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In Rayleigh-Bénard convection, the spatially uniform motionless state of a fluid
loses stability as the Rayleigh number is increased beyond a critical value. In
the simplest case of convection in a pure Boussinesq fluid, the instability is
a symmetry-breaking steady-state bifurcation that leads to the formation of
spatially periodic patterns. However, in many double-diffusive convection sys-
tems, the heat-conduction solution actually loses stability via Hopf bifurcation.
These hydrodynamic systems provide motivation for the present study of spatio-
temporally periodic pattern formation in Euclidean equivariant systems. We call
such patterns planforms.

We classify, according to spatio-temporal symmetries and spatial periodicity,
many of the time-periodic solutions that may be obtained through equivariant
Hopf bifurcation from a group-invariant equilibrium. Instead of focusing on plan-
forms periodic with respect to a specified planar lattice, as has been done in
previous investigations, we consider all planforms that are spatially periodic with
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126 B. Dionne and others

respect to some planar lattice. Our classification results rely only on the existence
of Hopf bifurcation and planar Euclidean symmetry and not on the particular dif-
ferential equation.

1. Introduction

In Rayleigh-Bénard convection, the spatially uniform motionless state of the
fluid loses stability as the Rayleigh number is increased beyond a critical value.
In the simplest case of convection in a pure Boussinesq fluid, the instability
is a symmetry-breaking steady-state bifurcation that leads to the formation of
spatially periodic patterns (Chandrasekhar 1961). However, in many doubly dif-
fusive convection systems, the heat-conduction solution actually loses stability
via Hopf bifurcation. This is the case, for example, in magnetoconvection (Chan-
drasekhar 1961), thermosolutal convection (Veronis 1968), and binary fluid con-
vection (Hurle & Jakeman 1971). These hydrodynamic systems provide moti-
vation for the present study of spatio-temporally periodic pattern formation in
Euclidean equivariant systems (we call such patterns planforms).

We consider systems of partial differential equations (PDEs), which we write in
evolutionary form,

d
—u+ F(u,\) =0, (L.1)

where u(z,t) is a vector-valued function of # € R? and time ¢. Here we have
suppressed any possible dependence of u on a third (bounded) spatial coordinate
since this does not enter into our characterization of the symmetry of the problem.
We assume that (1.1) commutes with the action of the Euclidean group E(2).
Recall that the Euclidean group E(2) is the group of all motions in the plane
that preserve distances (translations, rotations, reflections). The action of E(2)
on functions u that we consider is defined by

g-u(z,t)=u(g 'z, t) (1.2)

for all g € E(2). As pointed out to us by Ian Melbourne, there are other ac-
tions of E(2) that we could consider, but in the Hopf bifurcation analysis of the
hydrodynamic examples that we mention, (1.2) is the relevant action.

We are interested in the situation where (1.1) undergoes a Hopf bifurcation
from a time-independent group-invariant equilibrium wug as the bifurcation pa-
rameter A crosses a critical value A.. Our goal is to find all the time-periodic
spatially periodic solutions to (1.1) that can be obtained using the equivariant
Hopf theorem (Golubitsky et al. 1988). Thus, we restrict attention to solutions
of (1.1) that are spatially periodic with respect to some planar lattice £. This
guarantees that the real generalized eigenspace of

Dy F(uo, M), (1.3)

associated with the imaginary eigenvalues at A = A, is finite dimensional.
When (1.1) is posed in the space X of £L-periodic functions, then the symmetry
group of the problem is reduced from FE(2) to I' = H+T?, where H is the
holohedry of the lattice £ and T? = R?/L (Dionne & Golubitsky 1992). We
scale time so that the only purely imaginary eigenvalues of (1.3) are +i. We
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further assume that the real generalized eigenspace associated with =i is of the
form V @ V, where V is a I'-absolutely irreducible subspace of X, and I' acts
diagonally on V @ V. Finally, we assume that the eigenvalues of (1.3) that cross
the imaginary axis as A crosses A, do so with non-zero speed.

The assumptions stated above guarantee that the hypotheses of the equivariant
Hopf theorem are satisfied (Golubitsky et al. 1988). This theorem states that for
each isotropy subgroup X C I'x §* that fixes a two-dimensional subspace of V@V,
there exists a unique branch of (group orbits of) small-amplitude time-periodic
solutions to (1.1) with period near 27r. These solution branches all bifurcate from
the invariant equilibrium as A crosses A, and have X as their group of symmetries.
The additional S' symmetry in the equivariant Hopf theorem is induced by the
Liapunov—-Schmidt reduction and corresponds to a phase-shift symmetry of the
27 time-periodic functions in V & V (Golubitsky et al. 1988).

Previous studies of Hopf bifurcation leading to spatially periodic solutions
in Euclidean equivariant systems have focused on specific representations of
I' = H+T?. Roberts et al. (1986) considered the six-dimensional irreducible rep-
resentation of Dg+T?, which is associated with a particular hexagonal lattice.
They determined the symmetries X of those solutions guaranteed by the equiv-
ariant Hopf theorem, together with their stability properties for perturbations
that lie on the same lattice. Their results were used to investigate pattern selec-
tion via symmetry-breaking Hopf bifurcation in the two-layer Bénard problem
(Renardy & Renardy 1988), in the Bénard problem for a viscoelastic liquid (Re-
nardy & Renardy 1992), and in thermosolutal convection (Renardy 1993). Silber
& (1991) Knobloch carried out a similar analysis for the Hopf bifurcation problem
associated with the four-dimensional irreducible representation of D,+ T?. They
classified the possible bifurcation diagrams, and also showed existence of more
complicated dynamical states that can bifurcate from the trivial solution at the
Hopf bifurcation. This classification proved useful in interpreting results of a nu-
merical study of three-dimensional compressible magnetoconvection in a square
box with periodic boundary conditions in the horizontal directions (Matthews
et al. 1995). Finally, Hopf bifurcation for the rhombic lattice, with holohedry
H = D,, arose in work on the oscillatory instability of spatially anisotropic two-
dimensional hydrodynamic systems (Silber et al. 1992). This paper focused on the
formation of a structurally stable heteroclinic cycle between three of the periodic
solutions that are guaranteed to exist by the equivariant Hopf theorem.

The present paper differs fundamentally from the previous investigations in
that it does not focus on a particular representation of the group I' = H-+T?2.
Instead, following Dionne (1990, 1993) and Dionne & Golubitsky (1992), we con-
sider those solutions that are spatially periodic with respect to some lattice L.
We classify, according to their spatio-temporal symmetries and spatial periodic-
ity, the time-periodic solutions that may be obtained through equivariant Hopf
bifurcation from a group-invariant equilibrium. A similar (partial) classification
of the steady-state, spatially periodic solutions of Euclidean-equivariant PDEs, in
two and three space dimensions, is presented in Dionne (1990, 1993) and Dionne
& Golubitsky (1992). These papers classify the solutions that are guaranteed to
exist by the equivariant branching lemma (Vanderbauwhede 1982; Golubitsky et
al. 1988).

