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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 58, July 1976 

THE NONEXISTENCE OF 
GLOBALLY STABLE FORMS 

MARTIN GOLUBITSKY AND DAVID TISCHLER1 

ABSTRACT. It is shown that on a closed manifold there are no globally 
stable differential forms. 

A number of people have worked on the problem of the stability of 
differential forms. Martinet [1] has inspected the singularities and stability of 
germs of p-forms. His definition for stability is the following: a germ of a p- 
form X is stable if for every nearby germ o' there is a germ of a diffeomorphism 
f such that f * &' = w. In this paper Martinet computes some examples of 
stable germs. The stability of globally defined closed differential forms where 
the nearby forms o' are allowed to vary only within the cohomology class of 
X have been studied by Moser [2], Chatelet and Rosenberg [3], and others. 

A very tempting idea-given Martinet's sucess-is to try to find globally stable 
forms on a compact manifold M using the following: 

DEFINITION 1. A p-form X on a manifold X is stable if there is a 
neighborhood Q of X in the C? topology on p-forms such that if C' is in Q, 
then there is a diffeomorphism f: X -* X such that f* C' = w. 

Unfortunately, this definition of stability for p-forms does have problems, 
for a little thought shows that there are obstructions to the existence of 
globally defined stable forms. In fact we show: 

THEOREM 2. Using this definition of global stability, there do not exist globally 
stable forms on compact manifolds. 

The authors wish to thank Mike Shub and Victor Guillemin for helpful 
conversations. 

Our arguments fall into two classes: first we show that in a large number of 
cases of p-forms on n-manifolds even local stability for germs in the sense of 
Martinet is not possible; second, in the remaining cases there are global 
invariants which obstruct the existence of stable forms. 

LEMMA 3. On an n-manifold where n > 10, there exist no locally or globally 
stable p-forms where 3 < p < n - 3. The same is true for 4- or 5-forms on 9- 
manifolds. 

First, some notation. Let Diff(X) denote the group of C? diffeomorphisms 
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on X, let AP = AP(T*X) denote the space of C? p-forms on X, and let AP 
be the fiber of the bundle AP(T*X) over the point x in X. 

PROOF. Suppose X is a stable p-form; then the orbit I,, of the action of 
Diff(X) on AP through X given by pull-back is open. Let Vx4(X) = {o'(x) 
E AI ' e I,} for x in X. Then Jx(o) is open in AP. 

Next choose a neighborhood U of x in X over which the bundle AP is trivial. 
Using this trivialization one has a projection map 7: AP U -* AP. Consider 
the map 

A: UxGl(Tx X) -AP 

defined by (y, A) -- 7(A* co)y where Tx X is the tangent space to X at x and 
where A acts on T;X using the trivialization. It is easy to show that the image 
of 4 contains Vx. So if X is stable, then Im 4 is open and 

dim(UxGI(TxX)) > dim AXP. 

So we have that n + n2 > (n); but this cannot happen when n > 10 and 
3 < p < n - 3 or when n = 9 andp = 4 or 5. 

Now we attack the global problem. 
DEFINITION 4. A mapping 9p of p-forms on X to densities on X is destabilizing 

if for every p-form X 

(1) fX 9p(f*@) = fX (4) for allf in Diff(X), 

and (2) there is a curve St of p-forms with wo = X and 

fx (P) =A fX (CO,) for all t =A 0. 

Note that since (p(o) is a density as opposed to an n-form, fx ,p(&) is well 
defined whether or not X is orientable. 

LEMMA 5. If there exists a destabilizing mapping on p-forms, then there are no 
stable p-forms. 

PROOF. Obvious. 

LEMMA 6. In all cases not included in Lemma 3 where p > 0 there exist 
destabilizing mappings sp. 

PROOF. Define 9p in the given cases as follows: 

p =n Tp(W) = I1, 

p =2n- 1 Idwl, 

p = 1, n = 2k p(o) =(d) 
k 

p =1, n = 2k +1 p(O)=O | A (d@)k, 

p = 2, n = 2k (W) = i, 

p = 2, n = 2k+1 (I() =I k- A d|, 
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298 MARTIN GOLUBITSKY AND DAVID TISCHLER 

p 3, n 7 (cow) = 1o A dol, 

p =3, n= 8 = ) 

p =4, n= 8 T = I |. 

In these cases, condition (1) of Definition 4 is obvious. For condition (2) we 
see that if T(co) =# 0, we can take ot = (t + I)w; while if p(w) = 0 we need a 
short argument. For example, in the case p = 1, n = 2k there is a 1-form a 
such that (da)k =A 0. This is obviously true locally; extend the form to a global 
one in some convenient fashion. Then take wt = X + to and note that 
(dot)k = A do + * + t k (d)k since .p(0) = I(dw)k 0. There is a 
first nonzero term since (da)k 0 0 and for small t this term dominates. So it is 
impossible for T(wt) = 0 for all t small and fx p(wt) # 0. Note we use the 
facts that (p # 0 and qp(tQo) = t II.p(w) for some number I # 0 to construct the 
curve wt which shows that p is destabilizing. For the other cases listed above 
these facts are clear. For the following cases a similar proof will work. 

