
DOI: 10.1007/s003329910004
J. Nonlinear Sci. Vol. 10: pp. 69–101 (2000)

© 2000 Springer-Verlag New York Inc.

Hopf Bifurcation from Rotating Waves and Patterns in
Physical Space

M. Golubitsky,1∗V. G. LeBlanc,2 and I. Melbourne1
1 Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA
2 Department of Mathematics, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Received January 20, 1998; revised December 1, 1998
Communicated by Edgar Knobloch

Summary. Hopf bifurcations from time periodic rotating waves to two frequency tori
have been studied for a number of years by a variety of authors including Rand and
Renardy. Rotating waves are solutions to partial differential equations where time evo-
lution is the same as spatial rotation. Thus rotating waves can exist mathematically only
in problems that have at leastSO(2) symmetry. In this paper we study the effect on
this Hopf bifurcation when the problem has more thanSO(2) symmetry. These effects
manifest themselves in physical space and not in phase space. We use as motivating
examples the experiments of Gormanet al. on porous plug burner flames, of Swinneyet
al. on the Taylor-Couette system, and of a variety of people on meandering spiral waves
in the Belousov-Zhabotinsky reaction. In our analysis we recover and complete Rand’s
classification of modulated wavy vortices in the Taylor-Couette system.

It is both curious and intriguing that the spatial manifestations of the two frequency
motions in each of these experiments is different, and it is these differences that we seek
to explain. In particular, we give a mathematical explanation of the differences between
the nonuniform rotation of cellular flames in Gorman’s experiments and the meandering
of spiral waves in the Belousov-Zhabotinsky reaction.

Our approach is based on the center bundle construction of Krupa with compact group
actions and its extension to noncompact group actions by Sandstede, Scheel, and Wulff.

1. Introduction

Rotating wavesare time periodic solutions to differential equations where time evolution
is the same as spatial rotation. It follows that rotating waves occur as solutions only in
systems of differential equations having at leastSO(2) symmetry, though, in general, ro-
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Fig. 1. Flames on a circular burner. (Left) A circularly symmetric flame. (Right) A steady
five-cell flame withD5 symmetry. Images courtesy of M. Gorman.

tating waves occur in experiments whose models contain more thanSO(2) symmetry. In
this paper we consider bifurcations from rotating waves to two frequency modulated ro-
tating waves and make the point that the manifestation of the modulated waves in physical
space depends crucially on the full symmetry group. To illustrate this point, we introduce
three experiments where rotating and modulated rotating waves are observed. We then
describe the symmetry groups for models of these experiments and the types of modulated
waves that are observed in each experiment. We end this introduction with a description
of the results that we have obtained and how they bear on the three experiments.

Rotating Waves in Experiments. Rotating waves have been observed in a variety of
experiments — both physical and numerical. In particular, rotating waves occur in the
Taylor-Couette system as wavy vortices (see Anderecket al. [1] and Figure 2), in the
Belousov-Zhabotinsky chemical reaction as spiral waves (see Winfree [41] and Figure 3),
and in laminar premixed flames as cellular patterns (Gormanet al. [19] and Figure 1).
Each of these rotating waves has also been observed numerically as a patterned solution
to PDE models for the corresponding experiments: rotating waves have been observed
in the Navier-Stokes equations modeling the Taylor-Couette system [31], in reaction-
diffusion equations loosely modeling BZ reactions [2, 26], and in reaction-diffusion
models loosely modeling combustion [5, 23].

Symmetries in the Experiments.Since we view symmetry as a modeling assumption,
it is important to understand how the symmetry group0 for models of each of these
experiments is determined. Some of the symmetries are clear, being based on the geom-
etry of the apparatus and the homogeneity of the experiment; other symmetries are less
transparent.

For example, Gorman’s laminar premixed flame experiment is performed on a cir-
cular burner and is modeled by0 = O(2) symmetry. Moreover, the transitions that
are observed in this experiment are consistent with the assumption ofO(2) symmetry,
in the following sense. It is well known that steady-state bifurcation from an invari-
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Fig. 2. Taylor-Couette Experiment. From left to right: Couette flow, Taylor vortices, spiral
vortices, and wavy vortices. Pictures courtesy of H.L. Swinney.

ant equilibrium withO(2) symmetry on a circular domain leads to equilibria having a
cellular structure and that Hopf bifurcation leads to standing and rotating waves [14].
All of these states are observed in the flame experiment, and the cellular structures and
the standing waves are observed as direct transitions from a circularly symmetric flame
[16].

The geometry is not always sufficient to detect all of the relevant symmetries. In
the Taylor-Couette experiment, the cylindrical geometry leads to the assumption of
0 = SO(2) × Z2 symmetry. As Taylor [40] noted, the existence of Taylor vortices
bifurcating from Couette flow argues for the assumption of periodic boundary conditions
in the axial direction (see Figure 2); that is, the assumption ofSO(2)×O(2) symmetry in
the experiment. Moreover, this symmetry is consistent with the observed Hopf bifurcation
from Couette flow to spiral vortices [8, 15].

In the BZ reaction, the situation is even more complicated. It seems best to model
these experiments by ignoring lateral boundaries. Barkley’s analysis [3] of resonant linear
drift of spiral waves in this experiment makes a compelling case for the assumption of
full Euclidean0 = E(2) symmetry including translations. Moreover, the mathematical
results in [42, 37, 38, 13] support this assumption.

The rotating waves in each of these experiments have cyclic symmetry for the instan-
taneous pattern. We denote the symmetry group (or isotropy subgroup) of the pattern at
a given instant in time by6rot. The cellular flame pattern hask cells (see Figure 1), and
a spiral can havek arms — though one-armed spirals are what is usually observed in BZ
reactions (see Figure 3). See [34] and references therein for experimental observations
of multi-armed spirals (k ≥ 2). For both flames and spirals,6rot = Zk. The wavy vor-
tices (see Figure 2) have an azimuthal wave numberk, and an additional symmetry —
flip up and down coupled with a half wave length azimuthal rotation (a glide reflection
symmetry). The square of this symmetry is the generator of the pure azimuthal rotation
symmetry — so the isotropy subgroup of wavy vortices isZ2k. In Table 1 we present the
relevant group theoretic data for each experiment.
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Fig. 3. Belousov-Zhabotinsky Experiment. (Left) spiral waves with seven superimposed
images showing the tip traversing a circle (from [39]). (Center) meandering spiral waves with
eleven superimposed images showing the tip beginning to meander (from [39]). (Right) Single
image of a meandering spiral wave with superimposed tip trajectory showing apetals inflower
pattern (from [29]). Pictures courtesy of H.L. Swinney. [Left and center figures reprinted
with permission of Elsevier Science Publishers B.V. From G. S. Skinner and H. L. Swinney,
Periodic to quasiperiodic transition of chemical spiral rotation, Physica D48 (1991) page 2.
c© Copyright 1991, Elsevier Science Publishers B.V., Amsterdam.]

Hopf Bifurcations to Quasiperiodic Motions. In each of these experiments, Hopf bi-
furcation from rotating waves to a quasiperiodic motion, ormodulated rotating wave, has
been observed. In the Taylor-Couette system, wavy vortices bifurcate to modulated wavy
vortices [20, 21, 9]; in the BZ reaction, spiral waves begin to meander quasiperiodically
(see Figure 3) and even linearly drift [44, 45, 30, 24, 25, 39, 29]; and in laminar premixed
flames, the cellular pattern appears to rotate rigidly but with an angle of rotation that
depends quasiperiodically on time [19, 6, 7, 33]. In each of these experiments, the basic
Hopf bifurcation from a single frequency time periodic rotating wave to quasiperiodic
motion in phase space is now understood [22, 4, 7]. Even the resonant Hopf bifurcation
to linear drifting spiral waves is understood [3, 42, 38, 13].

Hopf bifurcations from rotating waves to modulated rotating waves have been studied
by a number of authors including Rand [35] and Renardy [36]. In addition, Rand classifies
the various types of modulated waves that occur in systems with circular symmetry. This
classification applies directly to the flame experiment (as pointed out in [7]) and less
directly to the Taylor-Couette experiment (since wavy vortices have an additional glide
reflection symmetry which is not taken into account in [35]). It is straightforward, as
we show in Section 6, to complete Rand’s classification of modulated wavy vortices to
include the glide reflection symmetry. This extended classification accounts for additional
states that have been observed in more recent experiments [43, 9].

What is missing is an understanding of the way in which these modulated waves
manifest themselves in physical space. In this paper we use symmetry arguments to
show why cellular flames appear to rotate rigidly but nonuniformly, and why spirals

Table 1.Symmetry data for rotating waves.

Experiment Rotating Wave 0 6rot

Taylor-Couette wavy vortices SO(2)×O(2) Z2k

Flames rotating cells O(2) Zk

BZ reaction 1-armed spirals E(2) 1
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exhibit flower-like meandering in the BZ reaction (see Figure 3). The classification of
Rand is driven by the symmetry group6rot of the rotating wave state. In contrast, we
show that the motion of the pattern in physical space depends on both the symmetry6rot

of the rotating wave and the full symmetry group0 of the experiment.