Our c)lassiﬁcation of the time-periodic solutions includes the maximal isotropy
periodic solutions that were found in the previous Hopf bifurcation studies; these
are associated with the rhombic lattice and the short spatial period hexagonal and
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square lattices. However, we also find a countable infinity of new solutions that
are periodic on larger hexagonal and square lattices. Specifically, we find five
new solution branches for each of the countable infinity of twelve-dimensional
irreducible representations of D¢+ T2, and four new solution branches for each of
the countable infinity of eight-dimensional irreducible representations of D+ T2.
In our classification, each doubly periodic solution is associated with a unique
finest lattice £; we guarantee that a solution is not periodic with respect to a
finer lattice by requiring that the solution has no (non-trivial) pure translation
symmetries (Dionne 1990). This innocuous seeming observation is the algebraic
basis for the classification of steady-state planforms in Dionne (1990) and for the
classification of time-periodic planforms given here.

The approach taken in this paper, which is entirely group theoretic, is described
in the next section. The analysis breaks up into three separate cases, depending
on whether the holohedry is Dg, D, or D.; these are treated consecutively in
each of the sections. The solutions are characterized further by whether or not
their symmetries are continuous or discrete. The rotating waves have symmetry
Y, where X is one dimensional; these solutions correspond to travelling waves
in R? and rotating waves in T?. The discrete waves do not have any continuous
symmetries; these include not only the standing-wave patterns, but also solutions
with slightly more complicated spatio-temporal symmetry. The main theorems for
the discrete waves appear in §9, and the results for the rotating waves are in § 10.
Finally, in §11 we interpret the results by presenting pictures of representative
solutions as they might appear in shadowgraph images of thermal convection
patterns in hydrodynamic systems.

2. Theory

Our goal is to find all time-periodic spatially doubly periodic solutions that
typically bifurcate from a group-invariant equilibrium of a Euclidean invariant
planar system of PDEs by Hopf bifurcation. This goal is, of course, too ambitious;
there is, however, a restricted problem that gives much information about bifur-
cating solutions and which is tractable. We describe this restricted problem in
four steps.

First, observe that any spatially doubly periodic solution lies on a planar lat-
tice £. Let X denote the space of £-periodic functions on R2. We think of X, as
a model for the phase space of the differential equation. (In the actual PDE, the
phase space will consist of several copies of X, — the number of copies depending
on the number of equations.) The symmetries of X have the form I' = H+ T?,
where H is the holohedry of the lattice and T? = R?/L is the torus of transla-
tions modulo the lattice. The symmetries of a time-periodic solution in X, are
described by a pair of subgroups K C G of I', where the elements of G map
the periodic trajectory in phase space onto itself and the elements of K fix the
periodic trajectory pointwise. It follows from standard theory that K is a normal
subgroup of G and that G/K is a Lie subgroup of S'; that is, either G/K is
cyclic or G/K is isomorphic to S!.

Second, observe that if there is a pure translation in K (that is, KN T? # {0}),
then the periodic solution is supported on a smaller lattice. Thus, when we search
for solutions using equivariant Hopf-bifurcation-theory techniques, we need only
search for solutions that are translation-free, that is, K N T? = {0}. We call
such subgroups K shifted subgroups. Let ny : I' — H be the projection of I’
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onto the holohedry H. The shifted subgroups K are mapped isomorphically by
7y onto 7y (K). Thus, we can classify shifted subgroups by the subgroups of the
holohedry.

Once a lattice £ is fixed, the PDE is defined on a compact domain (with peri-
odic boundary conditions) and the standard hypotheses for Hopf bifurcation will
typically be satisfied. That is, the eigenspace corresponding to the critical imagi-
nary eigenvalues will have the form V &V, where I' acts orthogonally on V', and
by the diagonal action on V' & V. Moreover, the only irreducible representations
V that can occur (in the action of I' on L?(L)) are absolutely irreducible rep-
resentations. (The domains of linear PDEs of the kind we consider are, typically,
subspaces of L2.) We shall consider only Hopf bifurcations where I" acts (abso-
lutely) irreducibly on V. (What we have excluded are the cases where the critical
eigenspace is not irreducible.) From the previous discussion, we may assume that
no pure translation in I" acts trivially on V. If a translation were to act trivially,
then all solutions obtained by that Hopf bifurcation would have a proper trans-
lation symmetry and be supported on a smaller lattice. Thus, we may assume
that the representation of I' on V is translation-free as well as supposing that it
is absolutely irreducible.

Third, we observe that the equivariant Hopf theorem guarantees the existence
of branches of solutions under the assumption that a certain fixed-point subspace
is two-dimensional. To see this, identify V' = R™ and V &V = C™. Then there is
an action of I'x S! on C™, where the action of I' is as described previously and the
action of S is given by scalar multiplication (by scalars of unit modulus). Let X' C
I'x 8' be an isotropy subgroup of this action and assume that dim Fix ¢n () = 2.
Then the equivariant Hopf bifurcation theorem guarantees the existence of a
unique branch of time-periodic solutions with symmetry exactly X.

The standard theory of equivariant Hopf bifurcation provides an identification
of ¥ with the pair of subgroups K C G of I" described previously. In this iden-
tification, K = ¥ NI and G = 7p(X), where mp : I' x §' — I is projection.
Moreover, ¥ has the form of a twisted subgroup G® in the following sense. Since
S1 acts fixed-point freely on C™, there is a unique homomorphism @ : G — S*,
such that

Y=G°={(9,0(9)) eI x §': g€ G}.
In these terms, K = ker(©) and O(G) = G/K (which provides one method for
proving that G/K is a Lie subgroup of S').

Fourth, we observe from corollary 2.2 of Golubitsky & Stewart (1993) that
there is a further group-theoretic restriction on the pair (G, K') that follows from
the two-dimensional fixed-point subspace condition.

Theorem 2.1. Ifdim Fix(G®) = 2, then G/K is a maximal Abelian subgroup
of Nro(K)/K.

We can summarize the previous discussion as follows.

Definition 2.2. The pair of subgroups (G, K) of I' forms a wave pair if
(1) K is a shifted subgroup; i.e. K N T? = {0},

(2) K <G and G/K is a Lie subgroup of §*, and

(3) G/K is a maximal Abelian subgroup of Np(K)/K.

