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Summary. Hopf bifurcations from time periodic rotating waves to two frequency tori
have been studied for a number of years by a variety of authors including Rand and
Renardy. Rotating waves are solutions to partial differential equations where time evo-
lution is the same as spatial rotation. Thus rotating waves can exist mathematically only
in problems that have at leaS©D(2) symmetry. In this paper we study the effect on
this Hopf bifurcation when the problem has more ti®®(2) symmetry. These effects
manifest themselves in physical space and not in phase space. We use as motivating
examples the experiments of Gornetral. on porous plug burner flames, of Swinrety

al. on the Taylor-Couette system, and of a variety of people on meandering spiral waves
in the Belousov-Zhabotinsky reaction. In our analysis we recover and complete Rand’s
classification of modulated wavy vortices in the Taylor-Couette system.

It is both curious and intriguing that the spatial manifestations of the two frequency
motions in each of these experiments is different, and it is these differences that we seek
to explain. In particular, we give a mathematical explanation of the differences between
the nonuniform rotation of cellular flames in Gorman’s experiments and the meandering
of spiral waves in the Belousov-Zhabotinsky reaction.

Our approach is based on the center bundle construction of Krupa with compact group
actions and its extension to noncompact group actions by Sandstede, Scheel, and Wulff.

1. Introduction
Rotating waveare time periodic solutions to differential equations where time evolution

is the same as spatial rotation. It follows that rotating waves occur as solutions only in
systems of differential equations having at |€86(2) symmetry, though, in general, ro-
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Fig. 1. Flames on a circular burner. (Left) A circularly symmetric flame. (Right) A steady
five-cell flame withDs symmetry. Images courtesy of M. Gorman.

tating waves occur in experiments whose models contain mor&Sé?) symmetry. In

this paper we consider bifurcations from rotating waves to two frequency modulated ro-
tating waves and make the point that the manifestation of the modulated waves in physical
space depends crucially on the full symmetry group. To illustrate this point, we introduce
three experiments where rotating and modulated rotating waves are observed. We then
describe the symmetry groups for models of these experiments and the types of modulated
waves that are observed in each experiment. We end this introduction with a description
of the results that we have obtained and how they bear on the three experiments.

Rotating Waves in Experiments. Rotating waves have been observed in a variety of
experiments — both physical and numerical. In particular, rotating waves occur in the
Taylor-Couette system as wavy vortices (see AndestcM. [1] and Figure 2), in the
Belousov-Zhabotinsky chemical reaction as spiral waves (see Winfree [41] and Figure 3),
and in laminar premixed flames as cellular patterns (Goretah [19] and Figure 1).

Each of these rotating waves has also been observed numerically as a patterned solution
to PDE models for the corresponding experiments: rotating waves have been observed
in the Navier-Stokes equations modeling the Taylor-Couette system [31], in reaction-
diffusion equations loosely modeling BZ reactions [2, 26], and in reaction-diffusion
models loosely modeling combustion [5, 23].

Symmetries in the Experiments. Since we view symmetry as a modeling assumption,
it is important to understand how the symmetry grdujor models of each of these
experiments is determined. Some of the symmetries are clear, being based on the geom-
etry of the apparatus and the homogeneity of the experiment; other symmetries are less
transparent.

For example, Gorman’s laminar premixed flame experiment is performed on a cir-
cular burner and is modeled Hy = O(2) symmetry. Moreover, the transitions that
are observed in this experiment are consistent with the assumptio@pisymmetry,
in the following sense. It is well known that steady-state bifurcation from an invari-



Hopf Bifurcation from Rotating Waves and Patterns in Physical Space 71

Fig. 2. Taylor-Couette Experiment. From left to right: Couette flow, Taylor vortices, spiral
vortices, and wavy vortices. Pictures courtesy of H.L. Swinney.

ant equilibrium withO(2) symmetry on a circular domain leads to equilibria having a
cellular structure and that Hopf bifurcation leads to standing and rotating waves [14].
All of these states are observed in the flame experiment, and the cellular structures and
the standing waves are observed as direct transitions from a circularly symmetric flame
[16].

The geometry is not always sufficient to detect all of the relevant symmetries. In
the Taylor-Couette experiment, the cylindrical geometry leads to the assumption of
I' = SO(2) x Z, symmetry. As Taylor [40] noted, the existence of Taylor vortices
bifurcating from Couette flow argues for the assumption of periodic boundary conditions
in the axial direction (see Figure 2); that s, the assumpti@@L) x O(2) symmetry in
the experiment. Moreover, this symmetry is consistent with the observed Hopf bifurcation
from Couette flow to spiral vortices [8, 15].

In the BZ reaction, the situation is even more complicated. It seems best to model
these experiments by ignoring lateral boundaries. Barkley’s analysis [3] of resonant linear
drift of spiral waves in this experiment makes a compelling case for the assumption of
full Euclideanl” = E(2) symmetry including translations. Moreover, the mathematical
results in [42, 37, 38, 13] support this assumption.

The rotating waves in each of these experiments have cyclic symmetry for the instan-
taneous pattern. We denote the symmetry group (or isotropy subgroup) of the pattern at
a given instant in time b¥t,q.. The cellular flame pattern hasells (see Figure 1), and
a spiral can havk arms — though one-armed spirals are what is usually observed in BZ
reactions (see Figure 3). See [34] and references therein for experimental observations
of multi-armed spiralsk > 2). For both flames and spirals;o; = Zx. The wavy vor-
tices (see Figure 2) have an azimuthal wave nurkband an additional symmetry —
flip up and down coupled with a half wave length azimuthal rotation (a glide reflection
symmetry). The square of this symmetry is the generator of the pure azimuthal rotation
symmetry — so the isotropy subgroup of wavy vortice&jg. In Table 1 we present the
relevant group theoretic data for each experiment.
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Fig. 3. Belousov-Zhabotinsky Experiment. (Left) spiral waves with seven superimposed
images showing the tip traversing a circle (from [39]). (Center) meandering spiral waves with
eleven superimposed images showing the tip beginning to meander (from [39]). (Right) Single
image of a meandering spiral wave with superimposed tip trajectory showetgls inflower
pattern (from [29]). Pictures courtesy of H.L. Swinney. [Left and center figures reprinted
with permission of Elsevier Science Publishers B.V. From G. S. Skinner and H. L. Swinney,
Periodic to quasiperiodic transition of chemical spiral rotation, Physid& (1991) page 2.

(© Copyright 1991, Elsevier Science Publishers B.V., Amsterdam.]

Hopf Bifurcations to Quasiperiodic Motions. In each of these experiments, Hopf bi-
furcation from rotating waves to a quasiperiodic motiormadulated rotating wavdas

been observed. In the Taylor-Couette system, wavy vortices bifurcate to modulated wavy
vortices [20, 21, 9]; in the BZ reaction, spiral waves begin to meander quasiperiodically
(see Figure 3) and even linearly drift [44, 45, 30, 24, 25, 39, 29]; and in laminar premixed
flames, the cellular pattern appears to rotate rigidly but with an angle of rotation that
depends quasiperiodically on time [19, 6, 7, 33]. In each of these experiments, the basic
Hopf bifurcation from a single frequency time periodic rotating wave to quasiperiodic
motion in phase space is now understood [22, 4, 7]. Even the resonant Hopf bifurcation
to linear drifting spiral waves is understood [3, 42, 38, 13].

Hopf bifurcations from rotating waves to modulated rotating waves have been studied
by a number of authors including Rand [35] and Renardy [36]. In addition, Rand classifies
the various types of modulated waves that occur in systems with circular symmetry. This
classification applies directly to the flame experiment (as pointed out in [7]) and less
directly to the Taylor-Couette experiment (since wavy vortices have an additional glide
reflection symmetry which is not taken into account in [35]). It is straightforward, as
we show in Section 6, to complete Rand’s classification of modulated wavy vortices to
include the glide reflection symmetry. This extended classification accounts for additional
states that have been observed in more recent experiments [43, 9].

What is missing is an understanding of the way in which these modulated waves
manifest themselves in physical space. In this paper we use symmetry arguments to
show why cellular flames appear to rotate rigidly but nonuniformly, and why spirals

Table 1. Symmetry data for rotating waves.