A Definition of Spatial Pattern. In both the physical and numerical experiments, pat-
terns are formed as follows. LetU (X, t) be a solution to a partial differential equation
or the state of an experiment whereX is in some physical domainD andt is time. For
example, in the Taylor-Couette system,U consists of the three velocity components of
the fluid and the pressure variable, andD ⊂ R3 is the region between the concentric
cylinders. When we view the Taylor-Couette experiment, we look at an observable scalar
quantityu(x, t) which is the intensity of light reflected off of silver platelets in the fluid;
herex lies in the surface of the outer cylinder, which we denote byÄ. We call u an
observableof the stateU . For observables to be useful as a vehicle for understanding
pattern, the transformation fromU to u must be continuous and0-equivariant.

Similarly, in the BZ reactionu is the concentration of an active chemical andÄ = R2;
while in the flame experimentu is the intensity of light (or heat) produced by the flame
andÄ ⊂ R2 is a circular disk. In PDE systems,u is some function of the solution vector
— perhaps one of its components.

We define apatternat timet to be the region in physical space

P(t) = {x ∈ Ä: u(x, t) ≥ c}
for some fixed scalarc. For example, in the BZ reaction, the pattern is the region where
the observed color is red (or blue). This region consists of those points in the petri dish
where a chemical concentration is larger than some critical concentration.

Note that patterns associated to rotating wave solutions have a particularly elementary
structure

P(t) = RtP(0),
whereRt is rotation through anglet (in appropriate units). So, for example, a spiral wave
is a pattern in the concentration of a fixed chemical in physical space that rigidly rotates
at constant speed as time evolves.

On bifurcation to quasiperiodic motion, the change in the pattern in time has two
components: shape change in the pattern and rigid motion of the pattern corresponding
to the symmetry group of the experiment. It is our contention that in Hopf bifurcation
from a rotating wave the shape change isless importantto the observed pattern evolution
than is the change in the rigid motion. To make this point precise, we introduce the notions
of inner and outer patterns.

Inner and Outer Patterns. Suppose thatP(t) is the pattern of a modulated rotating
wave. As we explain in Section 2, we can bound the temporal fluctuation ofP(t) in
terms of aninner patternQinner and anouter patternQouter, where

Qinner ⊂ P(0) ⊂ Qouter.

These time independent bounds have two important properties. First, as the bifurcation
parameter approaches the point of Hopf bifurcationQinner andQouter limit on the (in-
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Fig. 4. Inner and outer patterns for a nonuniformly rotating spiral wave in a circular
domain (0 = O(2)). The dashed contours show the boundaries of the inner and outer
patterns. The six snapshots show these contours rotating rigidly (but with nonuniform
speed). The actual pattern (solid contour) is trapped between these boundaries. The
snapshots show how the additional fluctuations in the shape change of the actual pattern
are limited by the inner and outer patterns.

stantaneous time) pattern associated to the rotating wave. Second, for every timet , there
is a group elementγt ∈ 0 such thatγt depends smoothly ont , γ0 = e, and

γt (Qinner) ⊂ P(t) ⊂ γt (Qouter).

For example, when0 = O(2) the pattern associated to the modulated wave is bounded
between two patterns that rotate rigidly with nonuniform speed. Within a small error,
the modulated wave pattern itself appears to rotate rigidly with nonuniform speed, the
error due to the shape change being bounded between the inner and outer patterns.
See Figure 4. The corresponding patterns when0 = E(2) are shown in Figure 5.
In particular, note that the spiral patterns in that figure do not have a fixed center of
rotation.

Center Bundles. As shown in Section 2 the formulation of inner and outer patterns
relies on the mathematical framework ofcenter bundles. Center bundles were introduced
by Krupa [27] in the analysis of bifurcations from relative equilibria for ODEs with
compact symmetry group0. The theory was generalized by Sandstedeet al. [37, 38] to
include PDEs with noncompact symmetry groups. In particular, their theory applies to
the nonsmooth representations that occur, for example, in reaction diffusion equations
with Euclidean symmetry.

The geometric idea behind the center bundle is that when a relative equilibrium
loses stability there are a set of critical directions at each point on the group orbit
of the relative equilibrium. These unstable directions form a bundle over the group
orbit: the center bundle. The unstable directions correspond to changes in pattern shape
in physical space while the group orbit directions correspond to rigid motions of the
pattern.
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Fig. 5. Inner and outer patterns for a meandering spiral wave in the plane (0 = E(2)).
The interpretation of the Figure is the same as for Figure 4. However, the inner and
outer patterns now rigidly meander (rotate with a moving center of rotation).

The equations on the center bundle are often difficult to solve directly. Fiedleret al.
[11] show how to lift the center bundle equations over the group orbit to skew product
equations on the group0 itself, which are often easier to solve.

Tip Evolution Using Fourier-Bessel Functions.As described above, the arguments in
this paper apply to the full patterned state in physical space. However, to obtain a more
convenient graphical representation of such results, it is standard to plot the time evolution
of some distinguished marker on the pattern (such as the “tip” of a spiral). Figure 6 is
computed numerically in this manner using spiral-like Fourier-Bessel functions, see
Section 7 for details.

The time evolution of a rotating wave is shown in Figure 6(a). In this case, the “tip”
traces out a circle with uniform speed. Figure 6(b) corresponds to Figure 4 and shows
the behavior of a modulated rotating wave in a circular domain. The tip no longer traces
out a circle, but the radial variation is negligible. The approximate circle is traced out
with nonuniform periodically varying speed, as shown in Figure 7.

In contrast, Figure 6(c) (which corresponds to Figure 5) depicts the modulated rotat-
ing wave of Figure 6(b) but in an infinite planar domain. The radial excursions are now
appreciable and correspond to the phenomenon known asmeander. This supports our
assertion that quasiperiodic meander (even away from resonance) requires Euclidean
symmetry — without which the motion would resemble the nonuniform rotation that
occurs in the flame experiment Figure 6(b). More precisely, what distinguishes mean-
dering from nonuniform rotation is the quasiperiodictranslationof the pattern, coupled
with the quasiperiodic rotation of the pattern.

Figure 6(d)–(f) show the modulated rotating wave in an infinite planar domain close
to resonance. The quasiperiodic translations are now of sufficiently large magnitude
that well-defined petals are observed close to the onset of the modulated rotating wave.
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(a) (b) (c)

(d) (e)

(f)

Fig. 6. (a) Uniform rotation, (b) nonuniform rotation, (c) meandering (away from resonance),
(d) meandering near resonance (petals inwards), (e) meandering near resonance (petals outwards),
(f) linear drift.

Note that in contrast to (c), in (d)–(f) it is the petals that are of roughly the same size
as the circle in (a). When the petals change from inwards (d) to outwards (e) — as a
second parameter is varied — the spiral tip appears to make circular excursions which
drift linearly to infinity (f) [44, 45, 3]. This resonance phenomenon has been seen in
numerical solutions to reaction diffusion systems [2] and in chemical experiments [29].

The remainder of the paper is organized as follows. The notions of inner and outer
pattern are formalized in Section 2. In Section 3, we analyze Hopf bifurcation from
rotating waves with trivial isotropy (6rot = 1) in systems withO(2) andE(2) symmetry.
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Fig. 7. Nonuniformity of the rotation of the modu-
lated rotating wave in Figure 6(b). The graph shows
angle plotted as a function of time.

We pay particular attention to the contrasting behavior of nonuniform rotation (flames)
and meander (spirals) in physical space. The corresponding bifurcations for states with
nontrivial isotropy (6rot = Zk) are analyzed in Sections 4 and 5 respectively. In addition,
we describe in Section 4 how the “reversing states” of Landsberg and Knobloch [28] fit
into our analysis, and we describe a scenario which may explain the “ratcheting states”
observed in the flames experiment. Bifurcation to modulated wavy vortices in the Taylor-
Couette system (SO(2)×O(2) symmetry) is analyzed in Section 6. The details for the
numerically generated figures in this paper are given in Section 7. Some of the more
tedious proofs are postponed until Section 8.

2. Inner and Outer Patterns

Suppose that0 acts on some physical domainÄ ⊂ Rn wheren = 2 or n = 3. LetH
be a space of observablesu: Ä → R corresponding to statesU of an experiment or
solutionsU to a system of differential equations. We assume that0 acts onH by

γu(x) = u(γ−1x), (2.1)

whereu ∈ H andγ ∈ 0.
We define thepatternassociated to a functionu ∈ H to be the region in physical

space

Pu = {x ∈ Ä: u(x) ≥ c}
for some fixed real numberc. Note that the patterns associated toγu andu are related
by γ , that is,

Pγu = γ Pu. (2.2)
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For a time dependent functionu(·, t)∈H, define the pattern at timet in an analogous way:

Pu(t) = {x ∈ Ä: u(x, t) ≥ c}.
For example, suppose thatu is the observable of a rotating wave; that is,

u(x, t) = Rtu0(x),

whereu0(x) = u(x,0). It follows from (2.2) that

Pu(t) = RtPu(0),

that is, the pattern associated to the rotating wave rigidly rotates in space with constant
speed.