We observe that being a wave pair is a property of subgroups of I' and has
absolutely nothing to do with the representation of I' on V' = R™. For this reason,
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Table 1. Trace formulae for twisted subgroups

G/K dim Fix (G®)
1 2dim Fix (G)
Z 2(dim Fix (K) — dim Fix (G))
Z3 dim Fix (K) — dim Fix (G)
Z, dim Fix (K) — dim Fix (M),
where K C M C G and |G/M| =2
Zs dim Fix (K) — dim Fix (M) — dim Fix (L) + dim Fix (G),

where K € M C G, |G/M|=2,K C L C G and |G/L| = 3.

wave pairs give us a strategy for finding translation-free spatially doubly periodic
time-periodic solutions.
(1) Classify shifted subgroups K C I' up to conjugacy in I'.
(2) Find all subgroups G C I" such that:

(i) K C G C Nr(K);

(ii) G/K is a Lie subgroup of S*'; and

(iii) G/K is a maximal Abelian subgroup of Np(K)/K.
(3) For each translation-free irreducible representation of I', determine those
wave pairs that correspond to twisted subgroups G® such that dim Fix (G®) = 2.

We now comment on part 3 of this strategy. Recall that if G/K is cyclic,
then the corresponding solution is called a discrete wave; if G/K = S, then
the solution is a rotating wave. Note that since K is shifted, it is isomorphic to
the subgroup of the holohedry my(K) and is therefore finite. Hence, the wave is
discrete if G is finite and the wave is rotating if dim G = 1.

For the symmetry groups I' of the planar lattices, the quotient groups of dis-
crete waves G/K = Z; occur only for k = 1,2,3,4,6. (This is related to the
crystallographic restriction on lattice-point groups.) For precisely these cyclic
quotients, the dimensions of Fixcn(G®) can be determined from the dimensions
of fixed-point subspaces of R"™ through the use of trace formulae (see, for example,
Golubitsky et al. 1988). In particular, the form of © in the construction of G® is
not needed, which is a substantial simplification. The formulae for dim Fix (G®)
are given in table 1 for each twist type.

Finally, we note that for rotating waves it is necessary to compute dim Fix (G®)
directly. Fortunately, in these cases, the computations are tractable.

We can now describe in detail the structure of the paper. As noted previously,
we need consider only translation-free irreducible representations of the planar
lattice groups I'. It was shown in Dionne (1990) and Dionne & Golubitsky (1992)
that translation-free representations occur only for the hexagonal, square and
rhombic lattices. Thus, in each succeeding section we break the discussion into
three parts — one for each lattice.

The shifted subgroups K are indexed by subgroups of the holohedry. In §3,
we enumerate up to conjugacy in H all subgroups of the holohedry. The shifted
subgroups K are then classified up to conjugacy in I' in § 5 after some preliminary
discussion of pertinent lattice information in §4. The normalizers Np(K) of the
shifted subgroups K are computed in §6, followed by a complete classification of
wave pairs (G, K) in §7.
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To this point, only group-theoretic information in I' has been tabulated. In
order to find time-periodic solutions using the equivariant Hopf theorem, it is
necessary to discuss the irreducible representations of I" and this is performed in
§ 8. Discrete waves are found in §9 using the trace formulae listed in table 1 and
rotating waves are found in §10 using explicit calculations. Finally, pictures of
all of the time-periodic spatially doubly periodic planforms are presented in §11.

3. Subgroups of the holohedries

In propositions 3.1-3.3, we classify up to conjugacy the subgroups of the holo-
hedry on the hexagonal, square and rhombic lattices. We use the notation Zj
to indicate a cyclic group of order k consisting only of rotations. The notation
D, indicates a dihedral group of order 2k. Note that D; has order two and is
generated by a reflection. The group D, has four elements, is group isomorphic
to Z, x Z, and has three non-trivial order-two elements, two of which are reflec-
tions and one is a rotation. In each of the holohedries, there are, up to conjugacy,
three order-two groups — one generated by rotation through 7 and two generated
by reflections. We have tried to develop a notation that will distinguish these
subgroups and allow for an easy enumeration of the shifted subgroups in §5.

(a) Hezagonal lattice

The holohedry of a hexagonal lattice is H = Dg. Without loss of generality,
we may assume that the hexagonal lattice is generated by ¢, = (1/4/3,1) and
2, = (2/4/3,0). We enumerate the subgroups of Dg as follows. Let R denote
rotation counterclockwise by 60° and let h denote the reflection across the z-ais.
Then the twelve elements of Dg are enumerated by e, R, ..., R% h,hR,... hR®.

Proposition 3.1. Up to conjugacy in Dg, the subgroups of Dg are
(1) 1= {e},

(2) Zo[R’] = {e, B’}

(3) Z3[R2] = {€7R27R4}7

(4) Z6[R] = {6, Ra R27 R37 R47 Rs}y

(5) Dl[h] = {67 h}7

(6) Dy[hR| = {e,hR"},

(7) Dy|h, R®] = {e, h, hR?, R*},

(8) D3[h'7 R2] = {6, R27 R47 ha hR2a hR4}’

(9) Ds[hR, R?| = {e,R*, R*, hR,hR* hR®}, and

The proof uses routine group-theory arguments. As noted previously, there
are three two-element subgroups in this list. One contains a rotation (Z;[R?]),
one contains a reflection across a line connecting opposite vertices of a regular
hexagon (D;[h]), and one contains a reflection across a line connecting midpoints
of opposite sides in the hexagon (D;[hR?]). Up to conjugacy, there is only one D,
since each D, contains one reflection of each type. There are two non-conjugate
D;s; each containing the reflections of a given type.

(b) Square lattice

Without loss of generality, we assume that the square lattice £ is generated by
¢, = (1,0) and £, = (0,1). The holohedry of a square lattice is the group H = Dy,
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generated by R, the rotation counterclockwise by 90°, and h, the reflection across
the z-axis. Note that Rh is the reflection across the line x = y.

The following proposition is proved using elementary group-theory arguments.

Proposition 3.2. Up to conjugacy, the subgroups of D, are
(1) 1= {e},

(2) Z,[R?) = {e, R},

(3) Z4[R] = {6, R7 R2a R3}7

(4) Dy[h] = {e,h},

(5) Dy[Rh| = {e, Rh},

(6) Dylh, R?*] = {e, h, R* R?h},

(7) Dy|Rh, R?] = {e, Rh, R*, R®h}, and

(8) D,lh,R]) = {e, R, R?,R* h, Rh, R*h, R®h}.

In the square lattice, as in the hexagonal lattice, there are two types of reflec-
tion yielding, up to conjugacy, the two element subgroups D;[h] (generated by a
reflection across an axis) and D;[Rh| (generated by a reflection across a diago-
nal). On this lattice, however, there are two non-conjugate subgroups isomorphic
to D, each containing the reflections of a given type.