Experiment Rotating Wave r Lot

Taylor-Couette wavy vortices  SO(2) x O(2) Zox
Flames rotating cells 02 Zy
BZ reaction 1-armed spirals E(2) 1
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exhibit flower-like meandering in the BZ reaction (see Figure 3). The classification of
Rand is driven by the symmetry grotdf,; of the rotating wave state. In contrast, we
show that the motion of the pattern in physical space depends on both the syrigetry
of the rotating wave and the full symmetry grolif the experiment.

A Definition of Spatial Pattern. In both the physical and numerical experiments, pat-
terns are formed as follows. LEX(X, t) be a solution to a partial differential equation
or the state of an experiment wheXeis in some physical domaiP® andt is time. For
example, in the Taylor-Couette systelthconsists of the three velocity components of
the fluid and the pressure variable, aRdc R?® is the region between the concentric
cylinders. When we view the Taylor-Couette experiment, we look at an observable scalar
guantityu(x, t) which is the intensity of light reflected off of silver platelets in the fluid;
herex lies in the surface of the outer cylinder, which we denoteChyWe callu an
observableof the statdJ. For observables to be useful as a vehicle for understanding
pattern, the transformation frobh to u must be continuous arid-equivariant.

Similarly, in the BZ reactiom is the concentration of an active chemical &he- R?;
while in the flame experiment is the intensity of light (or heat) produced by the flame
andQ c R?is a circular disk. In PDE systemsjs some function of the solution vector
— perhaps one of its components.

We define gatternat timet to be the region in physical space

Pi) ={x e Q: ux,t)>c}

for some fixed scalar. For example, in the BZ reaction, the pattern is the region where
the observed color is red (or blue). This region consists of those points in the petri dish
where a chemical concentration is larger than some critical concentration.

Note that patterns associated to rotating wave solutions have a particularly elementary
structure

Pt) = RP(0),
whereR; is rotation through anglie(in appropriate units). So, for example, a spiral wave
is a pattern in the concentration of a fixed chemical in physical space that rigidly rotates
at constant speed as time evolves.

On bifurcation to quasiperiodic motion, the change in the pattern in time has two
components: shape change in the pattern and rigid motion of the pattern corresponding
to the symmetry group of the experiment. It is our contention that in Hopf bifurcation
from a rotating wave the shape changless importanto the observed pattern evolution
thanis the change in the rigid motion. To make this point precise, we introduce the notions
of inner and outer patterns.

Inner and Outer Patterns. Suppose thaP(t) is the pattern of a modulated rotating
wave. As we explain in Section 2, we can bound the temporal fluctuatigh(®fin
terms of arinner patternQ'""e" and anouter patternQ®“t¢", where

Qinner C 'P(O) c Qouter'

These time independent bounds have two important properties. First, as the bifurcation
parameter approaches the point of Hopf bifurcag@h®" and Q°Ut®" limit on the (in-
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Fig. 4. Inner and outer patterns for a nonuniformly rotating spiral wave in a circular
domain ' = O(2)). The dashed contours show the boundaries of the inner and outer
patterns. The six snapshots show these contours rotating rigidly (but with nonuniform
speed). The actual pattern (solid contour) is trapped between these boundaries. The
shapshots show how the additional fluctuations in the shape change of the actual pattern
are limited by the inner and outer patterns.

stantaneous time) pattern associated to the rotating wave. Second, for everythiene
is a group elemeng; € I" such thaty depends smoothly aon y, = €, and

yt(Qinner) C P(t) C yt(Qouter).

For example, whelr = O(2) the pattern associated to the modulated wave is bounded
between two patterns that rotate rigidly with nonuniform speed. Within a small error,
the modulated wave pattern itself appears to rotate rigidly with nonuniform speed, the
error due to the shape change being bounded between the inner and outer patterns.
See Figure 4. The corresponding patterns whers- E(2) are shown in Figure 5.

In particular, note that the spiral patterns in that figure do not have a fixed center of
rotation.

Center Bundles. As shown in Section 2 the formulation of inner and outer patterns
relies on the mathematical frameworkoginter bundleCenter bundles were introduced

by Krupa [27] in the analysis of bifurcations from relative equilibria for ODESs with
compact symmetry group. The theory was generalized by Sandstetal. [37, 38] to
include PDEs with noncompact symmetry groups. In particular, their theory applies to
the nonsmooth representations that occur, for example, in reaction diffusion equations
with Euclidean symmetry.

The geometric idea behind the center bundle is that when a relative equilibrium
loses stability there are a set of critical directions at each point on the group orbit
of the relative equilibrium. These unstable directions form a bundle over the group
orbit: the center bundle. The unstable directions correspond to changes in pattern shape
in physical space while the group orbit directions correspond to rigid motions of the
pattern.
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Fig. 5. Inner and outer patterns for a meandering spiral wave in the plareK(2)).
The interpretation of the Figure is the same as for Figure 4. However, the inner and
outer patterns now rigidly meander (rotate with a moving center of rotation).

The equations on the center bundle are often difficult to solve directly. Fietédr
[11] show how to lift the center bundle equations over the group orbit to skew product
equations on the group itself, which are often easier to solve.

Tip Evolution Using Fourier-Bessel Functions. As described above, the arguments in
this paper apply to the full patterned state in physical space. However, to obtain a more
convenient graphical representation of such results, itis standard to plot the time evolution
of some distinguished marker on the pattern (such as the “tip” of a spiral). Figure 6 is
computed numerically in this manner using spiral-like Fourier-Bessel functions, see
Section 7 for details.

The time evolution of a rotating wave is shown in Figure 6(a). In this case, the “tip”
traces out a circle with uniform speed. Figure 6(b) corresponds to Figure 4 and shows
the behavior of a modulated rotating wave in a circular domain. The tip no longer traces
out a circle, but the radial variation is negligible. The approximate circle is traced out
with nonuniform periodically varying speed, as shown in Figure 7.

In contrast, Figure 6(c) (which corresponds to Figure 5) depicts the modulated rotat-
ing wave of Figure 6(b) but in an infinite planar domain. The radial excursions are now
appreciable and correspond to the phenomenon knowneasider This supports our
assertion that quasiperiodic meander (even away from resonance) requires Euclidean
symmetry — without which the motion would resemble the nonuniform rotation that
occurs in the flame experiment Figure 6(b). More precisely, what distinguishes mean-
dering from nonuniform rotation is the quasiperiottenslationof the pattern, coupled
with the quasiperiodic rotation of the pattern.

Figure 6(d)—(f) show the modulated rotating wave in an infinite planar domain close
to resonance. The quasiperiodic translations are now of sufficiently large magnitude
that well-defined petals are observed close to the onset of the modulated rotating wave.
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(a) (b) ()

(f)

Fig. 6. (a) Uniform rotation, (b) nonuniform rotation, (c) meandering (away from resonance),
(d) meandering near resonance (petals inwards), (e) meandering near resonance (petals outwards),
(f) linear drift.

Note that in contrast to (c), in (d)—(f) it is the petals that are of roughly the same size
as the circle in (a). When the petals change from inwards (d) to outwards (e) — as a
second parameter is varied — the spiral tip appears to make circular excursions which
drift linearly to infinity (f) [44, 45, 3]. This resonance phenomenon has been seen in
numerical solutions to reaction diffusion systems [2] and in chemical experiments [29].
The remainder of the paper is organized as follows. The notions of inner and outer
pattern are formalized in Section 2. In Section 3, we analyze Hopf bifurcation from
rotating waves with trivial isotropy¥.; = 1) in systems wittD(2) andE(2) symmetry.
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1 2 s 4 5 6 7 8 9 10 11 1
Fig. 7. Nonuniformity of the rotation of the modu-

lated rotating wave in Figure 6(b). The graph shows
angle plotted as a function of time.

We pay particular attention to the contrasting behavior of nonuniform rotation (flames)
and meander (spirals) in physical space. The corresponding bifurcations for states with
nontrivial isotropy &0t = Zk) are analyzed in Sections 4 and 5 respectively. In addition,
we describe in Section 4 how the “reversing states” of Landsberg and Knobloch [28] fit
into our analysis, and we describe a scenario which may explain the “ratcheting states”
observed in the flames experiment. Bifurcation to modulated wavy vortices in the Taylor-
Couette systenS0O(2) x O(2) symmetry) is analyzed in Section 6. The details for the
numerically generated figures in this paper are given in Section 7. Some of the more
tedious proofs are postponed until Section 8.