The Pattern of a Modulated Rotating Wave. Let

v(x, t) = Rtv0(x)

be an observable of a rotating wave solutionV(x, t) = Rt V0(x) with isotropy subgroup
6rot = 6V0 to the PDE

Ut = F(U ). (2.3)

The center bundle theory (Krupa [27] for0 compact and Sandstedeet al. [37, 38] for
noncompact0) shows that in a neighborhood of this rotating wave the vector fieldF
has the decomposition

F = FN + FT ,

whereFT is tangent to group orbits,FN is transverse to group orbits, and both vector
fields are0-equivariant. Moreover, if we letN0 be the normal section (in phase space)
to the group orbit atV0, thenFN restricts tog: N0→ N0 whereg(V0) = 0. Note thatg
is a6rot equivariant vector field onN0.

One result of the center bundle construction is that in a neighborhood of a rotating
wave, all solutions can be written as

U (X, t) = γ (t)Y(X, t),
whereγ (t) ∈ 0 is a smooth curve andY(x, t) ∈ N0 is a solution to the normal vector
field equation

Yt = g(λ). (2.4)

Therefore, Hopf bifurcation from a rotating wave reduces to a Hopf bifurcation from an
equilibrium in (2.4) coupled with a drift along group orbits. The fact that the transfor-
mation from states to observables is assumed to be0-equivariant leads to the identity

u(x, t) = γ (t)y(x, t), (2.5)

whereu is the observable ofU andy is the observable ofY.
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Suppose now thaty(x, t) is time periodic with corresponding modulated rotating wave
solutionu(x, t) = γ (t)y(x, t), as in (2.5). We obtain a time periodic pattern (originating
from the normal equations):

Py(t) = {x ∈ Ä: y(x, t) ≥ c}.

Definition 2.1. The inner patternassociated to the modulated rotating waveu is the
intersection

Qinner =
⋂

t

Py(t) =
{

x ∈ Ä: min
t

y(x, t) ≥ c
}
.

Theouter patternassociated tou is the union

Qouter =
⋃

t

Py(t) =
{

x ∈ Ä: max
t

y(x, t) ≥ c
}
.

It follows immediately from Definition 2.1 that for everyt

Qinner ⊂ Py(t) ⊂ Qouter.

Identity (2.2) implies that the patterns for the modulated rotating waveu satisfy

Pu(t) = γ (t)Py(t),

from which it follows that

γ (t)Qinner ⊂ Pu(t) ⊂ γ (t)Qouter. (2.6)

Thus, the pattern of the modulated rotating wave evolves in time, bounded by a time
dependent rigid motion of the region betweenQinner andQouter.

The Dependence of Pattern on the Bifurcation Parameter.In the preceding discus-
sion we suppressed the dependence of the modulated wave on the bifurcation parameter
λ. We now note that whenλ is near the bifurcation point, thenQinner andQouter will be
approximately equal toPv(0) — the pattern of the rotating wave at a fixed moment in
time. Indeed, these sets are all equal at the bifurcation point ofλ asy = v0 there.

To see that the visible pattern associated with the modulated wave is virtually iden-
tical to the visible pattern of the rotating wave at an instant in time, we need one final
assumption. We need to assume that the level contour{x ∈ Ä: v0(x) = c} is a manifold.
If not, the pattern can undergo a bifurcation just due to the observation process. Note
that this last assumption is valid generically.

3. Nonuniform Rotations and Meandering

In the flame experiments and in the model equations, the bifurcation from the cellular
rotating wave produces a state that appears to rigidly rotate with speed varying periodi-
cally in time (so that there are two independent frequencies). Palacioset al. [33] call this
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a “nonuniformly rotating” state. Indeed, such a statecannotbe exactly described this
way because a solution to a differential equation that lies exactly in a group orbit (in this
case the group orbit given by the rotation subgroup) must produce linear flow along the
group orbit, that is, the speed of rotation must be constant. In fact, careful observation
of this state shows [33] that the cellular pattern does vary periodically in time — but by
a small amount.

In contrast, the corresponding bifurcation for spirals in the BZ reaction leads to
quasiperiodic meandering where the spiral pattern rotates and translates rigidly in space.
Again, there is a small periodic fluctuation in the shape of the spiral.

In phase space, these modulated rotating waves are indistinguishable quasiperiodic
motions, but their behavior in physical space, nonuniform rigid rotation and meandering,
are strikingly different. We show that this behavior can be explained using center bundle
reduction and the notion of inner and outer patterns. In particular, the quasiperiodic
variation decouples into a global rigid motion (along group orbits) and a local fluctuation
that is bounded by the inner and outer patterns.

For simplicity of exposition, we restrict in this section to bifurcations from rotating
waves with no spatial symmetry, that is, we assume6rot = 1. In circular domains, we
obtain modulated rotating waves that rotate almost rigidly but with nonuniform speed.
In unbounded planar domains, we obtain modulated rotating waves that meander.

We remark that by ignoring translation symmetry, the work of [4] does not fully
explain the transition to quasiperiodic meandering of one-armed spirals. In a circular
domain, Hopf bifurcation from a rotating wave spiral solution leads to spirals that vary
quasiperiodically in time, but does not lead directly to the flower patterns characteristic
of meander. (Compare Figures 6(b) and 6(c), also Figures 4 and 5.) This additional
structure arises from the Euclidean symmetry in the infinite plane.

Nonuniform Rotation in Circular Domains. In circular domains, the symmetry group
is0 = SO(2)or0 = O(2); the analysis of these two cases is identical. LetX be a rotating
wave, soX is simultaneously anSO(2) group orbit and a periodic orbit. We assume that
the points inX have trivial isotropy.

In the event of Hopf bifurcation, there is a three-dimensional center bundle and this
is a trivial bundleX = S1 × C by [13]. We choose coordinates(ϕ,q), whereϕ ∈ S1

measures the angle of rotation along theSO(2) group orbit andq ∈ C measures the
deviation of the modulated rotating wave pattern from the basic rotating wave pattern.
We shall refer toq as theshapeof the modulated rotating wave.

The action of an elementθ ∈ SO(2) on (ϕ,q) ∈ X is given by

θ · (ϕ,q) = (ϕ + θ,q),

andSO(2) equivariance leads to equations on the center bundle of the form [13]

ϕ̇ = Fϕ(q, λ),

q̇ = Fq(q, λ).

Let ωrot andωbif be the frequencies for the rotating wave and the Hopf bifurcation
respectively. SoFϕ(0,0) = ωrot and(d Fq)0,0 = iωbif . We claim that solutions to these
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equations satisfy

ϕ(t, λ) = ωrot(λ)t +
√
λψ(t, λ), (3.1)

q(t, λ) =
√
λq0(t, λ), (3.2)

whereq0(t, λ) andψ(t, λ) are 2π /ωbif(λ) periodic,ωbif(0) = ωbif andωrot(0) = ωrot.
To verify (3.1) and (3.2), solve thėq equation directly obtaining a branch of 2π /ωbif(λ)

periodic solutionsq(t, λ) and then substitute (3.2) into thėϕ equation. We obtain a
2π /ωbif(λ), periodic vector fieldFϕ(q(t, λ), λ) with zeroth Fourier coefficient,

ωrot(λ) = ωbif(λ)

2π

∫ 2π /ωbif(λ)

0
Fϕ(q(t, λ), λ)dt.

In particular,ωrot(0) = Fϕ(0,0) = ωrot. Integrating the vector fieldFϕ(q(t, λ), λ), we
obtain (3.1), whereψ(t, λ) is 2π /ωbif(λ) periodic.

Implications of (3.1) and (3.2) for Patterns in Physical Space.The pattern approxi-
mately rigidly rotates with approximate speedωrot but speeds up and slows down with
approximate frequencyωbif .

More precisely, if the shape changeq(t, λ) is regarded as negligible, then the time
evolution is rigid rotation through angleϕ(t, λ). Since the frequenciesωbif(λ) andωrot(λ)

are typically independent, the time-dependence is quasiperiodic: hence the rigid rotation
is nonuniform. Forλ small, the speed is approximatelyωrot, and the second frequency
enters as a small amplitude modulation of the basic frequency.

As already mentioned, the shape changeq(t, λ) is necessarily nonzero. Moreover,
ψ andq are each of order

√
λ and hence might seem to be of equal significance for

the phenomena in physical space. Nevertheless, it is our contention that theψ-effect
outweighs theq-effect, and that the behavior of the modulated rotating wave in physical
space is to a first approximation as described above. Our reasoning is that the drift along
the group orbit is an organized controlled effect that can be analyzed as we have done
above. Moreover, it results in a rigid motion of the pattern globally in physical space.
The notion of inner and outer pattern formalizes this idea, see Figure 4. In contrast, the
shape change is a somewhat arbitrary disorganized localized effect.

