 1-determined. Note that cells (s, x2, x3) with 0 � x3 � x2 � s − 1 are in Ws . These
cells have six nearest neighbours: (s ± 1, x2, x3), (s, x2 ± 1, x3), and (s, x2, x3 ± 1). Except
for the cell (s + 1, x2, x3), all other nearest neighbours of these cells are in Ws . Hence, all cells
(s + 1, x2, x3) are 1-determined.
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P12 is 2-determined. Note that cells (s, s − 1, x3) with 0 � x3 � s − 2 are in Ws . These cells
have 12 next nearest neighbours whose coordinates are:

(s ± 1, (s − 1) ± 1, x3), (s ± 1, (s − 1) ∓ 1, x3),

(s ± 1, s − 1, x3 ± 1), (s ± 1, s − 1, x3 ∓ 1),

(s, (s − 1) ± 1, x3 ± 1), (s, (s − 1) ± 1, x3 ∓ 1).

Except for (s + 1, s, x3), all other next nearest neighbours are in Ws ∪ P11 (or in one of its
symmetric images). Thus, all cells (s + 1, s, x3) are 2-determined.

P13 is 3-determined. The set P13 has one cell c = (s + 1, s, s). Note that d = (s, s − 1, s − 1)

is in Ws and has c as its next next nearest neighbour. Thus the distance between c and d is√
3. Since the coordinates of d satisfy (5.1), it follows that, except for (s + 1, s, s), all other

next next nearest neighbours of d are in Ws ∪ P11 ∪ P12 (or in one of its symmetric images).
Indeed, (s, s − 1, s − 1) + (1, 1, 1) = (s + 1, s, s) �∈ Ws ∪ P11 ∪ P12 (or one of its symmetric
images) and it is a next next nearest neighbour of d. Hence P13 is 3-determined.

P14 is 4-determined. The set P14 has one cell c = (s+1, s, s−1). Note that d = (s, s−1, s−2)

is in Ws and has c as its next next nearest neighbour. This implies that the distance between c

and d is
√

3. Since the coordinates of d satisfy (5.1), it follows that, except for (s + 1, s, s −1),
all other next next nearest neighbours of d are in Ws ∪P11∪P12 ∪P13 (or in one of its symmetric
images). Hence, c is 4-determined.

P21 is 5-determined. Let c = (s + 1, s + 1, x3) where 0 � x3 � s − 1. Note that d = (s, s, x3)

is in W and has c as its next nearest neighbour. Thus, the distance between c and d is
√

2.
Since the coordinates of d satisfy 5.1, it follows that, except for (s + 1, s + 1, x3), all other next
nearest neighbours of d are in Ws ∪ P11 ∪ P12 ∪ P13 ∪ P14 (or in one of its symmetric images).
Hence, P21 is 5-determined.

P22 is 6-determined. The set P22 has one cell c = (s + 1, s + 1, s). Note that d = (s, s, s −1) is
in Ws and has c as one of its next next nearest neighbours. Moreover, except for (s +1, s +1, s),
all other next next nearest neighbours of d are in Ws ∪ P11 ∪ P12 ∪ P13 ∪ P14 ∪ P21 (or in one
of its symmetric images). Hence, c is 6-determined.

P3 is 7-determined. The set P3 has one cell c = (s +1, s +1, s +1). Note that d = (s, s, s) is in
Ws and has c as one of its next next nearest neighbours. Moreover, except for (s+1, s+1, s+1),
all other next next nearest neighbours of d are in Ws ∪ P11 ∪ P12 ∪ P13 ∪ P14 ∪ P21 ∪ P22 (or
in one of its symmetric images). Hence, P3 is 7-determined.

This concludes the proof that Ws determines its boundary for all s � 3. �

Corollary 5.2. Let GL be the standard cubic lattice network with nearest, second nearest
and third NN. Then for each k > 0 the network GL admits only a finite number of balanced
k-colourings, each of which is spatially triply-periodic.
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