2. Inner and Outer Patterns

Suppose thal acts on some physical domaih c R" wheren = 2 orn = 3. Let’H
be a space of observablas Q — R corresponding to statd$ of an experiment or
solutionsU to a system of differential equations. We assume Ehatts on{ by

yux) = u(y 1x), 2.1

whereu € H andy €T.
We define thepatternassociated to a functiom € H to be the region in physical
space

Py = {Xx € Q: ux) > c}

for some fixed real numbex. Note that the patterns associated/toandu are related
by y, that is,

Pu=vyP.. (2.2)
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For atime dependent functiarg., t) € H, define the pattern at tintén an analogous way:
Put) = {x € Q: u(x,t) >c}.
For example, suppose thais the observable of a rotating wave; that is,
u(x, t) = Reuo(x),
whereug(x) = u(x, 0). It follows from (2.2) that
Pu(®) = RPu(0),

that is, the pattern associated to the rotating wave rigidly rotates in space with constant
speed.

The Pattern of a Modulated Rotating Wave. Let
v(X, 1) = Rivo(X)
be an observable of a rotating wave solutitfx, t) = R;Vp(X) with isotropy subgroup
Erot - EVO tO the PDE
Uy = F(U). (2.3

The center bundle theory (Krupa [27] forcompact and Sandsteéeal. [37, 38] for
noncompact’) shows that in a neighborhood of this rotating wave the vector ffeld
has the decomposition

F = Fn+Fr,

whereFt is tangent to group orbitsty is transverse to group orbits, and both vector
fields arel’-equivariant. Moreover, if we lelily be the normal section (in phase space)
to the group orbit aVy, thenFy restricts tog: No — Np whereg(Vp) = 0. Note thag
is a Xt equivariant vector field oiN.

One result of the center bundle construction is that in a neighborhood of a rotating
wave, all solutions can be written as

UX, 1) =yOYX 1),

wherey (t) € I' is a smooth curve and(x, t) € Ny is a solution to the normal vector
field equation
Yi = g(A). (2.9

Therefore, Hopf bifurcation from a rotating wave reduces to a Hopf bifurcation from an
equilibrium in (2.4) coupled with a drift along group orbits. The fact that the transfor-
mation from states to observables is assumed -bguivariant leads to the identity

ux, t) =y Oy, (2.5)

whereu is the observable df andy is the observable of.
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Suppose now that(x, t) is time periodic with corresponding modulated rotating wave
solutionu(x, t) = y (H)y(x, t), asin (2.5). We obtain a time periodic pattern (originating
from the normal equations):

Py(t) = {x € Q: y(x,t) > c}.

Definition 2.1. Theinner patternassociated to the modulated rotating wavis the
intersection

inner __ _ . :
ginner _ O Py(t) = |x € Q: miny(x,t) > c}.
Theouter pattermassociated ta is the union

Qouter _ LtJ Py(t) = {x € Q: mtaxy(x, t) > C}.

It follows immediately from Definition 2.1 that for evety
Qinner C Py(t) C Qouter‘
Identity (2.2) implies that the patterns for the modulated rotating wesegtisfy

Pu(®) =y (OPy(1),

from which it follows that
y()Q™M C Py(t) C y(H)QOe". (2.6)

Thus, the pattern of the modulated rotating wave evolves in time, bounded by a time
dependent rigid motion of the region betwe@ii"®" and QoUter,

The Dependence of Pattern on the Bifurcation Parameterln the preceding discus-

sion we suppressed the dependence of the modulated wave on the bifurcation parameter
A. We now note that wheh is near the bifurcation point, thed'""e" and Q°Ute" will be
approximately equal t@,(0) — the pattern of the rotating wave at a fixed moment in
time. Indeed, these sets are all equal at the bifurcation poinasfy = vg there.

To see that the visible pattern associated with the modulated wave is virtually iden-
tical to the visible pattern of the rotating wave at an instant in time, we need one final
assumption. We need to assume that the level cofixoarQ2: vo(x) = c} is a manifold.

If not, the pattern can undergo a bifurcation just due to the observation process. Note
that this last assumption is valid generically.

3. Nonuniform Rotations and Meandering
In the flame experiments and in the model equations, the bifurcation from the cellular

rotating wave produces a state that appears to rigidly rotate with speed varying periodi-
cally in time (so that there are two independent frequencies). Palkeicab$33] call this
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a “nonuniformly rotating” state. Indeed, such a steé@notbe exactly described this
way because a solution to a differential equation that lies exactly in a group orbit (in this
case the group orbit given by the rotation subgroup) must produce linear flow along the
group orbit, that is, the speed of rotation must be constant. In fact, careful observation
of this state shows [33] that the cellular pattern does vary periodically in time — but by
a small amount.

In contrast, the corresponding bifurcation for spirals in the BZ reaction leads to
quasiperiodic meandering where the spiral pattern rotates and translates rigidly in space.
Again, there is a small periodic fluctuation in the shape of the spiral.

In phase space, these modulated rotating waves are indistinguishable quasiperiodic
motions, but their behavior in physical space, nonuniform rigid rotation and meandering,
are strikingly different. We show that this behavior can be explained using center bundle
reduction and the notion of inner and outer patterns. In particular, the quasiperiodic
variation decouples into a global rigid motion (along group orbits) and a local fluctuation
that is bounded by the inner and outer patterns.

For simplicity of exposition, we restrict in this section to bifurcations from rotating
waves with no spatial symmetry, that is, we asstpg = 1. In circular domains, we
obtain modulated rotating waves that rotate almost rigidly but with nonuniform speed.
In unbounded planar domains, we obtain modulated rotating waves that meander.

We remark that by ignoring translation symmetry, the work of [4] does not fully
explain the transition to quasiperiodic meandering of one-armed spirals. In a circular
domain, Hopf bifurcation from a rotating wave spiral solution leads to spirals that vary
quasiperiodically in time, but does not lead directly to the flower patterns characteristic
of meander. (Compare Figures 6(b) and 6(c), also Figures 4 and 5.) This additional
structure arises from the Euclidean symmetry in the infinite plane.

Nonuniform Rotation in Circular Domains. In circular domains, the symmetry group
isT" = SO(2) orI" = O(2); the analysis of these two cases is identical X bt a rotating
wave, soX is simultaneously aB0O(2) group orbit and a periodic orbit. We assume that
the points inX have trivial isotropy.

In the event of Hopf bifurcation, there is a three-dimensional center bundle and this
is a trivial bundleX = S' x C by [13]. We choose coordinatés, q), wherep € St
measures the angle of rotation along 8@©(2) group orbit andy € C measures the
deviation of the modulated rotating wave pattern from the basic rotating wave pattern.
We shall refer tay as theshapeof the modulated rotating wave.

The action of an elemefte SO(2) on (¢, q) € X is given by

0 (p,q) = (p+0,0),

andSO(2) equivariance leads to equations on the center bundle of the form [13]

¢ = F%(q,2),
q = Fq, ).

Let wrot and wpis be the frequencies for the rotating wave and the Hopf bifurcation
respectively. Sd-¢(0, 0) = wrot and(d F9)g o = i wpir. We claim that solutions to these
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equations satisfy

Pt 1) = oMt + VAY(t, A), (3.1)
qt, ) = VAdo(t, 1), (3.2)

whereqp(t, A) andy (t, 1) are 2t/wyir (1) periodic,wpit(0) = wpir aNdwret(0) = wrot.

To verify (3.1) and (3.2), solve tigeequation directly obtaining a branch of 2oy (1)
periodic solutiongy(t, ) and then substitute (3.2) into the equation. We obtain a
27 lwpis (1), periodic vector field=#(q(t, 1), 1) with zeroth Fourier coefficient,

wpit(h) 2wt ®)

wrot(A) = T
0

F?(q(t, 1), A) dt.

In particular,wrt(0) = F?(0, 0) = wyot. INtegrating the vector fiel& ¢ (q(t, 1), A), we
obtain (3.1), where) (t, 1) is 27 /wpis (1) periodic.

Implications of (3.1) and (3.2) for Patterns in Physical SpaceThe pattern approxi-
mately rigidly rotates with approximate speegd; but speeds up and slows down with
approximate frequenayy;.

More precisely, if the shape changé, 1) is regarded as negligible, then the time
evolution is rigid rotation through angdgt, A). Since the frequencies,is (1) andwrq (1)
are typically independent, the time-dependence is quasiperiodic: hence the rigid rotation
is nonuniform. For. small, the speed is approximately,:, and the second frequency
enters as a small amplitude modulation of the basic frequency.