Further explanation of the subordinate role of shape change is possible on the grounds
that often the eigenfunctions that determine the shape change have steep vertical fronts (as
in spiral waves); so shape change (idealized as a change in a level contour) has little effect
in the planar directions. (Indeed, spiral waves are sometimes modeled as having infinitely
steep fronts, in which case our discussion is exact.) However, such steepness does not
appear to be required in practice. Figure 6(b) was produced with smooth eigenfunctions
and is at the same scale as the remaining diagrams in Figure 6. The arbitrary shape
change could in principle produce a radial fluctuation even in Figure 6(b) and could in
principle cancel out the radial fluctuation of Figure 6(c) — but this is not likely in practice.
(A movie with timet varying is more convincing, since it allows the visual distinction
between global variation (drift) and local variation (shape change) to be made. Snapshots
from such a movie are shown in Figure 4.)
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Meandering in the Plane. We show that Euclidean symmetry accounts for the me-
andering of spiral waves (in contrast to the nonuniform rigid rotation described in the
previous subsection). In addition, we recover results of [3, 42, 13] on resonance and
unbounded linear drift.

Again, the center bundle is a trivial bundleX = SE(2)×C and, as in [13, Lemma 4.1],
equivariance implies that the equations on the center bundle are given by

ṗ = eiϕ f (q, λ),

ϕ̇ = Fϕ(q, λ),

q̇ = Fq(q, λ),

where(p, ϕ) ∈ C× S1 ∼= SE(2) denotes the group variables (translation and rotation)
andq ∈ C denotes the Hopf or shape variables. We havef (0,0) = 0, Fϕ(0,0) = ωrot

and(d Fq)0,0 = iωbif .
The solutions of thėq andϕ̇ equations are the same as in the circularly symmetric sit-

uation in the previous subsection. We solve for a branch of 2π /ωbif(λ) periodic solutions
q(t, λ) and obtain

ϕ(t, λ) = ωrot(λ)t +
√
λψ(t, λ),

whereψ(t, λ) is 2π /ωbif(λ) periodic.
The ṗ equation becomes

ṗ =
√
λeiωrot(λ)t g(t, λ), (3.3)

whereg(t, λ) is 2π /ωbif(λ) periodic.

Nonresonance versus Resonance.To determine the form ofp(t, λ), we writeg as a
Fourier series

g(t, λ) =
∑
j∈Z

gj (λ)e
i j ωbif(λ)t .

Following [13], we integrate (3.3) term by term noting that the result depends on whether
the center bundle equations are nonresonant or resonant.

Recall that the center bundle equations arenonresonantif for every integern

ωrot(λ)+ nωbif(λ) 6= 0.

Assuming nonresonance, compute that

p(t, λ) =
√
λ
∑
j∈Z

1

i (ωrot(λ)+ jωbif(λ))
gj (λ)e

i (ωrot(λ)+ jωbif(λ))t ,

which is quasiperiodic.
Now suppose that for a specific value ofλ, there is annth order resonance

ωrot(λ)+ nωbif(λ) = 0
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for somen ∈ Z. This time we compute that

p(t, λ) =
√
λ

(∑
j 6=n

1

i (ωrot(λ)+ jωbif(λ))
gj (λ)e

i (ωrot(λ)+ jωbif(λ))t + gn(λ)t

)
.

As shown in Fiedler and Turaev [12], the
√
λgn(λ) term is of order|n|/2 inλ. We rederive

this result as a special case of Proposition 5.4.
To summarize: At nonresonance we have

p(t, λ) =
√
λp0(t, λ), (3.4)

which is quasiperiodic typically with two independent frequencies, and atnth order
resonance, we have

p(t, λ) =
√
λp0(t, λ)+ λ|n|/2 p1(λ)t, (3.5)

wherep0(t, λ) is periodic. Of course, at resonance the frequenciesωrot(λ) andωbif(λ)

are rationally related so thatp0 is periodic instead of quasiperiodic.

Implications of (3.4) and (3.5) for Patterns in Physical Space.Away from resonance,
the quasiperiodic fluctuation of the translationp(t, λ) coupled with the nonuniform ro-
tationϕ(t, λ) leads to quasiperiodic meander in the plane. In particular, as we showed in
Figure 6, the translationp(t, λ) forces petal type motion which is the defining charac-
teristic of meander. This motion in Figure 6(c) (and Figure 5) should be contrasted with
the nonuniform motion of Figure 6(b) (and Figure 4) where translation symmetry is not
present.

Near resonance, we now have linear drift (the termλ|n|/2 p1(λ)t) superimposed on the
quasiperiodic meander. The effect ofnth order resonance is present for all values ofn,
but the time that it takes for the linear drift to be discernible grows withn.

4. Modulated Waves in Circular Domains — Flames

In this section, we consider Hopf bifurcation from rotating waves with possibly nontrivial
isotropy6rot = Zk, k ≥ 1, in systems with symmetry group0 = O(2) (or0 = SO(2)).

Rand [35] classified the various modulated rotating waves that occur in terms of their
spatial and spatiotemporal symmetries. We begin by rederiving Rand’s classification.
Then, we proceed as in the casek = 1 to obtain further information about the behavior
of these solutions in physical space beyond their symmetry properties.

Classification of Modulated Rotating Waves.Recall that Hopf bifurcation from a ro-
tating wave corresponds to Hopf bifurcation from an equilibrium for the6rot equivariant
normal vector fieldg: N0→ N0. Letz ∈ C denote coordinates for the critical eigenspace
in N0. The action of the isotropy subgroup6rot = Zk on z ∈ C is generated by

R2π
k
· z= e2π im/kz, (4.1)
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for somem = 0,1, . . . , [k/2]. Rand’s classification of modulated rotating waves is
essentially given in terms of the integersk andm. One difficulty is that the integerm
has no direct physical interpretation. Following Rand (though with different notation)
we introduce the derived integersd ≥ 1 andα ∈ {0,1, . . . , k

d − 1} where

d = gcd(k,m), αm≡ d modk.

We show that the integersk, d andα are quantities that can be determined experimentally.
(The integers(k,d, α) correspond to Rand’s integers(m, s,n).)

Remark 4.1. We note thatα is the multiplicative inverse ofm/d modulok/d. Hence,
givenk, d andα ≥ 1 we can recoverm through the equationα(m/d) ≡ 1 mod(k/d).
(Whenα = 0, we havek = d andm= 0.)

The isotropy subgroup6bif of the bifurcating modulated rotating wave is given by
the kernel of the action (4.1) on the critical eigenspace. Hence,6bif = Zd whered =
gcd(k,m). Thus, the integersk andd correspond to the spatial symmetry (at a fixed
moment in time) of the rotating wave (6rot = Zk) and the modulated rotating wave
(6bif = Zd).

Next, we show that the integerα determines the spatiotemporal symmetry of the
modulated rotating wave. Lety(t, λ) be the solution to the (infinite-dimensional) normal
vector field equations onN0. Then y is T(λ) periodic whereT(λ) = 2π /ωbif(λ). In
addition, there is the nontrivial spatiotemporal symmetry [14]

y
(
t + m

k
T(λ), λ

)
= R2π

k
· y(t, λ). (4.2)

We now compute the minimal spatiotemporal symmetry corresponding to these two
symmetries. (We say thaty(t + T) = γ y(t) is a minimal spatiotemporal symmetry if
T > 0 andγ ∈ 6rot such thatT is minimal.)

Proposition 4.2. The normal vector field solution y has the minimal spatiotemporal
symmetry

y

(
t + d

k
T(λ), λ

)
=
(

R2π
k

)α
· y(t, λ). (4.3)

Proof. Sinced = gcd(k,m), we haveαm+ βk = d for someβ ∈ Z. Hence,

d

k
T(λ) = αm

k
T(λ)+ βT(λ).

It follows from T(λ) periodicity and (4.2) that

y

(
t + d

k
T(λ), λ

)
= y

(
t + αm

k
T(λ), λ

)
= (R2π /k)

α · y(t, λ),

verifying that (4.3) is a spatiotemporal symmetry ofy.
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Next we show that (4.3) is the minimal spatiotemporal symmetry. Recall that in Hopf
bifurcation,T(λ) is the minimal period ofy(t, λ). From now on, we suppress theλ’s.
Suppose thaty(t + S) = γ y(t) for someS> 0, γ ∈ 6rot, so

y(t + S) = (R2π /k)
j · y(t),

where j ≥ 1. We must show thatS≥ d
k T . Now,

y

(
t + k

d
S

)
= (R2π /d)

j · y(t) = y(t),

since6bif = Zd. Hence k
d S is a multiple ofT . SinceS > 0, we haveS ≥ d

k T as
required.

By the results of Krupa [27], the symmetry (4.3) corresponds to an exact spatiotem-
poral symmetry of the full modulated rotating wave solutionu(t, λ) modulo the drift
along theSO(2)-group orbit. Thus, in a suitable rotating frame, the modulated rotating
wave reduces to a periodic solution and the integerα in Proposition 4.2 determines the
spatiotemporal symmetry of that periodic solution.

Implications of the Classification of Modulated Rotating Waves for Flames.As
pointed out in [7], Rand’s classification of modulated rotating waves applies directly to
Gorman’s flame experiment. Indeed, the “hopping modes” or “ponies on a merry-go-
round” that are observed in the physical and numerical experiments seem to have the
behavior expected of modulated rotating waves.