(¢) Rhombic lattice

Without loss of generality, we may assume that the rhomblc lattice is generated
by £; = (1,—cotf) and £, = (0,cosec) where 0 < § < im and 6 # im. The
holohedry Of the rhombic lattice is D, generated by P, a rotatlon by , and h, a
reflection that interchanges ¢; and /,.

Proposition 3.3. Up to conjugacy, the subgroups of D, are
(1) 1= {e},

(2) Z,|P] = {e, P},

(3) Dl[h] - {B,h},

(4) D,[Ph] = {e, Ph}, and

(5) Dslh, P] = {e, h, P, Ph}.

4. Lattice geometry

We introduce the following notation. Suppose that g is a reflection in the holo-
hedry H. Then the eigenvalues of g viewed as a matrix on R? are +1 and —1.
We define two circles in T? as follows:

E*(g) = the projection of the + 1 eigenspace into T
E~(g) = the projection of the — 1 eigenspace into T2
Note that for each vector w € R? we can write w = w™ +w™, where w* € E*(g)
and w~ € E~(g). Moreover, this decomposmon is also Vahd for points w € T*“.
The half lattice 1£ generated by v; = —Kl and vy = EQ, where ¢, and /, are
generators for the lattlce L, plays an 1mp0rtant role in’ our analysis. By abuse
of notatlon we denote the group obtained by prOJectmg the half-lattice ;£ into
T? by 1 L. T his subgroup of T'? has four elements and is generated by v, and vy,
The other non-trivial element in this subgroup is vy = v; + vs.
Next we define subsets of T? by
Ff(g)={ve T?: gv =},
F(g)={ve T?:gv=—v}
Phil. Trans. R. Soc. Lond. A (1995)
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Clearly E*(g) C F*(g9) and E~(g) C F~(g). We will see in the subsequent
sections that whether or not F*(g) equals E*(g) plays an important role in the
computation.

Similarly, the intersection of F*(g) with F~(g) also plays a significant role.
Note that

Fr(g)nF~(g) C 3£,
since if gv = v modulo £ and gv = —v modulo £, then v = —v modulo £ and
v E %E. Below, we compute these intersections for each type of reflection on each
lattice.

Finally, let g* be the reflection across the line perpendicular to the line of
reflection of g. Note that when viewed as a linear mapping on R?, gt = —g;
hence E*(g+) = E~(g) and E~(¢9*) = ET(g).

We first consider the hexagonal lattice with ¢ = h, where h is the reflection
with respect to the z-axis. In this case,

E*(h) ={aly: € R} = F*(h)
‘ E_(h):{—2a£1+a€2 IOKEzR}:F_(h).
For this reflection,
F+(h) N F_(h) = ZQ[’UQ].
As noted previously, the intersection F*(h) N F~(h) in T? consists of half lat-
tice vectors. A calculation on the hexagonal lattice shows that this intersection
consists precisely of the elements of ;£ that are also in the circle F*(h).
The reflection h't is a reflection of the other type on the hexagonal lattice.
Hence, it is a straightforward exercise to compute the relevant data for At from
the data for h.

We now consider the square lattice with g = h, where h is again the reflection
with respect to the z-axis. We find that

E*(h) ={at; : a € R},
E~(h) ={coly: v € R},
and
Fr(h) = {(m,y) € T*:0<a < Ly=0ory =L} = B*(h) & Zulvs),
F (h)={(z,y) e T*: 0<y<l,z=0o0rz =131} =E (h)® Zvs).
These groups consists of two disjoint circles on the torus. Moreover, in this case
F*(h)nF~(h) = ;L.
When g = Rh, the reflection across the diagonal line x = y, we have that
EtY(Rh) = {a(l; + £;) : « € R} = F*(Rh),
E~(Rh) ={a(ly —¥4;) :a € R} = F~(Rh).
Moreover,
FT(Rh) N F~(Rh) = Z,[v,).

Finally, we consider the rhombic lattice with g = h, the reflection that inter-
changes ¢; and £,. It is easy to see that

E*(h) ={a(ly +45) :a € R} = F*(h),
E~(h) ={a(ly —¥43) :a € R} = F~(h).
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Moreover,
FH(h)NF~(h) = Z,[va).
As with the hexagonal lattice, h* is the second type of reflection on the rhombic
lattice.
When E*(g) is equal to F*(g), we sometimes denote F'*(g) by E*(g). Simi-
larly, when E~(g) is equal to F~(g), we sometimes denote F~(g) by E~(g).

5. Shifted subgroups

A shifted subgroup of I' is a subgroup K whose intersection with T2 is trivial.
Such subgroups project isomorphically into the holohedry H, i.e. K is isomorphic
to mu(K). We can classify such subgroups by their image in H - a shifted D; is
just a shifted subgroup isomorphic to D; C H, and so on.

(a) Hezagonal lattice
We first classify the shifted groups in I' = Dg+T2.

Theorem 5.1. Every shifted group X C I' is conjugate to a subgroup of the
holohedry Dsg.

Proof. Let X be a shifted subgroup and let K = 7 (X) C H. Since X is shifted,
K and X are isomorphic. The proof proceeds by considering in turn each of the
possible Ks enumerated in proposition 3.1.

Cases 1-4. K = Zy, where k = 1,2,3,6. Suppose that 3 contains an element
(r,v), where r is a rotation. Then we may conjugate (r,v) by (e, w) to obtain

(e,w)(r,v)(e, —w) = (r,v+w — rw).
Since I —r is invertible, we can solve for w so that v+ w —rw = 0. It follows that
any shifted subgroup X of I' that is my-isomorphic to 1, Z,[R®], Z5[R?], Zs|R] is
actually conjugate to that group.

Cases 5, 6. K = D;[h] or K = D;[hR?]. We now consider the reflections. The
two-element group X is generated by an element of the form (g, v), where g € H
is a reflection. Recall that E*(g) and £~ (g) equal the circle subgroups F*(g) and
F~(g), respectively, in T, which we also denote by E*(g) and E~(g). Moreover,
the intersection E*(g) N E- (9) in T?is Z,[v,).

For (g,v) to have order two it is necessary that gv+v =10 modulo the lattice L.
Suppose we write v = vt +ov~, where v* € E*(g) and v~ € E~(g). It follows that
2v" = 0 modulo L or vt € :£. However, such vt are also in E~(g); so we may
assume that (g,v) has the form (g,v~). Next, we conjugate this group element
by (e, w™) obtaining

(e,w™)(g,v7)(e,—w™) = (g,v” 4+ 2w™).
It follows that we can choose w™ = —Zv™ so that the result of the conjugation is
(g,0). Hence, a shifted D, is conjugate to Dy, as desired.