As already mentioned, the shape change 1) is hecessarily nonzero. Moreover,
¥ andq are each of ordex/A and hence might seem to be of equal significance for
the phenomena in physical space. Nevertheless, it is our contention thatefiect
outweighs they-effect, and that the behavior of the modulated rotating wave in physical
space is to a first approximation as described above. Our reasoning is that the drift along
the group orbit is an organized controlled effect that can be analyzed as we have done
above. Moreover, it results in a rigid motion of the pattern globally in physical space.
The notion of inner and outer pattern formalizes this idea, see Figure 4. In contrast, the
shape change is a somewhat arbitrary disorganized localized effect.

Further explanation of the subordinate role of shape change is possible on the grounds
that often the eigenfunctions that determine the shape change have steep vertical fronts (as
in spiral waves); so shape change (idealized as a change in a level contour) has little effect
inthe planar directions. (Indeed, spiral waves are sometimes modeled as having infinitely
steep fronts, in which case our discussion is exact.) However, such steepness does not
appear to be required in practice. Figure 6(b) was produced with smooth eigenfunctions
and is at the same scale as the remaining diagrams in Figure 6. The arbitrary shape
change could in principle produce a radial fluctuation even in Figure 6(b) and could in
principle cancel out the radial fluctuation of Figure 6(c) — but this is not likely in practice.

(A movie with timet varying is more convincing, since it allows the visual distinction
between global variation (drift) and local variation (shape change) to be made. Snapshots
from such a movie are shown in Figure 4.)
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Meandering in the Plane. We show that Euclidean symmetry accounts for the me-
andering of spiral waves (in contrast to the nonuniform rigid rotation described in the
previous subsection). In addition, we recover results of [3, 42, 13] on resonance and
unbounded linear drift.

Again, the center bundle is atrivial bundte= SE(2) x Cand, asin[13, Lemma4.1],
equivariance implies that the equations on the center bundle are given by

p = €vf(,n),
¢ = F?(q, 1),
q = Fa. 1),

where(p, ¢) € C x St = SE(2) denotes the group variables (translation and rotation)
andqg € C denotes the Hopf or shape variables. We h&@@ 0) = 0, F¥(0, 0) = wrot
and(d Fq)(),o = | wpit.

The solutions of thg and¢ equations are the same as in the circularly symmetric sit-
uation in the previous subsection. We solve for a branchrdéé@s (1) periodic solutions
g(t, A) and obtain

o(t, 1) = oMt + VA (t, 1),

whereys (t, 1) is 2 /wyis(A) periodic.
The p equation becomes

p = VA Mlgt, ), (3.3)
whereg(t, A) is 2t /wyit(A) periodic.

Nonresonance versus Resonancdo determine the form op(t, 1), we writeg as a
Fourier series

gt,») = Z gj (L)l
jez
Following [13], we integrate (3.3) term by term noting that the result depends on whether

the center bundle equations are nonresonant or resonant.
Recall that the center bundle equationsrawaresonanif for every integem

wrot(A) + Nawpif (L) ;é 0.

Assuming nonresonance, compute that

1 ) .
tLA)=+v1) - : L (0)@ @aFjen Gt
P2 =3 ) e T T 9

which is quasiperiodic.
Now suppose that for a specific valueigfthere is am'" order resonance

wrot(L) + Nwpif(A) =0
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for somen e Z. This time we compute that

1 ) )
_ X | (wrot(A)+ ] wpit (M)t
Pt,2) = V2 (Z#n (o) 1 jaomr ) I € * g"“”)'

As shown in Fiedler and Turaev [12], tké.g, (1) term is of ordefn|/2 in 1. We rederive
this result as a special case of Proposition 5.4.
To summarize: At nonresonance we have

p(t, &) = VApo(t, 1), (3.4

which is quasiperiodic typically with two independent frequencies, and"abrder
resonance, we have

p(t, &) = VApo(t, ) + A2 p (I, (3.5)

where po(t, 1) is periodic. Of course, at resonance the frequenojgsr) andwps (1)
are rationally related so tha, is periodic instead of quasiperiodic.

Implications of (3.4) and (3.5) for Patterns in Physical SpaceAway from resonance,
the quasiperiodic fluctuation of the translatip(t, A) coupled with the nonuniform ro-
tationg(t, A) leads to quasiperiodic meander in the plane. In particular, as we showed in
Figure 6, the translatiop(t, A) forces petal type motion which is the defining charac-
teristic of meander. This motion in Figure 6(c) (and Figure 5) should be contrasted with
the nonuniform motion of Figure 6(b) (and Figure 4) where translation symmetry is not
present.

Near resonance, we now have linear drift (the t&ff p;(1)t) superimposed on the
quasiperiodic meander. The effectrdf order resonance is present for all valuespf
but the time that it takes for the linear drift to be discernible grows with

4. Modulated Waves in Circular Domains — Flames

In this section, we consider Hopf bifurcation from rotating waves with possibly nontrivial
isotropy Zrot = Zk, k > 1, in systems with symmetry grodp= O(2) (orI" = SO(2)).

Rand [35] classified the various modulated rotating waves that occur in terms of their
spatial and spatiotemporal symmetries. We begin by rederiving Rand’s classification.
Then, we proceed as in the cdse- 1 to obtain further information about the behavior
of these solutions in physical space beyond their symmetry properties.

Classification of Modulated Rotating Waves. Recall that Hopf bifurcation from a ro-
tating wave corresponds to Hopf bifurcation from an equilibrium forfhgequivariant
normal vector field): No — No. Letz € C denote coordinates for the critical eigenspace
in Np. The action of the isotropy subgroth.,: = Zx onz € C is generated by

Ry -z = e”Mkz, (4.1)
k
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for somem = 0, 1,...,[k/2]. Rand’s classification of modulated rotating waves is
essentially given in terms of the integdrg&ndm. One difficulty is that the integen

has no direct physical interpretation. Following Rand (though with different notation)
we introduce the derived integetts> 1 anda € {0, 1, .. ., 5 — 1} where

d = gcdk, m), am = d modk.

We show that the integeksd andx are quantities that can be determined experimentally.
(The integergk, d, «) correspond to Rand’s integei, s, n).)

Remark 4.1. We note thatr is the multiplicative inverse ain/d modulok/d. Hence,
givenk, d anda > 1 we can recovem through the equation(m/d) = 1 mod (k/d).
(Whena = 0, we havek = d andm = 0.)

The isotropy subgroupy;; of the bifurcating modulated rotating wave is given by
the kernel of the action (4.1) on the critical eigenspace. Hehge= Z4 whered =
gcdk, m). Thus, the integerk andd correspond to the spatial symmetry (at a fixed
moment in time) of the rotating waveZ(,; = Zx) and the modulated rotating wave
(Zpit = Za).

Next, we show that the integer determines the spatiotemporal symmetry of the
modulated rotating wave. Lgtt, 1) be the solution to the (infinite-dimensional) normal
vector field equations olNg. Theny is T (1) periodic whereT (L) = 2 /wpit(A). In
addition, there is the nontrivial spatiotemporal symmetry [14]

m

y(t+ 3T 2) = Rex - y(t. 1), (4.2)
We now compute the minimal spatiotemporal symmetry corresponding to these two
symmetries. (We say thait + T) = yy(t) is a minimal spatiotemporal symmetry if

T > 0 andy € X such thafl is minimal.)

Proposition 4.2. The normal vector field solution y has the minimal spatiotemporal
symmetry

d o
y(t + ET(A),A) - (Rz_;) V(L ). (4.3)

Proof. Sinced = gcdk, m), we haveem + gk = d for someg € Z. Hence,

d m

—TA) =a—TQ)+ BTH).

k k
It follows from T (1) periodicity and (4.2) that

d m

verifying that (4.3) is a spatiotemporal symmetryyof
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Next we show that (4.3) is the minimal spatiotemporal symmetry. Recall that in Hopf
bifurcation, T (1) is the minimal period of/(t, »). From now on, we suppress thé.
Suppose thay(t + S) = yy(t) forsomeS > 0,y € Xiq, SO

Yt +S) = (Rezi)! - y(1),

wherej > 1. We must show thaB > 7. Now,
K .
y (t + aS) = (Rezia)! - y(O) = y(1),

since Xy = Zg. Hencegs is a multiple of T. SinceS > 0, we haveS > %T as
required. O

By the results of Krupa [27], the symmetry (4.3) corresponds to an exact spatiotem-
poral symmetry of the full modulated rotating wave solutia, ) modulo the drift
along theSO(2)-group orbit. Thus, in a suitable rotating frame, the modulated rotating
wave reduces to a periodic solution and the integar Proposition 4.2 determines the
spatiotemporal symmetry of that periodic solution.