In the flame experiments, Gormanet al. [19] observe modulated rotating waves in the
form of cellular states withk not quite identical cells. (Presumably, these states bifurcate
from a rotating wave withk identical cells; this transition has been observed in numerical
simulations [7] but not yet in the experiments.) The entire state is rotating but there are
additional “events” where successive cells fire one after the other in identical fashion. In
terms of the classification, these modulated rotating waves bifurcate from a state with
k > 1 identical cells to a state with no identical cellsd = 1 and a spatiotemporal
symmetry corresponding toα = 1. States withd = k identical cells before and after
bifurcation (the nonsymmetry breaking case) are also observed.

The hopping modes of Gormanet al. [17] appear to be modulated rotating waves as
above, but with additional structure that is beyond the scope of this paper. See Palacios
et al. [32] for results concerning the additional structure of the hopping modes.

In numerical simulations, Baylisset al. [7] obtain a number of modulated rotating
waves arising through symmetry breaking (m > 0 or equivalentlyd < k) bifurcations
from rotating waves. They particularly emphasize bifurcations from rotating waves with
four identical cells (k = 4) and with seven identical cells (k = 7).

According to the classification, there are two distinct possibilities corresponding to
k = 4: the casesm = 1 andm = 2. The casem = 1 is shown in [7, Figures 3 and 4]
and corresponds to the datad = 1, ` = 4, andα = 1. Note that all of the symmetry is
broken (d = 1) and that after passing to the rotating frame, time-shift by a quarter of
the period (̀ = 4) is the same as a quarter rotation (α/k = 1/4). The casem = 2 is the
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“half period modulated rotating wave” shown in [7, Figure 8] and corresponds to the
datad = 2, ` = 2, andα = 1. This time, part of the symmetry is preserved (d = 2) and
in the rotating frame, time-shift by half a period (` = 2) is the same as a quarter rotation
(α/k = 1/4). The modulated rotating wave in [7, Figure 3] (“Pushmi-Pullyu”) appears
to have more structure than the “breathing” modulated rotating wave in [7, Figure 4].
Again, this additional structure lies outside the scope of this paper.

The classification yields three possibilities corresponding tok = 7: m = 1, m = 2
andm = 3. In each of these cases,d = 1, k = `, and all the symmetry is broken. The
casem = 1 yieldsα = 1 as is shown in [7, Figure 11]. The casem = 2 yieldsα = 4
as is shown in [7, Figure 10]. Finally, the casem = 3 yieldsα = 5 as is shown in [7,
Figure 9] (though we note that the numbering is such that this case appears to correspond
more closely to the mathematically identical casem= 4 andα = 2). The last two cases
haveα > 1, leading to the terminology “jumping ponies on a merry-go-round.”

The Center Bundle Equations. The analysis of the “nonuniformly rotating” nature of
the modulated rotating waves bifurcating from rotating waves with isotropyZk is similar
to the analysis in Section 3 of the casek = 1. However, to solve the equations on the
center bundle, it is necessary to pass to the skew product construction of [11]. These
equations have the same form as the center bundle equations fork = 1 except that there
are the6rot equivariance conditions

Fϕ(σq, λ) = σ Fϕ(q, λ)σ−1, (4.4)

Fq(σq, λ) = σ Fq(q, λ), (4.5)

for σ ∈ 6rot. The right-hand-side of (4.4) reduces toFϕ(q, λ) sinceSO(2) is abelian,
so that the condition simply states thatFϕ is6rot invariant:

Fϕ(σq, λ) = Fϕ(q, λ). (4.6)

In (4.5) and (4.6), the action ofσ ∈ 6rot on q (andFq) corresponds to the action (4.1)
on the critical eigenfunctions, namely

R2π
k
· q = e2π im/kq.

Whenm = 0 (so6bif = 6rot = Zk), there is no restriction onFϕ or Fq and the
results are the same as whenk = 1.

In the remaining cases (m ≥ 1),6bif is a proper subgroup of6rot; 6bif = Zd, where
d = gcd(k,m). Set` = k/d andT(λ) = 2π /ωbif(λ).

Lemma 4.3. Generically,

Fϕ(q(t, λ), λ) = ωrot(λ)+ λ`/2ψ0(t, λ),

whereψ0(t, λ) has minimal period T(λ)/`.

Proof. By Proposition 4.2, the solutionq(t, λ) to theq̇ equation has the minimal spa-
tiotemporal symmetry

q

(
t + 1

`
T(λ), λ

)
=
(

R2π
k

)α
· q(t, λ) = e2π iαm/kq(t, λ) = e2π i /`q(t, λ). (4.7)



Hopf Bifurcation from Rotating Waves and Patterns in Physical Space 87

This spatiotemporal symmetry combined with the invariance condition (4.6) implies
thatFϕ(q(t, λ), λ) has periodT(λ)/`. SinceFϕ is an arbitrary invariant function, gener-
ically this period is minimal. Verification of the exponent`/2 of λ is postponed until
Section 8.

It follows from the lemma that the rigid rotation along the group orbit is given by

ϕ(t, λ) = ωrot(λ)t + λ`/2ψ(t, λ), (4.8)

whereψ(t, λ) has minimal periodT(λ)/`.

Implications of (4.8) for Patterns in Physical Space.From the point of view of this
paper, the nonuniformly rotating states and the ponies on a merry-go-round observed
in the flame experiments [19, 33] and in numerical simulations [7] can be studied to-
gether as modulated rotating waves bifurcating from a rotating wave. Near onset, all of
these states are nonuniformly rotating waves, the only distinction being the rate`/2 at
which the nonuniformity in the rotation speed scales with the bifurcation parameter. The
nonuniformity is most visible whenk = d (` = 1). This corresponds to the nonsymmetry
breaking case6bif = 6rot.

In the symmetry breaking case6bif 6= 6rot (` = k/d > 1), the nonuniformity
of the rotation speed is less apparent (though careful experiments should still pick up
this feature). In addition, further away from the bifurcation point, the spatiotemporal
symmetry becomes dominant and leads to ponies on a merry-go-round. The scenario we
envisage for the flame experiment is that a uniformly rotating cellular state withk identical
cells bifurcates to a nonuniformly rotating state withk cells that are not all identical and
then gradually (as the bifurcation parameter is varied) transforms into ponies on a merry-
go-round. It should be noted that this second transition is not a dynamical bifurcation
— neither the symmetry nor the qualitative dynamics is altered. Rather, we have an
exchange in dominance of the drift variables (which drive the nonuniform rotation) and
the shape variables (which drive the spatiotemporal symmetry).

Reversing States.The nonuniformly rotating patterns that arise in the flame experi-
ments should be contrasted with the “direction-reversing traveling waves” analyzed in
Landsberg and Knobloch [28]. The setting in [28] is Hopf bifurcation from a circle of
equilibria with reflection symmetry, so0 = O(2) and6rot = Z2, whereZ2 is generated
by a reflection. Hopf bifurcation withZ2 symmetry [15] leads to branches of periodic
solutions with no spatial symmetry but where the reflection symmetry reappears as a
spatiotemporal symmetry (with a half period phase shift). Such solutions do not drift
[27] and so we have periodic solutions (instead of modulated rotating waves) in the full
O(2)-equivariant problem. In particular, there is zero mean drift.

In the notation used in this paper, the results of [28] say that the rigid rotation variable
ϕ has the form

ϕ(t) = λ1/2ψ(t, λ),

whereψ(t, λ) has period 2π /ωbif(λ). In particular,ωrot(λ) ≡ 0. Ignoring shape changes,
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the reversing states are observed to rigidly rotate (or travel) in one direction and then in
the other direction, reversing direction periodically.

Ratcheting States.In the flame experiments, “ratcheting states” are observed [18] which
have certain features in common with ponies on a merry-go-round (or the hopping
mode). In particular, all of these states are quasiperiodic and reduce to small amplitude
periodic states in a rotating frame. In the ratcheting state, however, the magnitude of
the nonuniformity in rotation speed is large compared to the the speed of the underlying
rotating frame; indeed contragrade motions are observed in ratcheting states. (Unlike the
reversing states of [28], there is a nonzero but slow mean drift.)

The following scenario may explain the similarities and differences between ratch-
eting states and ponies on a merry-go-round. Whereas ponies on a merry-go-round
bifurcate from a rotating wave, we propose that the ratcheting states bifurcate from a
stationary solution.

Specifically, we propose that ratcheting states arise through a symmetry breaking
Hopf bifurcation from aDk invariant steady state. Applying the results of Krupa [27],
we first considerDk equivariant Hopf bifurcation and then allow for drifts along the
SO(2)-group orbit.

Symmetry breaking Hopf bifurcation withDk symmetry is studied in [15, Chap-
ter XVIII]. We define the integersm, d, ` just as for theZk bifurcations considered so
far. Provided that̀ ≥ 3, there is a four dimensional critical eigenspace and three maxi-
mal isotropy subgroups each with two dimensional fixed point subspace. The equivariant
Hopf bifurcation yields branches of periodic solutions for each of these isotropy sub-
groups.