Case 7. K = D,[h, R?]. The shifted group ¥ is generated by two reflections
across perpendicular axes of reflection (since the reflections must commute).
Thus, ¥ = ((h,v7),(h*,vT)) since, as above, each reflection must be of or-
der two. Using the result for shifted D;s we can conjugate X to have the form
3 = ((h,0), (h*,v")). If we now conjugate ¥ again by an element of the form
(e,w'), then (h,0) remains fixed and (h*,v") is transformed to (h*,v* + 2w™).
Thus, we can choose w™ so that the shifted D, becomes the standard Dy[h, R?].
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Cases 8, 9. K = Dslh, R?] or K = D;|hR, R*|. Let X be a shifted Ds. To verify
that X can be conjugated to a standard Dj, we first conjugate ¥ so that the
rotations are of the form (r,0). Next, let (g,v) be a reflection in X. Then the
group laws in D3 demand that

(,0)(g,v) = (g,0)(r*,0).

This identity implies that rv = v. Since r is a rotation, this means that v = 0.
Hence, ¥ = Dj, as desired. Note that this proof is valid for either subgroup
D;[h, R?| or Ds;[hR, R?.

Case 10. K = Dg[h, R]. The proof for the shifted Dss works identically for the
shifted Dgs. First, we conjugate rotations so that the shifted Zg is just the stan-
dard Zg[R]. The group operations then imply that the reflections must already
be in the holohedry. |

(b) Square lattice
We now classify the shifted subgroups up to conjugacy in I' = Dy+T?2.

Theorem 5.2. Every shifted subgroup K in I' is conjugate in I" to one of the
following subgroups

(1) 1,

(2) Z:|R?),

(3) Z.[R)

(4) Dl[h,] and Dl[(h,’Ul)],

(5) Di[RW),

(6) DQ[h, R2], DQ[(h, 'Ul), R2] and DQ[(h,’Ud), R2],

(7) Dy[Rh, R?], or

(8) Dy|h, R] and Dy4[(h,vq), R].

Proof. Let my : I' — D, be the projection of I' onto the holohedry D,. We
proceed by classifying up to conjugacy those subgroups X that project by my

onto one of the eight subgroups of D, listed in proposition 3.2. Note that since
Y is a shifted subgroup of I' = D,+ T?, it is isomorphic to 7y ().

Cases 1-8. mu(X) = 1, Zy|R?], Z4|R]. In these cases, ¥ is conjugate to 1, Z,[R?],
or Z,[R]. The proof is identical to the proof of cases 1-4 in theorem 5.1.

Cases 4, 5. mu(X) = Dy[h], D;[Rh|. In these cases, |X| = 2 and is generated by
(g,v), where g is a reflection and v € T?. We begin by considering the conjugacy

(6, _w)(gﬂ))(eﬂU) = (g’v +gw — w)
We can choose w = v~ to conjugate (g,v) to (g,v"). It follows from the fact
that (g,v") is of order two that vt € 1L£; hence either v+ =0 or v™ = v; in the
case g = h, and either v = 0 or v* = v, in the case g = Rh.
It remains to decide whether or not the two groups in each case are conjugate.
If they are, then the conjugacy has to have the form

(k,w)(g,vH) (k7Y =k~ w) = (kgk™ ", kvt +w — kgk™ w).

It follows that kgk~! = g and that the result of the conjugacy is (g, kvt + w —
gw) = (g, kvt 4+ 2w™). Now the only group elements in D, that commute with g
are e, g, R? and R?g, and each of these group elements preserves the circle E*(g).
Thus, when v is non-zero, the only way for kvt + 2w~ to equal zero mod L is
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for v* to be in E*(g) N E~(g). This cannot happen for the case g = h but does
happen for the case g = Rh. In particular, the intersection of E*(g) and E~(g)
in T? is {0} when g = h, and {0,v,} when g = Rh. Thus, in the case g = Rh
it is possible to choose w™ so that the two groups D;[Rh| and D,[(Rh,v,)] are
conjugate.

Cases 6, 7. mu(X) = Dylh, R?*], Dy[Rh, R?]. In these cases, |X| = 4 and X is
generated by (g,v) and (R?* w), where v and w are in T?. We begin by conju-
gating, as we did previously, (R?,w) to (R?,0). The third non-trivial element in
the shifted D, must have the form (g*,v'). Group multiplication implies that

(g, v)(R*,0) = (g7, v").

Hence v’ = v. Next, note that the commutativity relation

(g,’l))(Rz,O) = (R2’0)(g?v) (5 1)

implies that v € 3£. Hence, the shifted Dz “qualb D,[R?,(g,v )] for some v € L L.
There are four pOSSlbllltleb v=20,v =, v =1y and v = vy. For the cabe
g = Rh, only Dy[Rh, R?*] and Dg[(Rh v4), R?] are translation-free subgroups and
we show that these groups are conjugate. We also show that that Dy[(h,v;), R?|
is conjugate to Ds[(h,vs), R?].

If two of these groups are conjugate, then the conjugacy must fix the element
(R?,0). Note that any group element (k,w) commutes with (R?,0) as long as
w € %E. Next, compute the conjugacy

(k,w)(g,v) (k™ ", =k 'w) = (kgk™ ', kv +w — kgk™w).

In order to be a conjugacy between two of the Dy[R?, (g,v)]s it is necessary that
either kgk~! equal g or g*. So if we write w = w* + w~, then either

(k"v’w)(g? )(k' ! ’"k' w) (gvkv+2w )
or (k,w)(g,v)(k™", =k 'w) = (¢, kv + 2w™).

Here there is a difference between the cases ¢ = h and g = Rh. In the case
g = h, we can check that w € ;£ implies that wt,w™ € 1£ and, hence, that
2w, 2w € L. Therefore, the becond coordinate in the conJugacy is kv. In the case
of the D,[R?,(g,v)], where g = h, we can set k = R to show that Dy[(h,v,), R?] is
conjugate to Dg[(h, vy), R?). Moreover, no further conjugacies of the D,[R?, (g,v)]
are possible.

For the case g = Rh, we choose k = ¢, w = w™ = 3(3,—3) and v = 0 to see
that

v+ 2w = vy,

which proves that Dy[Rh, R?] and Ds,[(Rh,v,), R?] are conjugate.

Case 9. mu(X) = Dulh, R]. In this case, X is generated by (h,v) and (R, w),
where v, w € T?. Since R is a rotation, we may conjugate ¥ so that ¥ is generated
by (h, v) and (R,0) for some v € T?, and % equals Dy[(h,v), R]. Since (h,v) and
(hR? v) are of order two, it follows that v + hv € £ and that v — hv € L; hence,
v E 1£ There are now four possibilities for v; namely, v=0,v=uv4 v=1 and
v = Ug Note, however, that (Rh,v) = (h, v)(R3 0) is also in Dy[(h,v), R] and is
of order two. It follows that v + Rhv must be in £, which is false when v = v; or
UV = Vs, |
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(¢) Rhombic lattice
We now classify the shifted groups in I' = Dy+ T2,

Theorem 5.3. Every shifted subgroup of I' is conjugate to a subgroup of the
holohedry D,.