Implications of the Classification of Modulated Rotating Waves for Flames.As
pointed out in [7], Rand'’s classification of modulated rotating waves applies directly to
Gorman’s flame experiment. Indeed, the “hopping modes” or “ponies on a merry-go-
round” that are observed in the physical and numerical experiments seem to have the
behavior expected of modulated rotating waves.

In the flame experiments, Gormanal. [19] observe modulated rotating waves in the
form of cellular states witk not quite identical cells. (Presumably, these states bifurcate
from a rotating wave witlk identical cells; this transition has been observed in numerical
simulations [7] but not yet in the experiments.) The entire state is rotating but there are
additional “events” where successive cells fire one after the other in identical fashion. In
terms of the classification, these modulated rotating waves bifurcate from a state with
k > 1 identical cells to a state with no identical ceis= 1 and a spatiotemporal
symmetry corresponding i@ = 1. States wittd = k identical cells before and after
bifurcation (the nonsymmetry breaking case) are also observed.

The hopping modes of Gormaat al. [17] appear to be modulated rotating waves as
above, but with additional structure that is beyond the scope of this paper. See Palacios
et al. [32] for results concerning the additional structure of the hopping modes.

In numerical simulations, Baylisst al. [7] obtain a number of modulated rotating
waves arising through symmetry breakimg & 0 or equivalentlyd < k) bifurcations
from rotating waves. They particularly emphasize bifurcations from rotating waves with
four identical cellsk = 4) and with seven identical cellk & 7).

According to the classification, there are two distinct possibilities corresponding to
k = 4: the casesn = 1 andm = 2. The casen = 1 is shown in [7, Figures 3 and 4]
and corresponds to the data= 1, ¢ = 4, anda = 1. Note that all of the symmetry is
broken @ = 1) and that after passing to the rotating frame, time-shift by a quarter of
the period { = 4) is the same as a quarter rotatiosi{ = 1/4). The casen = 2 is the
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“half period modulated rotating wave” shown in [7, Figure 8] and corresponds to the
datad = 2,¢ = 2, ande = 1. This time, part of the symmetry is preservdd£ 2) and

in the rotating frame, time-shift by half a periofl£ 2) is the same as a quarter rotation
(a/k = 1/4). The modulated rotating wave in [7, Figure 3] (“Pushmi-Pullyu”) appears
to have more structure than the “breathing” modulated rotating wave in [7, Figure 4].
Again, this additional structure lies outside the scope of this paper.

The classification yields three possibilities correspondingte 7:m =1, m = 2
andm = 3. In each of these casab—= 1,k = ¢, and all the symmetry is broken. The
casem = 1 yieldsa = 1 as is shown in [7, Figure 11]. The case= 2 yieldsa = 4
as is shown in [7, Figure 10]. Finally, the case= 3 yieldsa = 5 as is shown in [7,
Figure 9] (though we note that the numbering is such that this case appears to correspond
more closely to the mathematically identical case- 4 ande = 2). The last two cases
havea > 1, leading to the terminology “jumping ponies on a merry-go-round.”

The Center Bundle Equations. The analysis of the “nonuniformly rotating” nature of
the modulated rotating waves bifurcating from rotating waves with isotZgpyg similar
to the analysis in Section 3 of the cdse= 1. However, to solve the equations on the
center bundle, it is necessary to pass to the skew product construction of [11]. These
equations have the same form as the center bundle equatidns-farexcept that there
are theX; equivariance conditions
F¢(0q,1) = oF?(q, 1) %, (4.4)
FY%oq,1) = oF%q, A), (4.5)
for o € X The right-hand-side of (4.4) reducesRé(q, A) sinceSO(2) is abelian,
so that the condition simply states th#t is X, invariant:
F?(0q,») = F?(Q, ). (4.6)
In (4.5) and (4.6), the action ef € Z,,; onq (and F%) corresponds to the action (4.1)
on the critical eigenfunctions, namely
Re -q = rimikg

Whenm = 0 (S0 Xpi = Zrot = Zk), there is no restriction of¢ or F% and the
results are the same as wheg- 1.

In the remaining casesn(> 1), Tyt is a proper subgroup d,q; Zpif = Zg4, Where
d = gcdk, m). Sett = k/d andT (1) = 2r/wpis(1).
Lemma 4.3. Generically,

FO@(t, ), 1) = wrot(h) + 2 yo(t, 1),

wherey(t, A) has minimal period Tv)/¢.

Proof. By Proposition 4.2, the solutiog(t, 1) to theq equation has the minimal spa-
tiotemporal symmetry

q (t + %T(k), A) = (R%)a Sq(t, ») = e 9mkqet, A) = e®qt, A). (A7)
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This spatiotemporal symmetry combined with the invariance condition (4.6) implies
thatF?(q(t, 1), 1) has periodr (1)/¢. SinceF¢ is an arbitrary invariant function, gener-
ically this period is minimal. Verification of the exponefi2 of A is postponed until
Section 8. O

It follows from the lemma that the rigid rotation along the group orbit is given by
(t, 1) = oMt + 2y (t, 2), (4.8

wherey (t, 1) has minimal period (A)/¢.

Implications of (4.8) for Patterns in Physical Space.From the point of view of this
paper, the nonuniformly rotating states and the ponies on a merry-go-round observed
in the flame experiments [19, 33] and in numerical simulations [7] can be studied to-
gether as modulated rotating waves bifurcating from a rotating wave. Near onset, all of
these states are nonuniformly rotating waves, the only distinction being th&/2edé
which the nonuniformity in the rotation speed scales with the bifurcation parameter. The
nonuniformity is most visible whek = d (¢ = 1). This corresponds to the nonsymmetry
breaking cas&yi = Xrot.

In the symmetry breaking casBys # ot (¢ = k/d > 1), the nonuniformity
of the rotation speed is less apparent (though careful experiments should still pick up
this feature). In addition, further away from the bifurcation point, the spatiotemporal
symmetry becomes dominant and leads to ponies on a merry-go-round. The scenario we
envisage for the flame experimentis that a uniformly rotating cellular statdvdiémtical
cells bifurcates to a nonuniformly rotating state witbells that are not all identical and
then gradually (as the bifurcation parameter is varied) transforms into ponies on a merry-
go-round. It should be noted that this second transition is not a dynamical bifurcation
— neither the symmetry nor the qualitative dynamics is altered. Rather, we have an
exchange in dominance of the drift variables (which drive the nonuniform rotation) and
the shape variables (which drive the spatiotemporal symmetry).

Reversing States.The nonuniformly rotating patterns that arise in the flame experi-
ments should be contrasted with the “direction-reversing traveling waves” analyzed in
Landsberg and Knobloch [28]. The setting in [28] is Hopf bifurcation from a circle of
equilibria with reflection symmetry, 96 = O(2) and ot = Z», WhereZ, is generated
by a reflection. Hopf bifurcation witZ, symmetry [15] leads to branches of periodic
solutions with no spatial symmetry but where the reflection symmetry reappears as a
spatiotemporal symmetry (with a half period phase shift). Such solutions do not drift
[27] and so we have periodic solutions (instead of modulated rotating waves) in the full
O(2)-equivariant problem. In particular, there is zero mean drift.

In the notation used in this paper, the results of [28] say that the rigid rotation variable
¢ has the form

o) =AYy (t, 1),

wherey (t, A) has period 2 /wyi; (1) In particularwyt(A) = 0. Ignoring shape changes,
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the reversing states are observed to rigidly rotate (or travel) in one direction and then in
the other direction, reversing direction periodically.

Ratcheting States. Inthe flame experiments, “ratcheting states” are observed [18] which
have certain features in common with ponies on a merry-go-round (or the hopping
mode). In particular, all of these states are quasiperiodic and reduce to small amplitude
periodic states in a rotating frame. In the ratcheting state, however, the magnitude of
the nonuniformity in rotation speed is large compared to the the speed of the underlying
rotating frame; indeed contragrade motions are observed in ratcheting states. (Unlike the
reversing states of [28], there is a nonzero but slow mean drift.)