The possibility of drifts along theSO(2)group orbit means that some of these branches
yield quasiperiodic solutions. Two of the branches consist of periodic solutions with ei-
ther spatial or spatiotemporal reflection symmetry; continuous drifts are then excluded
and these are ordinary periodic solutions. The third branch consists of solutions with
rotation spatiotemporal symmetry only (Z̃` in the notation used in [15]). Hence, generi-
cally there is drift along theSO(2)-orbit and we have a two frequency modulated rotating
wave.

The skew product equations for the modulated rotating wave have a form similar to
before, but6rot is replaced byDk. In particular,Fϕ satisfies aDk equivariance condition
of the form (4.4), so thatFϕ(σq, λ) = Fϕ(q, λ) when σ ∈ Dk is a rotation, and
Fϕ(σq, λ) = −Fϕ(q, λ) whenσ ∈ Dk is a reflection.

Suppose thatq(t, λ) is theZ̃` branch of periodic solutions inDk Hopf bifurcation.

Lemma 4.4. Generically,∫ T(λ)

0
Fϕ(q(t, λ), λ)dt ∼ λ`−1,

and

Fϕ(q(t, λ), λ) = λ`−1a(λ)+ λ`/2ψ0(t, λ),

whereψ0(t, λ) has minimal period T(λ)/`.
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Proof. Verification of the periodicity ofψ(t, λ) proceeds as in Lemma 4.3. The expo-
nents̀ − 1 and`/2 of λ are verified in Section 8.

It follows from the lemma that the rigid rotation along the group orbit is given by

ϕ(t, λ) = λ`−1a(λ)t + λ`/2ψ(t, λ),
whereψ(t, λ) has minimal periodT(λ)/`. (Of courseωrot = 0 in this bifurcation.)
Observe that the leading nonconstant term dominates the constant term, since` ≥ 3,
leading to contragrade motions as seen in the experiments.

5. Modulated Rotating Waves in the Plane — Spirals

We consider the case of Hopf bifurcation fromk-armed spirals,k ≥ 1 following [13].
The classification of modulated rotating wave spiral states is identical to that described
in Section 4 and we concentrate on the manifestation of the quasiperiodic dynamics as
motions in physical space. As pointed out in [13], both meandering and nonuniform rigid
rotation is possible in bifurcation fromk-armed spirals, depending on whether or not all
of the symmetry is broken in the bifurcation.

Remark 5.1. In [13], we derived also the conditions for resonance fork-armed spirals.
Unfortunately, the conditions for resonance whenk ≥ 2, stated in [13, Theorem 5.2],
are incorrect. We are grateful to Claudia Wulff for pointing this out to us.

The source of the errors in [13] is as follows. We introduced physical frequenciesω1,
ω2 (corresponding toωrot andωbif in this paper) and frequencies̃ω1, ω̃2 corresponding
to the skew product equations. The complicated relations between these frequencies
in [13] are wrong and in fact̃ω1 = ω1, ω̃2 = ω2 (as can be seen for example in the
construction of [11]). Indeed, the correct conditions for resonance follow immediately
from [13, Theorem 5.5] and are given in (5.5) below.

Passing directly to the skew-product equations [11], we consider the system of ODEs

ṗ = eiϕ f (q, λ),

ϕ̇ = Fϕ(q, λ),

q̇ = Fq(q, λ),

where(p, ϕ) ∈ C× S1 ∼= SE(2) denotes the group variables (translation and rotation)
andq ∈ C denotes the Hopf or shape variables.

Just as in Section 4, we introduce the integersm, d and`. The action of the isotropy
subgroup6rot = Zk is generated byq 7→ e2π im/kq wherem = 0,1, . . . , [k/2]. We set
d = gcd(k,m) and` = k/d. Defineωrot(λ),ωbif(λ) as before and setT(λ) = 2π /ωbif(λ).

The skew-product equations are subject to the6rot equivariance conditions

f (σq, λ) = σ f (q, λ), (5.1)

Fϕ(σq, λ) = Fϕ(q, λ),

Fq(σq, λ) = σ Fq(q, λ),
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for σ ∈ 6rot. Again, the action ofσ on q andFq is defined by the integerm, whereas
the action ofσ on the right-hand-side of (5.1) is group multiplication.

The solution of thėq andϕ̇ equations is unchanged. We solve for a branch ofT(λ)
periodic solutionsq(t, λ) and obtain

ϕ(t, λ) = ωrot(λ)t + λ`/2ψ(t, λ),
whereψ(t, λ) has minimal periodT(λ)/`.

The Case whenk and m are not Coprime

Proposition 5.2. When k and m are not coprime, p(t, λ) ≡ 0.

Proof. Condition (5.1) can be written as

f (e2π im/kq, λ) = e2π i /k f (q, λ). (5.2)

In particular,

e2π i /d f (q, λ) = f (e2π im/dq, λ) = f (q, λ).

Sinced ≥ 2, it follows that f ≡ 0.

The Case whenk and m are Coprime. Sincek andm are coprime,d = 1 and` = k.
As before, we solve for a branch ofT(λ) periodic solutionsq(t, λ) and obtain

ϕ(t, λ) = ωrot(λ)t + λk/2ψ(t, λ),

whereψ(t, λ) has minimal periodT(λ)/k. The ṗ equation becomes

ṗ = eiωrot(λ)t g(t, λ),

where

g(t, λ) = eiλk/2ψ(t,λ) f (q(t, λ), λ).

Proposition 5.3. Suppose that for every integer j satisfying jm≡ 1 modk, we have

ωrot(λ)+ jωbif(λ) 6= 0. (5.3)

Letβ be least positive integer such thatβm= ±1 modk. Then

p(t, λ) = λβ/2 p0(t, λ)

is quasiperiodic (with typically two independent frequencies).

With the exception of the order ofp in λ and the difficulty with the nonresonance
conditions (5.3) (see Remark 5.1), this proposition was proved in [13]. For ease in
exposition we give a complete proof of Proposition 5.3.



Hopf Bifurcation from Rotating Waves and Patterns in Physical Space 91

Proof. Recall from (4.7) thatq(t + T(λ)/k, λ) = e2π iαm/kq(t, λ). Using (5.2), we com-
pute that the minimal spatiotemporal symmetry off (q(t, λ), λ) is given by

f

(
q

(
t + 1

k
T(λ), λ

)
, λ

)
= e2π iα/k f (q(t, λ), λ).

Sinceψ is T(λ)/k periodic,g also possesses the minimal spatiotemporal symmetry

g

(
t + 1

k
T(λ), λ

)
= e2π iα/kg(t, λ). (5.4)

Next we writeg as a Fourier series

g(t, λ) =
∑

gj (λ)e
i j ωbif(λ)t .

By (5.4), this series reduces to summation over those integersj satisfyingjm ≡ 1 modk.
Multiplying by eiωrot(λ)t and integrating, we obtain a quasiperiodic functionp(t, λ) if and
only if the nonresonance hypotheses (5.3) are satisfied.

The verification of the exponentβ/2 is postponed until Section 8.

The Case whenk and m are Coprime with Resonance.Now suppose that there is an
nth order resonance

ωrot+ nωbif = 0 (5.5)

for somen ∈ Z satisfyingnm≡ 1 modk.

Proposition 5.4. At an nth order resonance,

p(t, λ) = λβ/2 p0(t, λ)+ λ|n|/2 p1(λ)t,

where p0(t, λ) is periodic.

Proof. By the proof of Proposition 5.3, it remains to verify the exponent|n|/2. This
verification is postponed until Section 8.

Implications of Propositions 5.2, 5.3, and 5.4 for Patterns in Physical Space.When
6bif 6= 1, we have the prediction [13] of rigid nonuniform rotation and no meander.
To this, we can add that the nonuniformity in the rotation is most noticeable when
6bif = 6rot = Zk (k ≥ 2). When6bif 6= 6rot, (6bif = Zd, 1 < d < k), there is the
additional spatiotemporal symmetry where the arms of the spiral, which are no longer
identical, “fire” after equal periods of time in identical fashion.

When6bif = 1, we obtain meander and linear drift as for the case of one-armed
spirals. Away from resonance, we predict meandering, with the size of the petals de-
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pending on the integerβ. The petals are most well-defined whenβ = 1. This occurs in
the casek = 1,m= 0 (one-armed spirals) and also in the cases wherek is arbitrary and
m= 1.

6. Modulated Wavy Vortices in Taylor-Couette

As discussed in the introduction, the Taylor-Couette experiment is often modeled as
havingSO(2)×O(2) symmetry, whereSO(2) consists of azimuthal rotations andO(2)
consists of axial translations and an up-down flipκ. It turns out that most of our results
are unchanged if we just assumeSO(2) × Z2 symmetry (azimuthal rotations and the
up-down flip), but there are subtle differences in the results which we describe at the end
of the section.

Recall that the isotropy subgroup of wavy vortices is given by6rot = Z2k consisting
of pure azimuthal rotationsZk ⊂ SO(2) (generated by(2π /k,0) ∈ SO(2) × SO(2)
together with symmetries inZ2k˜Zk that are azimuthal rotations combined with the
up-down flip). Hence6rot is generated by a single glide reflection: rotation by(π /k,0)
followed by the flipκ.