Proof. Let X be a shifted subgroup of I' = D,+ T?; hence, X is isomorphic to
WH(E).
Case 1-2. (X)) = 1, Z,[P]. 1In these cases, X is conjugate to 1 or Z,[P]. The
proof is identical to the proof of cases 1-4 in theorem 5.1.
Cases 3, 4. my(X) = Dy[h] or mu(X) = D,[Ph]. Suppose that ¥ is generated
by (g,v), where g = h or g = Ph. Recall that E*(g) and E~(g) equal the circle
subgroups F'*(g) and F~(g), respectively, in T2, which we also denote by E*(g)
and E~(g). We can write v as v = vt + v, with v* € E*(g) and v~ € E(g).
Since

(e, w)(g,v)(e, —w) = (g,2w™ +v) = (g,v")

for some w™, we may assume that v = v*. Since vt € LN E*(g) = {0,v,4} (as

(g,v") is of order two), it follows that v = 0 or v = v,. The subgroup generated
by (g,v4) is conjugate to the subgroup generated by (g,0) for

(e, v1)(g,va)(e,v1) = (g, 0).
Case 5. my(X) = D,[h, P]. After a preliminary conjugation we may assume that
Y is generated by (P,0) and (h,v), where v = v 4+ v~ with v* € E*(h) and
v- € E~(h). From

(h,v)(P,0) = (P,0)(h,v),
we see that v € %E. However, ¥ is not a shifted subgroup if v = v; or v = v, for
(h,v)(h,v) = (e,vq) € X for these values of v. Hence, v = 0 or v = v,. The group
generated by (P,0) and (h,v,) is conjugate to Dsylh, P] for

(e,v3)(h,vq)(e,v2) = (h,0) and (e, vy)(P,0)(e,vy) = (P,0).

6. Normalizers

To determine the possible G's that go with each of the shifted subgroups K of
I', namely the Gs that satisfy theorem 2.1, we need to compute the normalizers
of the shifted subgroups K. The following lemma will be useful for this purpose.
Note that the conclusion of this lemma is obviously true if K is of order two and
L is any planar lattice.

It is worth recalling the definitions of the commutator, normalizer and central-
izer subgroups. The commutator of two subgroups G and K is

G,K] = {gkg 'k' : g€ Gand k € K}.
The normalizer of K in I' is
Nr(K)={yel:vKy'=K}.
Finally, the centralizer of G in I is
Cr(Gy={yeTl':vg=gv,Vge G}
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Lemma 6.1. Let £ be a rhombic or hexagonal lattice. Suppose that K is a
shifted D,. Then Ny(K) = Cr(K).

Proof. Let Z, = {e}. We begin by claiming that the commutator subgroup
[[',T] = Z,+T?, where k = 3 on the hexagonal lattice and k = 1 on the rhombic
lattice. To verify the claim, first recall that if A <I" and if I'/A is Abelian, then
[[,T] C A. Observe that A = Z,+T? is normal in I' = Dy,+T? and that
I'/A = Z? is Abelian. Hence, [I',I"] C Z,+T?. On the other hand, an explicit
calculation shows that each element of Z,+ T'? is a commutator.

Next, let N = Np(K). Since K is normal in N, it follows that [V, K| C K. In
addition, [N, K] C [I',I'] = Z,+T?. Thus, [N, K] C KN (Z,+T?). However, this
intersection is trivial since K is a shifted D, and, therefore, N commutes with
K. Hence, N C Cr(K), but the centralizer is always contained in the normalizer
and the lemma is proved. |

(a) Hezagonal lattice
The three-element subgroup of T? generated by v; = %61 + %62 plays an im-
portant role in the analysis that follows. We denote this group by Zs[v;].

Proposition 6.2. Let £ be a hexagonal lattice and let ¢ = h or ¢ = h*. Then
Cr(D1) = Dslh, RSHE+(Q),
where D, is generated by (q,0), and
Cr(Dylh, R?])) = Dylh, R?] x Z,[v].

Proof. Let (g, w) commute with Dy, i.e. (g, w) commutes with (g,0). It follows
that g commutes with ¢; hence, g is either also a reflection (and either equals h
or ht),g=R¥org=ce.

If g = e, then (e, w) commutes with (¢,0) when w = wt € E*(q). If g = R®,
g = hor g = h', then (g,w) also commutes with (¢,0) if w = w". These
statements verify that Cp(D;) = Dy+E*(q).

To verify the second statement, observe that

Cr(Ds[h, R]) = Cr(Dy[h]) N Cr(Dy[RR?]) = Dok, R*]+(E" (h) N E~(h)),
and E*(h) N E~(h) = Z[v,]. |

Next we compute the normalizers of the shifted subgroups K of Dglh, R] given
in theorem 5.1.

Theorem 6.3. The normalizers in I" of the subgroups K of theorem 5.1 are

(1) Np(1) =T,

(3) Nr(Zs[R?]) = Dg|h, R+ Zs[vi],

(4) Nr(Zs|R]) = Dglh, R],

(5) Nr(Di[h]) = Dyh, R*]+E* (h),

(6) Nr(D\[hR°]) = Dy[h, R°]+E" (h),

(7) NF(Dz[h, Rg]) = DQ[h,RB] X ZQ['UQ],

(8) Nr(Djs|h, R?]) = Dg|h, R], and

(9) Ny(Ds|hR, R?)) = Dslh, R)+Zs[v,] where v, = sy +45), and

(10) Nl‘(DG[th]) - DG[h’ R]

Proof. We proceed by computing the normalizers for each of the subgroups
listed in proposition 3.1.
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Case 1. K = 1. This case is trivial.

Case 2. K = Z,|R*]. We conjugate Z,[R3] by (a,v) obtaining
(a,v)(R?,0)(a !, —a ") = (R®, 2v).

Thus, (a,v) € Np(Z,[R®]) precisely when v € L.

Cases 4, 10. K = Zg[R] or K = Dg[h, R]. Suppose (¢,0) € K and (a,v) €
Nr(K). Then, conjugating by (a,v) produces
(a, U)(q, 0)(0’_1, _a_lv) = (aqa_lv v = aqa_lv). (61)

Since K C H, it follows that v — aga™'v = 0 modulo L.

We first observe that if K contains the rotation R, then Np(K) = Nyg(K). If
q = Ror R then aga™? is either R or R® for all a € Dg. Moreover, w—Sw = 0 in
T?, where S = Ror S = R’ and w = af; + (3¢5, implies that o« = =0 (mod 1).
It follows that v — aga='v = 0 modulo £ is satisfied only if v = 0 and then
Nr(K) C Nu(K). The reverse inclusion is always valid. Standard calculations
now prove cases 4 and 10.