The following scenario may explain the similarities and differences between ratch-
eting states and ponies on a merry-go-round. Whereas ponies on a merry-go-round
bifurcate from a rotating wave, we propose that the ratcheting states bifurcate from a
stationary solution.

Specifically, we propose that ratcheting states arise through a symmetry breaking
Hopf bifurcation from aDy invariant steady state. Applying the results of Krupa [27],
we first consideDy equivariant Hopf bifurcation and then allow for drifts along the
SO(2)-group orbit.

Symmetry breaking Hopf bifurcation witBy symmetry is studied in [15, Chap-
ter XVIII]. We define the integerm, d, ¢ just as for theZy bifurcations considered so
far. Provided that > 3, there is a four dimensional critical eigenspace and three maxi-
mal isotropy subgroups each with two dimensional fixed point subspace. The equivariant
Hopf bifurcation yields branches of periodic solutions for each of these isotropy sub-
groups.

The possibility of drifts along th8O(2) group orbit means that some of these branches
yield quasiperiodic solutions. Two of the branches consist of periodic solutions with ei-
ther spatial or spatiotemporal reflection symmetry; continuous drifts are then excluded
and these are ordinary periodic solutions. The third branch consists of solutions with
rotation spatiotemporal symmetry onl§(in the notation used in [15]). Hence, generi-
cally there is drift along th80(2)-orbit and we have a two frequency modulated rotating
wave.

The skew product equations for the modulated rotating wave have a form similar to
before, but,; is replaced byy. In particular,F# satisfies &y equivariance condition
of the form (4.4), so thaF¥(cq,A) = F¥(q,A) wheno € Dy is a rotation, and
F?(cq, ) = —F?(q, ») wheno € Dy is a reflection.

Suppose that(t, A) is theZ, branch of periodic solutions iDx Hopf bifurcation.

Lemma 4.4. Generically,

T
/ Fe(q(t, A), A)dt ~ a2,
0

and
Fe(t, 2), ) = A "Ta@) + APyo(t, 1),
wherey(t, A) has minimal period T)r)/¢.
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Proof. Verification of the periodicity o/ (t, A) proceeds as in Lemma 4.3. The expo-
nents¢ — 1 and¢/2 of A are verified in Section 8. O

It follows from the lemma that the rigid rotation along the group orbit is given by
o(t, 1) = 2 tat + 2%y, 2,

whereyr(t, ) has minimal periodrl (1)/¢. (Of coursewry = O in this bifurcation.)
Observe that the leading nonconstant term dominates the constant termy, sin8e
leading to contragrade motions as seen in the experiments.

5. Modulated Rotating Waves in the Plane — Spirals

We consider the case of Hopf bifurcation frdarmed spiralsk > 1 following [13].

The classification of modulated rotating wave spiral states is identical to that described
in Section 4 and we concentrate on the manifestation of the quasiperiodic dynamics as
motions in physical space. As pointed out in [13], both meandering and nonuniform rigid
rotation is possible in bifurcation frokrarmed spirals, depending on whether or not all

of the symmetry is broken in the bifurcation.

Remark 5.1. In [13], we derived also the conditions for resonancekfarmed spirals.
Unfortunately, the conditions for resonance wher 2, stated in [13, Theorem 5.2],
are incorrect. We are grateful to Claudia Wulff for pointing this out to us.

The source of the errors in [13] is as follows. We introduced physical frequengies
wy (corresponding tayo andwyis in this paper) and frequenciés, @, corresponding
to the skew product equations. The complicated relations between these frequencies
in [13] are wrong and in fach; = w1, @2 = w; (as can be seen for example in the
construction of [11]). Indeed, the correct conditions for resonance follow immediately
from [13, Theorem 5.5] and are given in (5.5) below.

Passing directly to the skew-product equations [11], we consider the system of ODEs

p = €vf(q,xr),
¢ = F%@q,»),
q = Fq, 1),

where(p, ¢) € C x St = SE(2) denotes the group variables (translation and rotation)
andq e C denotes the Hopf or shape variables.

Just as in Section 4, we introduce the integaysl and¢. The action of the isotropy
subgroupZ,o; = Zy is generated by — e¥"™kq wherem = 0, 1, ..., [k/2]. We set
d = gcdk, m) and¢ = k/d. Definewor(A), wpit (1) as before and s@t(A) = 27 /wpif(1).

The skew-product equations are subject toXhg equivariance conditions

f(cq,2) = of(q, ), (5.1)
F?(cq,2) = F?(q, 1),
Fi(oq,1) = oF9%aq, »),
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for o € . Again, the action o6 onq and FY is defined by the integem, whereas
the action ol on the right-hand-side of (5.1) is group multiplication.
The solution of thej and¢ equations is unchanged. We solve for a branch ¢f)
periodic solutiong)(t, ) and obtain
o(t, 1) = oMt + 2P (E, 1),

wherey (t, 1) has minimal period (1)/¢.

The Case wherk and m are not Coprime

Proposition 5.2. When k and m are not coprime(tpi) = 0.

Proof. Condition (5.1) can be written as

f (e ™kq, 1) = %1 (g, ). (5.2)
In particular,
e (g, ) = f(&™q, 1) = f(q, ).
Sinced > 2, it follows thatf = 0. O

The Case wherk and m are Coprime. Sincek andm are coprimed = 1 and¢ = k.
As before, we solve for a branch ®f(A) periodic solutiong(t, ») and obtain

o(t, 1) = oWt + 2y (t, 2),

whereys (t, A) has minimal period (1)/k. The p equation becomes
p =€ Mg, 1),

where

g(t, 2) = VD £ (qet, 1), 4).
Proposition 5.3. Suppose that for every integer | satisfying #nl modk, we have

wrot(A) + jopit(2) # 0. (5.3
Let 8 be least positive integer such théin = +£1 modk. Then
p(t, 1) = 22 po(t, 2)

is quasiperiodic (with typically two independent frequencies).

With the exception of the order gb in A and the difficulty with the nonresonance
conditions (5.3) (see Remark 5.1), this proposition was proved in [13]. For ease in
exposition we give a complete proof of Proposition 5.3.
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Proof. Recall from (4.7) thaty(t + T (L)/k, A) = e 1“™kq(t, ). Using (5.2), we com-
pute that the minimal spatiotemporal symmetryf@fi(t, 1), A) is given by

f (q (t + %T(k), A) ,)\) = ek f(q(t, 1), A).
Sinceyr is T (1)/k periodic,g also possesses the minimal spatiotemporal symmetry
1 ialk
g(t+T0),2 = e”“Kg(t, 1). (5.4)

Next we writeg as a Fourier series

g(t, )L) = Z gj (}\')eijwbif()n)t.

By (5.4), this series reduces to summation over those int¢gatssfyingjm = 1 modk.
Multiplying by €™t and integrating, we obtain a quasiperiodic functjmh, 1) if and
only if the nonresonance hypotheses (5.3) are satisfied.

The verification of the exponet2 is postponed until Section 8. O

The Case wherk and m are Coprime with Resonance.Now suppose that there is an
n'" order resonance

wrot + Nawpit = 0 (5.5

for somen e Z satisfyingnm = 1 modk.

Proposition 5.4. At an ri" order resonance,
p(t, 1) = 272 po(t, 1) + 2" puut,

where p(t, 1) is periodic.

Proof. By the proof of Proposition 5.3, it remains to verify the expongm2. This
verification is postponed until Section 8. O

Implications of Propositions 5.2, 5.3, and 5.4 for Patterns in Physical SpacéVhen
Zpit # 1, we have the prediction [13] of rigid nonuniform rotation and no meander.
To this, we can add that the nonuniformity in the rotation is most noticeable when
it = Zrot = Zk (K = 2). WhenXypi # Zrot, (Zbit = Zg, 1 < d < k), there is the
additional spatiotemporal symmetry where the arms of the spiral, which are no longer
identical, “fire” after equal periods of time in identical fashion.

When Xy = 1, we obtain meander and linear drift as for the case of one-armed
spirals. Away from resonance, we predict meandering, with the size of the petals de-
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pending on the intege#. The petals are most well-defined whgn= 1. This occurs in
the casé&k = 1, m = 0 (one-armed spirals) and also in the cases wkéarbitrary and
m=1.