Extended Classification of Modulated Rotating Waves in Taylor-Couette.The rep-
resentation of the isotropy subgroup6rot = Z2k is generated byq 7→ eπ im/kq for some
m = 0,1, . . . , k. As in Section 4, we obtain a classification of the possible types of
modulated rotating waves in terms of the integers(2k,d, α) whered = gcd(2k,m)
and αm ≡ d mod 2k. Again, k and d denote the instantaneous symmetry of wavy
vortices and modulated wavy vortices, whileα measures the spatiotemporal symme-
try.

We distinguish between modulated wavy vortices which break all the spatial glide
reflection symmetry of the wavy vortices and those that retain some of this symmetry.
In the terminology of [9], Gorman-Swinney orGS flowsare modulated wavy vortices
that break the glide reflection symmetry while Zhang-Swinney orZS flowsretain some
of the glide reflection symmetry. Note that GS flows occur when 2k/d is even and
ZS flows occur when 2k/d is odd. To see this, letρ be a generator of6rot = Z2k

and observe thatρ j is a glide reflection if and only ifj is odd. But6bif = Zd

is generated byρ2k/d and hence contains odd powers ofρ precisely when 2k/d is
odd.

Both kinds of modulated wavy vortices have been observed in experiments. The GS
flows are the original modulated wavy vortices of Gorman and Swinney [20, 21] and
do not possess spatial glide reflection symmetry (though such symmetries necessarily
appear as spatiotemporal symmetries). The ZS flows were obtained more recently in
experiments of Zhang and Swinney [43] and possess spatial glide reflection symmetry,
as noted in [9].

In Section 4, we described Rand’s classification [35] of modulated rotating waves
in systems withSO(2) symmetry. This classification was particularly geared towards
modulated wavy vortices for which the symmetry group is actuallySO(2)×O(2) (or at
leastSO(2)× Z2 which leads to the same results). In particular, the isotropy subgroup
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of wavy vortices is given by6rot = Z2k and does not lie inSO(2), whereas Rand has
6rot = Zk ⊂ SO(2). In particular, we obtain twice as many states as does [35]: for each
solution in [35], there corresponds a GS flow and a ZS flow.

The Center Bundle Equations. The skew-product equations have the form

ϕ̇1 = Fϕ1(q, λ),

ϕ̇2 = Fϕ2(q, λ),

q̇ = Fq(q, λ),

where ϕ1, ϕ2 and q denote the azimuthal, axial and shape variables. In addition,
Fϕ1(0,0) = ωrot, Fϕ2(0,0) = 0 and(d Fq)0,0 = iωbifq. We have the6rot equivari-
ance conditions

Fϕ1(eπ im/kq, λ) = Fϕ1(q, λ),

Fϕ2(eπ im/kq, λ) = −Fϕ2(q, λ).

Proposition 6.1. Let d= gcd(2k,m), ` = 2k/d, T(λ) = 2π /ωbif(λ) and set
ωrot(λ) = 1

T(λ)

∫ T(λ)
0 Fϕ1(q(t, λ), λ)dt. Generically, the azimuthal variation is given by

ϕ1(t, λ) = ωrot(λ)t + λ`/2ψ1(t, λ),

whereψ1(t, λ) has minimal period T(λ)/`.
Wheǹ is even, generically the axial variation is given by

ϕ2(t, λ) = λ`/4ψ2(t, λ)

whereψ2(t, λ) has minimal period2T(λ)/`. Wheǹ is odd,ϕ2 ≡ 0.

Proof. The vector fieldFϕ1 satisfies the same invariance condition as the vector field
Fϕ in Section 4 (withk replaced by 2k). Hence, the expression forϕ1(t, λ) is immediate
from Lemma 4.3.

Suppose that̀ is odd. We compute that

(eπ im/k)` = (e2π im/d`)` = e2π im/d = 1.

It follows from the equivariance condition satisfied byFϕ2 that

Fϕ2(q, λ) = Fϕ2((eπ im/k)`q, λ) = (−1)`Fϕ2(q, λ) = −Fϕ2(q, λ).

HenceFϕ2 ≡ 0.
Next suppose that̀ is even. By definition,αm ≡ d mod 2k from which it follows

that α(m/d) ≡ 1 mod`. Henceα and m/d are odd. As in equation (4.7), we have
q(t + T(λ)/`, λ) = (eπ im/k)αq(t, λ). Therefore,

Fϕ2(q(t + T(λ)/`, λ), λ) = Fϕ2((eπ im/k)αq(t, λ), λ)

= (−1)αFϕ2(q(t, λ), λ) = −Fϕ2(q(t, λ), λ).

It follows that Fϕ2(q(t, λ), λ) is 2T(λ)/` periodic. Again, this period is generically
minimal. The computation of the exponent`/4 is similar to previous calculations.
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Implications of Proposition 6.1 for Patterns in Physical Space.All bifurcations lead
to doubly quasiperiodic motion that includes nonuniform azimuthal rotation, and none
lead to axial drift. The GS flows, but not the ZS flows, possess an additional axial
oscillation, analogous to the reversing states of [28].

The casè = 2k/d odd corresponds to the ZS flows (spatial glide reflection symmetry).
We predict, near the bifurcation point, that the dynamics of the modulated rotating wave
in physical space consists of approximately rigid rotation about the axis of the cylinder
with nonuniform speed just as in Section 4. Again, we expect that there is a further
transition in which the spatiotemporal symmetry gradually dominates the nonuniform
rotation.

The casè = 2k/d even corresponds to the GS flows (no spatial glide reflection
symmetry). Apart from the obvious changes in the spatial and spatiotemporal symmetry,
we expect that near the bifurcation point there is a rigid axial oscillation in addition to
the nonuniform rotation. (We note that there are still only two independent frequencies.)

Finally, we remark that the distinction between the GS and ZS flows may provide a
means for testing between the modeling assumptions ofSO(2)×O(2) andSO(2)× Z2

symmetry. With the first symmetry group, we expect axial oscillations for the GS flows
but not for the ZS flows. With the second symmetry group, we expect no axial oscillations
for either state, since there is no longer an axial translation variable. By Proposition 6.1,
any axial oscillation of the GS flows would be most apparent whend = k (that is, only
the glide reflection symmetry is broken).

7. Numerical Verification

In this section, we describe how we obtained the graphical representation of our results
in Figures 4, 5, 6, and 7. We work throughout with the specific center bundle equations

ṗ = eiϕq,

ϕ̇ = ωrot+ Req,

q̇ = (λ+ iωbif)q − |q|2q.
These are a special case of the center bundle equations for the problems withE(2)
symmetry in Section 5. Removing thėp equation we include the problems withO(2)
symmetry in Section 4.

The solution to the center bundle equations is given by

p(t) =
√
λ

i (ωrot+ωbif)
ei (ωrot+ωbif)t + O(λ3/2),

ϕ(t) = ωrott +
√
λ

ωbif
sinωbif t,

q(t) =
√
λeiωbif t .

Provided that there are no high order resonances (no resonances with|n| ≥ 2) it seems
reasonable to discard theO(λ3/2) terms inp(t).

Next we describe how to bring in the planar spatial dependence. We suppose that the
underlying rotating wave (or its observable) is given by a pure Fourier-Bessel mode

v0(r, θ) = Im
(
J1(µr )ei θ

)
,
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whereJ1 is the first-order Bessel function, andµ ∈ C. Such functions have contours
which look like one-armed spirals [10]. The time evolution of the rotating wave is given
by

v(t) = Rtv0 = Im
(
J1(µr )ei (θ−ωrott)

)
,

(taking Rt = ϕ(t) with λ = 0). We define the ‘spiral tip’ of the functionv(t): R2→ R
as the intersection of the contours

Re
(
J1(µr )ei (θ−ωrott)

) = C1, Im
(
J1(µr )ei (θ−ωrott)

) = C2,

whereC1,C2 are constants. The time evolution of the spiral tip of the rotating wave is
shown in Figure 6(a) withωrot = −1,µ = 9+ 1.54i , C1 = 0.29,C2 = 0.06 andt runs
from 0 to 120 in steps of 0.1.

Now we suppose that the rotating wave undergoes a Hopf bifurcation to a modulated
rotating wave soλ > 0 in the center bundle equations. Recall that the modulated rotating
waveu(t) admits the decompositionu(t) = γ (t)y(t) whereγ (t) ∈ 0 and y(t) is the
solution for the normal vector field. Writey(t) = v0+w(t). For simplicity, we suppose
thatw(t) is itself a pure Fourier-Bessel mode, proportional to Im

(
cJ1(ξr )ei θ

)
, where

c, ξ ∈ C. (In practicew(t) will involve infinitely many such modes.) The amplitude and
time dependence ofw(t) is determined by the shape variableq(t) on the center bundle.
Hence, we have

w(t) = Im
(√
λceiωbif t J1(ξr )e

i θ
)
.

In particular, the shape change of the modulated rotating wave is governed by

y(t) = Im
(

J1(µr )ei θ +
√
λceiωbif t J1(ξr )e

i θ
)
.