Cases 3, 9. K = Z;|R?] or K = D;|hR, R?]. We observe that if K contains the
rotation R?, then

Suppose that (a,v) is in Np(K). From (6.1) it is easy to see that we must have
a € Ny(K). Moreover, to satisfy the relation v —aga™'v = 0 € T?, where ¢ = R?
or ¢ = R*, we must have that v € Z;[v;]. This follows from two facts: aga™ is
either R? or R* for all a € D¢, and w — Sw = 0 in T% where S = R? or S = R*
and w = oy + (¢,, implies that a =3 =0, z or % (mod 1).

The normalizers of K = Z3[R?] and K = Dg[hR, R?] are easy to compute when
we realize that Zs[v;] is a subset of Np(K) and Ng(Z3[R?)) = Nu(Ds[hR, R?)) =
Dg[h, R]. Note that

(e,2v;)(hR,0)(e,v;) = (hR,0).

Cases 5-7. K = Ds[h], K = D;[hR® or K = Dy[h,R3]. These cases follow
directly from proposition 6.2.

Case 8. K = Dslh, R?]. Suppose that (a,v) is in the normalizer of Ds[h, R?],
where v € Z3[v;] (note that (6.2) is still true here). It is always possible to find
q € Djs|h, R?] such that aga™* = h. With this choice of ¢ in (6.1), we obtain
v—hv=0¢€ T? However, v — hv =0 € T?, where v € Z3[v;], is satisfied only if
v = 0. This shows that Ny(Ds[h, R%]) = Ny(Ds[h, R?]) = Dg|h, R]. |

(b) Square lattice

Theorem 6.4. The normalizers in I' of the shifted subgroups in theorem 5.2
are
(1) Nr(1) = ,
( [Rz] Dy[h,R]+3L,
(3) Nr(Zy[R]) = Dqylh, R]+Z2[Ud]
(4) Nr(Dl[h]) Nr(Dy[(h,v1)]) = Dy[h, R2]+F+(
(5) Np(D,[Rh)) = Dy[Rh, R2]+E+(Rh)
(7) NF(Dz[(h v1), Rz] = Dg[h, R2] X 1£
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(8) Nr(Dy[Rh, R%|) = Dylh, R] X Z,|vy], and
(9) Nr(Dalh, R]) = Nr(Da[(h,va), R]) = Dulh, R] x Z;[vg].
Proof.

Case 1. Trivial.
Case 2. 'We have shown in (5.1) that (g, v) commutes with Z,[R?] precisely when
ve L.

Case 8. 'We know that (g,0) normalizes Z,[R] for any g € D,[h, R]. Any (e, w)
that normalizes Z,[R] must commute with (R?,0); hence, w € $£ by case 2. Now
compute (e, —w)(R,0)(e,w) = (R, Rw — w). Note that when w = 0 or w = vy,
the element Rw —w = 0 and (R, Rw — w) is in Z,[R]; however, this conclusion
is invalid when w = v; or w = vs.

Case 4. Suppose that (g,w) commutes with either D,[h] or D;[(h,v;)]. Then,

(gaw)(hav) = (h,v)(g,w),

where either v = 0 or v = v;. This implies that gh = hg and w + gv = v + hw.
Hence, g may be e, h, R? or hR?. For any such g, we have gv = v in T?; hence,
hw = w. By definition, (e, w) € F"(h) and we have computed the normalizer.

Case 5. Suppose that (g,w) commutes with D, [Rh]. Then
(g, w)(Rh,0) = (Rh,0)(g,w)
implies that gRh = Rhg and w = Rhw. Hence, g must be either e, Rh, R? or
R3h; and w € ET(Rh).
Case 6. Observe that if K = Dy[R?, (g,v)], where g = h, v = 0, v = v, or
v = vy, then
L= Np(K)n T
To verify this point, note that from (e, w)K (e, —w) C K, it follows that
(e,w)(h,v)(e,—w) = (h,v) and (e,w)(R*h,v)(e, —w) = (R*h,v).
Hence, w — hw = 0 and w — R*hw = w + hw = 0 in T?. Thus, w € ;L.

In the cases where v = 0 or v = vy, we may check that D,[h, R] C Np(K).
(Note that 0 and v, are fixed under the action of Dy[h, R].) Hence, we have that

Nr(K) D> Dy[h, R]+1L.
In fact we have equality. Suppose that (g, w) € Np(K). Since (g,0) € NF(K)
follows that (e,w) is also in Np(K). Hence, w € 3£ and (g,w) € Dy[h, R+ E

Case 7. In the case where K = Dy[(h,v;), R?], it is easy to check that
D,[h, R*] C Np(K). (Note that the elements of 1L are fixed under the action
of D,[h, R?].) Hence,

Nr(K) D Dy[h, R?]+1LL.

Again, we have equality. Suppose that we have strict inclusion, then (R,w) €
Nr(K) for some w € T?. However, this is impossible since

(R,w)(h,v) (R, —R 'w) = (hR*,w + vy + hw) € K

implies that w + hw + v, = 0. However, w + hw € E*(h) and 0 # v, € E~(h)
and E*(h)NE~(h) = {0}.
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Case 8. We consider the case Dy[Rh, R?] and note that
Nr(Dy[Rh, R?)) N T? = Zy[vy).
From (e, w)Dy[Rh, R*](e, —w) C Dy[Rh, R?], it follows that
(e,w)(Rh,0)(e, —w) = (Rh,0)
and (e,w)(R’h,0)(e, —w) = (R*h,0).
Hence, w — Rhw = 0 and w — R°hw = w+ Rhw = 0 in T?. Thus, w € ;L. We

now check that w — Rhw = 0 € T? only when w = 0 or w = vy, as deblred
It is easy to see that Dy[h, R] C Ny(K). Hence,

N['(K) D) D4[h,R]‘i‘Z2['Ud].

To prove that we have equality, we suppose that (g,w) € Np(K). Since
(9,0) € Np(K), it follows that (e,w) € Np(K). Hence, w € Z,[v,] and
(gaw) € D4[h7R]+ZQ[Ud]‘

Case 9. Let K = Dylh,R] or K = Dy[(h,v4), R]. Observe that any group ele-
ment that normalizes K automatically normalizes Z,. It then follows that

K-i-Zz[Ud] C Nr(K) C Nr(Z4[R)) = K+Z2[Ud],
where the first inclusion is found by direct calculation. ||
(¢) Rhombic lattice

Theorem 6.5. The normalizers in I' of the shifted subgroups in theorem 5.3
are

(1) Nr(1) =F,

(3) Nr(Dy[h]) = D2[h7p]+E+( )
(4) Np(Dy[Ph)) = Dylh, PI+E~(h), and

(5) Ne(Dslh, P]) = Dalh, P| x Zo[u].