6. Modulated Wavy Vortices in Taylor-Couette

As discussed in the introduction, the Taylor-Couette experiment is often modeled as
havingSO(2) x O(2) symmetry, wher&0O(2) consists of azimuthal rotations afd?2)
consists of axial translations and an up-down #ligt turns out that most of our results
are unchanged if we just assurB®(2) x Z, symmetry (azimuthal rotations and the
up-down flip), but there are subtle differences in the results which we describe at the end
of the section.

Recall that the isotropy subgroup of wavy vortices is givertly = Zy consisting
of pure azimuthal rotationg, C SO(2) (generated by2r/k, 0) € SO(2) x SO(2)
together with symmetries i@ ~Zy that are azimuthal rotations combined with the
up-down flip). Hencex,; is generated by a single glide reflection: rotation(byk, 0)
followed by the flipk.

Extended Classification of Modulated Rotating Waves in Taylor-Couette.The rep-
resentation of the isotropy subgrod,; = Z» is generated by — e”™Kq for some

m = 0,1,...,k. As in Section 4, we obtain a classification of the possible types of
modulated rotating waves in terms of the integék, d, «) whered = gcd2k, m)
andom = d mod X. Again, k andd denote the instantaneous symmetry of wavy
vortices and modulated wavy vortices, whitemeasures the spatiotemporal symme-
try.

We distinguish between modulated wavy vortices which break all the spatial glide
reflection symmetry of the wavy vortices and those that retain some of this symmetry.
In the terminology of [9], Gorman-Swinney @S flowsare modulated wavy vortices
that break the glide reflection symmetry while Zhang-Swinney®iflowsetain some
of the glide reflection symmetry. Note that GS flows occur whkfd 2s even and
ZS flows occur when d is odd. To see this, leb be a generator oE,; = Zx
and observe thap! is a glide reflection if and only ifj is odd. ButSp; = Zg
is generated by?/® and hence contains odd powers @fprecisely when ®/d is
odd.

Both kinds of modulated wavy vortices have been observed in experiments. The GS
flows are the original modulated wavy vortices of Gorman and Swinney [20, 21] and
do not possess spatial glide reflection symmetry (though such symmetries necessarily
appear as spatiotemporal symmetries). The ZS flows were obtained more recently in
experiments of Zhang and Swinney [43] and possess spatial glide reflection symmetry,
as noted in [9].

In Section 4, we described Rand’s classification [35] of modulated rotating waves
in systems withSO(2) symmetry. This classification was particularly geared towards
modulated wavy vortices for which the symmetry group is actuafly?) x O(2) (or at
leastSO(2) x Z, which leads to the same results). In particular, the isotropy subgroup
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of wavy vortices is given byEo: = Z and does not lie ir80(2), whereas Rand has

ot = Zk C SO(2). In particular, we obtain twice as many states as does [35]: for each
solution in [35], there corresponds a GS flow and a ZS flow.

The Center Bundle Equations. The skew-product equations have the form

¢1 = F?(q, 1),
¢2 = F?%(q, 1),
q = Fq, 1),

where g1, ¢ and g denote the azimuthal, axial and shape variables. In addition,
F?1(0,0) = wrot, F¥2(0,0) = 0 and(dF%)0 = iwpitq. We have theX,, equivari-
ance conditions
Fei @™ g, 1) = F¥(q, 1),
Fez(em™kqg, 1) = —F*(q, A).

Proposition 6.1. Letd = gcd(2k, m), £ = 2k/d, T(L) = 2n/wpit (1) and set
wrot(A) = ﬁ fOT(’\) F1(q(t, A), A)dt. Generically, the azimuthal variation is given by
e1(t, 1) = oWt + A2y (t, ),
whereyr (t, A) has minimal period TA)/<.
Whent is even, generically the axial variation is given by
@2(t, 1) = 1M ya(t, 1)
wherey,(t, A) has minimal perio®T (1)/¢. Whent is odd,¢, = 0.

Proof. The vector fieldF¢: satisfies the same invariance condition as the vector field
F¢ in Section 4 (withk replaced by R). Hence, the expression fgi(t, 1) is immediate
from Lemma 4.3.

Suppose that is odd. We compute that

It follows from the equivariance condition satisfied By that
F(q, ) = F2(€"™)q, 1) = (=1)F*(@, 1) = —F*(q, 4).

HenceF#2 = 0.

Next suppose that is even. By definitiongm = d mod X from which it follows
thate(m/d) = 1 mod¢. Hencea andm/d are odd. As in equation (4.7), we have
qet + T/, 2) = (€7™R)2q(t, A). Therefore,

F@(t+TM)/E, ), 1) = F2(e@™9%qqt, 2), 1)
= (=D*F(@Q(t, 1), ») = —=F2(q(t, 1), 1).

It follows that F#2(q(t, A), A) is 2T (1)/¢ periodic. Again, this period is generically
minimal. The computation of the exponei is similar to previous calculations. O
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Implications of Proposition 6.1 for Patterns in Physical Space All bifurcations lead

to doubly quasiperiodic motion that includes nonuniform azimuthal rotation, and none
lead to axial drift. The GS flows, but not the ZS flows, possess an additional axial
oscillation, analogous to the reversing states of [28].

The casé = 2k/d odd correspondstothe ZS flows (spatial glide reflection symmetry).
We predict, near the bifurcation point, that the dynamics of the modulated rotating wave
in physical space consists of approximately rigid rotation about the axis of the cylinder
with nonuniform speed just as in Section 4. Again, we expect that there is a further
transition in which the spatiotemporal symmetry gradually dominates the nonuniform
rotation.

The case/ = 2k/d even corresponds to the GS flows (no spatial glide reflection
symmetry). Apart from the obvious changes in the spatial and spatiotemporal symmetry,
we expect that near the bifurcation point there is a rigid axial oscillation in addition to
the nonuniform rotation. (We note that there are still only two independent frequencies.)

Finally, we remark that the distinction between the GS and ZS flows may provide a
means for testing between the modeling assumptio®092) x O(2) andSO(2) x Z,
symmetry. With the first symmetry group, we expect axial oscillations for the GS flows
but not for the ZS flows. With the second symmetry group, we expect no axial oscillations
for either state, since there is no longer an axial translation variable. By Proposition 6.1,
any axial oscillation of the GS flows would be most apparent whenk (that is, only
the glide reflection symmetry is broken).

7. Numerical Verification

In this section, we describe how we obtained the graphical representation of our results
in Figures 4, 5, 6, and 7. We work throughout with the specific center bundle equations

p = €¥q,
¢ = wI’Ot+Req7
q = (A +iopng — 191%g.

These are a special case of the center bundle equations for the problents(®yith
symmetry in Section 5. Removing thieequation we include the problems wit(2)
symmetry in Section 4.

The solution to the center bundle equations is given by

p) = Vi g (@rortwpin)t + O()L3/2)’

1 (wrot+wbit)
o) = wpott + wibﬁ Sinwpitt,
qt) = vagdert,
Provided that there are no high order resonances (no resonances|witl2) it seems
reasonable to discard ti@(1%?) terms inp(t).

Next we describe how to bring in the planar spatial dependence. We suppose that the
underlying rotating wave (or its observable) is given by a pure Fourier-Bessel mode

vo(r, 0) = Im (Jy(ur)€?),
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where J; is the first-order Bessel function, apde C. Such functions have contours
which look like one-armed spirals [10]. The time evolution of the rotating wave is given

by
v(t) = Rp = Im (Jy(ur )€ @),

(taking R = ¢(t) with » = 0). We define the ‘spiral tip’ of the function(t): R> - R
as the intersection of the contours

Re(‘]l(,ur)ei@fa)rozt)) = Cy, Im (Jl(m)ei(efw,mt)) —C,.

whereCs, C, are constants. The time evolution of the spiral tip of the rotating wave is
shown in Figure 6(a) witlv,t = —1, u = 9+ 1.54i, C; = 0.29,C, = 0.06 andt runs
from 0 to 120 in steps of.Q.