The cases that remain are 

(p, n) = (n - 2, n), (3, 6), (3, 9), (4, 7), (5, 8), or (6, 9). 

For these we need a different argument. First, we do the construction of qp for 
(n - 2)-forms on an n = 2k-manifold X. 

Let V be a vector space and let A-2(V) be the (n - 2)-forms in the 
Grassmann algebra on V. Let 

A: A-2(V*) k0 An-2(V*) 

be the diagonal map, let 

P: An(V*) X A"(V) -* R 

be the natural pairing, and let 

A: X A (V) > A2k(V) 
i=l 

be the linear map induced by wedge product. 
Now suppose X is a 2k-manifold. Then we can consider the following 

sequence of maps: 

k k 
An-2(T*X) --> 0 An-2(T*X) 0 0 Hom (A2(T*X),An(T*X)) 

i=I 

k k k-I 
X An(T*X) 0 0 A2(TX) id?A> XAn(T*X) X An(T*X)? XA(TX) 

i=l i=1 i=1 

k-I 
id@P> 0 An(T*X). 

i=l 
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Call the composite map a. Then given an (n - 2)-form &, a(X) is a section of 
the one-dimensional bundle 0)ik-I iA(T*X). The transition functions for this = 

k-I bundle are related by (determinant) . So taking the (k - I)st root of la(w)j 
gives a section of the one-dimensional bundle whose transition functions are 
related by Ideterminantl, in other words, a density on X. So we set (p(o) 
= Ia(o)Il/(k 1). Since all the maps used to define a are natural, 9p satisfies (1) 
of Definition 4. It is easy to see that 9p(to) = jtjk'(k-1)p(o). To see that p is 
destabilizing, we need only show that qp is not identically zero. This reduces to 
showing that A: ly1A2(TX) -* A2k(TX) is not zero; but this is clear since 
the image of the standard symplectic 2-coform (in any basis) under A is not 
zero. 

The remaining cases are all similar. To define a for (n - 2)-forms on 
n = (2k + 1)-manifolds, consider the following: 

An2(T*X) A@94 0 An2(T*X) ?9 An-l(T*X) 
i=1 

k 
0 Hom(A2(T*X), An(T*X)) 0 Hom(Al(T*X), An(T*X)) 

i=1 

k+1 k 
(D An(T* X) (? (D A2 (TX) (? A1 (TX) i=1 

k 
idA,0 An(T*X) ?9 An(T*X) ?9 K(TX) 

id?P> 0 An(T*X). 

As before, take q(Xo) = ja(w)Jl/k and note that {(tw) = ltl(k+l)/kp(,) Since 
g 0 O, g is also a destabilizing mapping; so there are no stable codimension 
2-forms. 

For (p, n) = (3, 6) or (5, 8), we take (p(o) = 9p(do). Note that dc is a 
codimension 2-form on an even-dimensional manifold. This trick will not work 
for codimension 3-forms on an odd-dimensional manifold for the construction 
of a in this case already includes the exterior derivative d and the composite 
map a o d is then identically zero. 

For (p, n) = (4,7) we construct a as follows: 

A4(T*X) id?d?d> A4(T*X) X 0 A5(T*X) 

id?A, 0 A7(T*X) X A3(TX) X A4(TX) 
i=1 

St 3 
0 A (T*X) X A (TFXr) X A (TX=) id> 0 

diA (TXa) 

Set (p(o) = ]a(o)l1"2. For (p, n) = (6, 9), define a by: 
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A6(T*X) idYd?dd> A6(T*X) X A7(T*X) 

4 3 
0 A9(T*X) X?A3(TX) 0X 1A2(TX) 

3 3 
id? A. ? A9 (T* X) A9 (T* X) A9 (TX) idP. ? A9(T* X). 

i=1 i=1 

Set (p) = lo(Wo)11/3 

Finally, for (p, n) = (3, 9) construct a as follows: 

A3(T*X) A-* A(T*X) X A(T*X) X A4(T*X) 

(given by X (o A d@) 0 (o A d@) 0 d@) 

c? 0A9(T*(T X ) A5(TX) 

3 2 
id?A. 0A9(T*X) XA9(TX) id?P, 0A9(T*X). 

i=l i=1 

Set T(o) = lo(W)11/2. Q.E.D. 
PROOF OF THEOREM 2. Lemmas 3.5 and 6 show that there are no stable p- 

forms when p > 0. To complete the proof note that 0-forms are just functions 
and that the action of Diff(X) on functions given by pull-back preserves 
critical values. Since critical values can always be perturbed, 0-forms are never 
stable. Q.E.D. 

To complete our discussion, we note that global stability for closed forms 
could be defined as in Definition 1, if closed p-form is substituted for p-form 
throughout. This definition is just as bad as Definition 1, for Lemma 3 is still 
valid and Lemma 6 is valid in any case where the destabilizing mapping was 
defined without the use of exterior differentiation. Also, it is easy to show that 
if a closed p-form on X is stable, then the pth cohomology on X with real 
coefficients is zero. 
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