Thus in Figure 6(b) we plot the spiral tip for the function

u(t)=γ (t)y(t) = Rϕ(t)y(t)

= Im

((
J1(µr )+

√
λceiωbif t J1(ξr )

)
ei
(
θ−ωrott−

√
λ

ωbif
sinωbif t

))
, (7.1)

whereωrot, µ,C1,C2, t are as in Figure 6(a),
√
λ = 0.02, c = 0.85− 0.54i , ωbif =

−0.715,ξ = 12− 0.72i . The result is a ‘fattening-out’ of the perfect circle of Figure
6(a). In particular, there is no visible sign of meandering. However, the motion around
the circle is nonuniform as shown by the graph of angle plotted against time in Figure 7.
The parameter settings in Figure 7 are identical to those in Figure 6(b), but witht running
from 0 to 12 in steps of 0.01.

Figure 6(c)–(f) shows the spiral tip for functions of the form (7.1) subject to the time
dependent planar translation

z(t) = z− p(t) = z−
√
λ

i (ωrot+ωbif)
ei (ωrot+ωbif)t .

The parameters in Figures 6(b) and 6(c) are identical and it is evident that it is the
additional translation modulation in (c) which is responsible for meandering of the spiral
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tip. Figures 6(d) and 6(e) show meandering before (ωbif = 0.895) and after (ωbif = 1.105)
resonance and illustrate the transition from petals inwards to petals outwards. We choose
ωbif = 1.005 in (f) to obtain almost linear drift very close to resonance (in this last
diagram,t runs from 0 to 43 in steps of 0.1).

Figures 4 and 5 show the motion of the inner and outer patterns corresponding to
the parameter settings in Figures 6(b) and (c), but we have taken

√
λ = 0.2 (instead of√

λ = 0.02) so that the contours corresponding to the inner and outer patterns can be
distinguished.

8. Completion of Proofs

In this section, we verify the exponents ofλ given in Lemma 4.3, Lemma 4.4, Proposi-
tion 5.3 and Proposition 5.4.

Proposition 8.1. Consider the ODE

q̇ = Fq(q, λ),

where Fq: R2 × R → R2 is a general smooth vector field satisfying F(0,0) = 0 and
undergoing Hopf bifurcation with eigenvalues±iωbif . The branch of periodic solutions
guaranteed by the Hopf Theorem can be written as a Fourier series

q(t, λ) =
∑
j∈Z

qj (λ)e
i j ωbif(λ)t ,

whereωbif(λ) is smooth inλ, ωbif(0) = ωbif . Moreover, generically the Fourier coeffi-
cients satisfy

q0 ∼ λ, qj ∼ λ| j |/2, j 6= 0.

Proof. If follows from Birkhoff normal form theory that there is a polynomial change
of coordinatesq = P(z, z̄, λ), whereP(0,0) = 0, such that the ODĖq = Fq(q, λ) is
transformed up to any finite order into the simpler ODE

ż= g(|z|2, λ)z,

whereg: R2→ R is smooth. In these coordinates, the bifurcating periodic solutions are
given by

z(t, λ) = a(λ)eiωbif(λ)t ,

wherea(λ) ∼ λ1/2. Transforming back into the original coordinates, we see that the linear
terms inP lead to the Fourier modesj = ±1 and genericallyq±1 ∼ λ1/2. Similarly,
the quadratic interactions inP contribute the Fourier modesj = 0 and j = ±2 so that
genericallyq0,q±2 ∼ λ. The Fourier modesq± j , j ≥ 3 arise from thej ’th order terms
in P, so thatq± j ∼ λ j /2, j ≥ 3.
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Proposition 8.2. Assume the set up of Proposition 8.1, except that Fq is a general
smoothZk-equivariant vector field onR2, where the action ofZk onR2 ∼= C is given by

R2π /kq = e2π im/kq,

for some m= 1, . . . , [k/2]. Let d = gcd(k,m) and ` = k/d. The branch of periodic
solutions guaranteed by the Hopf Theorem can be written as a Fourier series

q(t, λ) =
∑
s∈Z

rs(λ)e
i (1+s`)ωbif(λ)t . (8.1)

Moreover, generically the Fourier coefficients satisfy

rs ∼ λ|1+s`|/2.

Proof. The spatiotemporal symmetry (4.7) places restrictions on the Fourier series in
Proposition 8.1. Indeed, we calculate that ifqj 6≡ 0 then

e2π i j /` = ei j ωbif(λ)T(λ)/` = e2π i /`.

It follows that j ≡ 1 mod`. Hence, we may write

q(t, λ) =
∑
s∈Z

rs(λ)e
i (1+s`)ωbif(λ)t ,

and it follows from Proposition 8.1 thatrs = O(λ|1+s`|/2).
It remains to verify that genericallyrs has terms of order precisely|1+ s`|/2 in λ.

The reduction to Birkhoff normal form can be achieved by aZk-equivariant change of
coordinatesP. We have the expansion

q = P(z, z̄, λ) =
∑

aµ,ν(λ)z
µz̄ν,

and theZk-equivariance conditionP(e2π im/kz,e−2π im/kz̄, λ) = e2π im/k P(z, z̄, λ) implies
that

aµ,ν(λ)e
2π i (µ−ν−1)m/k ≡ 0.

Hence, eitheraµ,ν ≡ 0 or

(µ− ν − 1)
m/d

`
= (µ− ν − 1)

m

k
∈ Z.

Sincem/d and` = k/d have no factors in common, we deduce thatµ − ν − 1 is a
multiple of`. It follows that the surviving terms inP have the form

|z|2azb`+1, a,b ≥ 0, and |z|2az̄b`−1, a ≥ 0,b > 0.

These terms yield Fourier coefficients

qb`+1 ∼ λ(b`+1)/2, b ≥ 0, and q−(b`−1) ∼ λ(b`−1)/2, b > 0,

respectively.



98 M. Golubitsky, V. G. LeBlanc, and I. Melbourne

Proof of Lemma 4.3. The functionFϕ is a general smooth function ofq andλ subject
to the invariance condition (4.6). A computation similar to that for the functionP in
the proof of Proposition 8.2 shows that the general term inFϕ has the form|q|2aqb` or
|q|2aq̄b` wherea,b ≥ 0.

In particular, the lowest order terms inFϕ(q(t, λ), λ) correspond toa = 0, b = 1
and toa = 1, b = 0. Takinga = 0, b = 1, and substituting in the Fourier series (8.1)
for q, yields lowest order terms of the form(

r0(λ)e
iωbif(λ)t

)`
,

which is of the required orderλ`/2.
It remains to show that the nonconstant terms produced by takinga = 1, b = 0 are

of order at leastλ`/2. By Proposition 8.2,

|q(t, λ)|2 =
∑

s1,s2∈Z

rs1(λ)r̄s2(λ)e
i (s1−s2)`ωbif(λ)t .

Nonconstant terms are obtained whens1 6= s2. To obtain the smallest order inλ, we take
s1 = 0,s2 = 1 which yields a term of orderλ1/2λ(`−1)/2 = λ`/2. This completes the proof
thatλ`/2 is the lowest order nonconstant term inFϕ .

Proof of Lemma 4.4.In addition to the symmetry condition (4.6), which was taken into
account in the proof of Lemma 4.3, the functionFϕ satisfies the conditionFϕ(q̄, λ) =
−Fϕ(q, λ). It follows that the general term inFϕ has the form|q|2a(qb` − q̄b`) where
a,b ≥ 0.

It is immediate from the proof of Lemma 4.3 that no terms of order lower thanλ`/2

are possible. The lowest order terms are obtained by takinga = 0 andb = 1, and this
yields terms of orderλ`/2 as before.

It remains to verify the order of the constant term in the Fourier expansion ofFϕ .
Substituting the Fourier series (8.1) intoq` yields a term of the form(

r0eiωbif t
)`−1

r−1ei (−`+1)ωbif t = r `−1
0 r−1,

which has the required order1
2(`−1)+ |−`+1|

2 = `−1 inλ. Note also thatr0 andr−1 are
the lowest and second lowest order Fourier coefficients ofq, so the only term of lower
order term inFϕ is the nonconstant term of order`/2 that we computed earlier. Hence,
the lowest order constant term is of orderλ`−1 as required.

Proof of Proposition 5.3.The structure of thėp component of the skew product equa-
tions is as given prior to the statement of Proposition 5.3. A calculation as in Lemma 4.3
shows that the general terms in the Taylor expansion off (q, λ) have the form|q|2aqb

and|q|2aq̄c wherea,b, c ≥ 0 andbm≡ 1 modk, cm≡ −1 modk. The lowest order
term is eitherqβ or q̄β (or possibly both). Since Hopf bifurcation occurs with exponent
λ1/2, we obtain the required exponentλβ/2 for g. This completes the verification of the
claim.
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Proof of Proposition 5.4.The exponent|n|/2 is verified as follows. By takingb = n ≥
1 or c = −n ≥ 1 in the proof of Proposition 5.3, and substituting in the Fourier
expansion (8.1) ofq, we obtain a term ing proportional to(

√
λeiωbif(λ)t )n (arising from

the s = 0 term inq). This resonance term shows that the exponent|n|/2 is achieved
generically. Observe also that every multipler of the basic frequencyωbif(λ) in q occurs
with the identical powerr of

√
λ. Hence|n|/2 is the smallest possible exponent.
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