Now we suppose that the rotating wave undergoes a Hopf bifurcation to a modulated
rotating wave sa > 0 in the center bundle equations. Recall that the modulated rotating
waveu(t) admits the decompositiom(t) = y (t)y(t) wherey (t) € I" andy(t) is the
solution for the normal vector field. Writg(t) = vo + w(t). For simplicity, we suppose
thatw(t) is itself a pure Fourier-Bessel mode, proportional to(dnll(gr)ei@), where
¢, & € C. (In practicew(t) will involve infinitely many such modes.) The amplitude and
time dependence afi(t) is determined by the shape variabl@) on the center bundle.
Hence, we have

w(t) = Im (\/Xcéwb‘ftJl(gr)é(’).
In particular, the shape change of the modulated rotating wave is governed by
y(t) = Im (Jl(ur)e“) + Vacd it Jl(ér)em).
Thus in Figure 6(b) we plot the spiral tip for the function

ut) =y Oyt = Ryny(t)
Im ((Jlmr y+vrcd gy € (o= 5‘“""’"‘)), 7.1)

wherewo, i1, C1, Cp, t are as in Figure 6(a)/A = 0.02,¢ = 0.85— 0.54i, wpit =
—0.715,6 = 12— 0.72. The result is a ‘fattening-out’ of the perfect circle of Figure
6(a). In particular, there is no visible sign of meandering. However, the motion around
the circle is nonuniform as shown by the graph of angle plotted against time in Figure 7.
The parameter settings in Figure 7 are identical to those in Figure 6(b), butwithing
from 0 to 12 in steps of O1.

Figure 6(c)—(f) shows the spiral tip for functions of the form (7.1) subject to the time
dependent planar translation

zt)=z—pt)y =z— Vi g (@rortonint

i (wror+wbi)

The parameters in Figures 6(b) and 6(c) are identical and it is evident that it is the
additional translation modulation in (c) which is responsible for meandering of the spiral
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tip. Figures 6(d) and 6(e) show meandering befexg (= 0.895) and afterdpi = 1.105)
resonance and illustrate the transition from petals inwards to petals outwards. We choose
wpit = 1.005 in (f) to obtain almost linear drift very close to resonance (in this last
diagram  runs from 0 to 43 in steps of D).

Figures 4 and 5 show the motion of the inner and outer patterns corresponding to
the parameter settings in Figures 6(b) and (c), but we have tdker 0.2 (instead of
VA = 0.02) so that the contours corresponding to the inner and outer patterns can be
distinguished.

8. Completion of Proofs

In this section, we verify the exponentsiofiven in Lemma 4.3, Lemma 4.4, Proposi-
tion 5.3 and Proposition 5.4.

Proposition 8.1. Consider the ODE
q="F%q,»,

where F: RZ x R — R? is a general smooth vector field satisfying0F0) = 0 and
undergoing Hopf bifurcation with eigenvalugswyit. The branch of periodic solutions
guaranteed by the Hopf Theorem can be written as a Fourier series

at. ) =gyl
jez
wherewyis (1) is smooth ink, wpir(0) = wpir. Moreover, generically the Fourier coeffi-

cients satisfy

Qo~4 g~ j#0.

Proof. If follows from Birkhoff normal form theory that there is a polynomial change
of coordinateg) = P(z, z, A), whereP(0, 0) = 0, such that the ODF = F9%(q, 1) is
transformed up to any finite order into the simpler ODE

z=g(z1% Mz,

whereg: R? — R is smooth. In these coordinates, the bifurcating periodic solutions are
given by

2(t,A) = a()\')eiwbif()h)t’

wherea(i) ~ A2 Transforming back into the original coordinates, we see that the linear
terms inP lead to the Fourier modes = +1 and genericallyg., ~ AY2. Similarly,
the quadratic interactions iR contribute the Fourier modgs= 0 andj = +2 so that
genericallyqo, g+2 ~ A. The Fourier modeq.;, j > 3 arise from thej'th order terms
in P, so thatgy; ~ A/2, j > 3. O
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Proposition 8.2. Assume the set up of Proposition 8.1, except thatig-a general
smoothZ-equivariant vector field oR?, where the action af, onR? = C is given by

Ro.ikd = €27Mkq,

forsome m= 1,...,[k/2]. Let d = gcdk, m) and ¢ = k/d. The branch of periodic
solutions guaranteed by the Hopf Theorem can be written as a Fourier series

qet, ») = Z re(1)€ sOeni it 8.1

seZ
Moreover, generically the Fourier coefficients satisfy

rg ~ J1HstI2

Proof. The spatiotemporal symmetry (4.7) places restrictions on the Fourier series in
Proposition 8.1. Indeed, we calculate thag;it 0 then

eZriilt _ diontMTole _ g2milt.

It follows that j = 1 mod¢. Hence, we may write

qt, 1) = Y re(r)e e,

seZ

and it follows from Proposition 8.1 that = O(1/1+51/2),

It remains to verify that genericallyg has terms of order precisely + s¢|/2 in A.
The reduction to Birkhoff normal form can be achieved b¥aequivariant change of
coordinates?. We have the expansion

q=Pz 21 =) a0z,

and theZ-equivariance conditio® (e27'™kz, e=271mkz ) = e2"'™kP(z, z, 1) implies
that

ay,, (Ve mvmbmk — o
Hence, eithea,, , = 0 or
m/d m
(M_v_l)TZ(M_V_l)K e’.

Sincem/d and¢ = k/d have no factors in common, we deduce that v — 1 is a
multiple of ¢£. It follows that the surviving terms i have the form

|z, a,b>0, and [z/®Z*1, a>0,b>0.
These terms yield Fourier coefficients
Qe ~ A OV, b>0, and Q1) ~ APV2 b>0,

respectively. O
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Proof of Lemma 4.3. The functionF¥ is a general smooth function gfandi subject
to the invariance condition (4.6). A computation similar to that for the funckoim
the proof of Proposition 8.2 shows that the general terf‘rhas the formq|?2q° or
|q/22g°¢ wherea, b > 0.

In particular, the lowest order terms F¥(q(t, A), A) correspondta = 0,b = 1
and toa = 1,b = 0. Takinga = 0, b = 1, and substituting in the Fourier series (8.1)
for q, yields lowest order terms of the form

(ro(k)eiwbn(m)@’

which is of the required order‘/2,
It remains to show that the nonconstant terms produced by takiadl, b = 0 are
of order at least*?. By Proposition 8.2,

At B2 =Y rs ()fs (e @i,
51,262

Nonconstant terms are obtained wisgs4 s,. To obtain the smallest order in we take
s1 = 0,5 = 1 which yields a term of order'/2, ¢~ 172 = 142 This completes the proof
that 12 is the lowest order nonconstant termFifi. O

Proof of Lemma 4.4.In addition to the symmetry condition (4.6), which was taken into
account in the proof of Lemma 4.3, the functibfi satisfies the conditioR# (g, ) =
—F¥(q, »). It follows that the general term iR¢ has the formq|?2(q® — g°) where
a,b>0.

It is immediate from the proof of Lemma 4.3 that no terms of order lower #&n
are possible. The lowest order terms are obtained by takirg0 andb = 1, and this
yields terms of ordek? as before.

It remains to verify the order of the constant term in the Fourier expansidt of
Substituting the Fourier series (8.1) injbyields a term of the form

i onet\ €1 i(— ] _
(roelu)b”t) r_lel( L+ D) wpitt — ré lr_l’

which has the required ordé(é -+ # = {—1inX. Note also thaty andr_; are
the lowest and second lowest order Fourier coefficients, ab the only term of lower
order term inF¥ is the nonconstant term of ordé® that we computed earlier. Hence,
the lowest order constant term is of ordér? as required. O

Proof of Proposition 5.3. The structure of thgh component of the skew product equa-
tions is as given prior to the statement of Proposition 5.3. A calculation as in Lemma 4.3
shows that the general terms in the Taylor expansiof(gf 1) have the formq|?2qP°
and|g|?2G° wherea, b, ¢ > 0 andbm = 1 modk, cm = —1 modk. The lowest order
term is eitheiq? or G# (or possibly both). Since Hopf bifurcation occurs with exponent
A2, we obtain the required exponenft? for g. This completes the verification of the
claim. O
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Proof of Proposition 5.4. The exponenin|/2 is verified as follows. By taking = n >
lorc = —n > 1 in the proof of Proposition 5.3, and substituting in the Fourier
expansion (8.1) ofj, we obtain a term iy proportional to(+/A€ “t M) (arising from
thes = 0 term inq). This resonance term shows that the exponeji? is achieved
generically. Observe also that every multiplef the basic frequencyyis (1) in g occurs
with the identical power of +/A. Henceln|/2 is the smallest possible exponent. O
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