Proof. Since Cr(K) = Nr(K) for any of the groups that we have to consider,
we only have to compute the centralizers of these groups. See lemma 6.1.

Case 1. Trivial.

Case 2. Tt follows from (g,v)(P,0) = (P,0)(g,v) that gP = Pg and —v = Pv =
v. Hence, g is any element of D,[h, P| and v € 1L.
Case 3. It follows from (g,v)(h,0) = (h,0)(g,v) that gh = hg and hv = v.

and v € E*(h).
Case 4. Similar to case 3; just replace h by Ph.

Hence, g is any element of Ds[h, P

Case 5. This result follows from cases 3 and 4
Cl‘(Dg{h,P]) = Cr‘(Dl[h]) ﬂ CF(Dl[Ph])
= Dy|h, P]4+E*(h) N E (h).
Note that E*(h) N E~(h) = Zy[vg] and that Z,[vy] commutes with Dy[h, P]. R

7. Wave pairs
We now list up to conjugacy the wave-pair subgroups K C G. See definition 2.2.
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(a) Hezagonal lattice
We first begin with the hexagonal lattice.

Theorem 7.1. Let I' = D¢+ T? be the group of symmetries of the hexagonal
lattice. Up to conjugacy, the pairs of subgroups K C G, where K is a shifted
subgroup, G C Nr(K), G/K is cyclic or isomorphic to S* and G/K is maximal
Abelian in Nr(K)/K, are

(1) K =1 and G = Z,

(2) K = Z,[R?| and G = Z,[R3] x Z4[(h,v1)],

(3) K = Z,[R?| and G = Z4|R),

(4) K= Dz[h, RB] and G = DQ[h, RS] X ZQ[’UQ],

(5) K = Zg[R] and G = Dg|h, R],

(6) K = Dslh, R?] and G = Dg[h, R],

(7) K = D3|hR, R*| and G = Dg[h, R],

(8) K = D3|hR, R?] and G = D;[hR, R*+ Zs[v,] where v, = ({1 + £2),

(9) K = Dg|h, R| and G = Dglh, R],

(10) K = D, [h] and G = D;[h] x E*(h), and

(11) K = D,|hR?)| and G = D;[hR®] x E~(h).

Proof. Again the proof proceeds by considering each of the subgroups listed in
proposition 3.1.

Case 1. K = 1. From theorem 2.1, we see that G must be a maximal Abelian
subgroup of I'. If G is isomorphic to §*, then G is a strict subgroup of T? and
therefore is not maximal Abelian. Suppose that G is cyclic and let a generator
for G be (S,v), where S € H and v € T?. There are three possibilities: S = r,
a rotation; S = ¢, a reflection; or S = e. In the last case, G C T? and, hence, G
is not maximal Abelian. In the second case G C G x E*(q) and again G is not
maximal Abelian. In the first case G is generated by (r, v) and, by proposition 3.1,
G is conjugate to Zj, for k = 2,3,6. Only when G = Zs[R] is G maximal Abelian.

Case 2. K = Z,[R?|. From proposition 6.3 we see that
Nr(Z,[R%)) = Z,[R®] x (Dslh, R*]+1L)

and hence that

NF(Zz[RS])/Zg[Ra] A= D3[h,R2]+%£
We proceed by first determining the cyclic maximal Abelian subgroups G’ of
A. Let (S,v) be a generator of G'. We claim that up to conjugacy in A either
(S,v) equals (R?,0) or (h,v;). To verify the claim, note that up to conjugacy in
Ds[h, R?] it is enough to consider S =e, S = R* or S = h. When S =e¢, G’ is
strictly included in 2L and G’ is not maximal Abelian. When S = R?, then (R2 v)
is conjugate to (R?, 0) (Use (e,w), where w € 3L to perform the conJugacy) In
this case, G' = Z3|R?] is a maximal-Abelian cyclic subgroup of Ds[h, R*]+3L.
Now consider the case S = h. There are four possibilities for (h,v) and they are
given by v = 0, v = vy, v = v; or v = v4. For the first two possibilities, G’ is
strictly included in D;[h] x Z[v,], which is Abelian but not cyclic. For the last
two possibilities, G’ = Z,[(h,v;)] which is a maximal Abelian and cyclic.

In the previous paragraph we showed that, up to conjugacy, any subgroup G C
Nr(Z,[R?)) that contains Z,[R®] and whose quotient with Z,[R®] is cyclic and
maximal Abelian in Nr(Z,[R®])/Z,[R?] must project onto one of two subgroups:
Z3[R?] or Z[(h,v1)]. Only G = Zg[R] projects onto the first group and, up to
conjugacy, only G = Z,[R?] x Z,[(h,v,)] projects onto the second group.
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Case 3. K = Z3|R?). In this case there is no G associated with K. Since
Nr(K) = Zs[R*|+(Ds[h, R*|+ Z5[vy)),
we need to show that each cyclic subgroup G’ of
Nr(K)/K = Dylh, R*+Zs[v]

is strictly contained in an Abelian subgroup A. Let v € Z;[v,]. If G’ is generated
by (e,v) or (hR? v), we take A = D, [hR?| x Z3[v;]. If G’ is generated by (R3,v),
then we take A = D, [hR?| x Z,[(R®,v)]. Finally, if G’ is generated by (h,v), then
we take A = Dy[(h,v)] x Z,[(R*,v)].

Cases 4, 7, 8, and 10. K = ZsR|, K = Dyh, R}, K = Dslh,R* or
K = Dg[h,R]. Observe that in each of these cases Nr(K)/K is cyclic. The
requirement that G/K be maximal Abelian implies that G = Nr(K) is the only
possibility.

Cases 5, 6. K = Dy[h] or K = D;[hR®]. We first show that there are no finite
Gs associated with these Ks. It follows from proposition 6.3 that

Nr(K) = K x (Dilg"]+E%(q)),

where K = D,[q]. To satisfy theorem 2.1, we need to find cyclic subgroups G’
of Np(K)/K = D;lq*]+E"(q) which are also maximal Abelian. Let (S,v) be
the generator of G'. If S = e, then G’ is strictly included in E*(q). Hence, G’
is not maximal Abelian. Suppose that S = ¢*, the other reflection in D,. We
may choose w € ET(q) such that (e,w)(S,v)(e, —w) = (5,2w + v) = (5,0) and
(e,w)D,(e,—w) = D,. Hence, we may assume that G’ is generated by (5,0).
However, then G’ is strictly included in D, [gt] X Z,[v,], which is Abelian. Hence,
G’ is not maximal Abelian.

The group G = K x E*(q) satisfies G/K =~ S' and G/K is maximal Abelian
in Np(K)/K. The continuous group E*(q) is maximal Abelian in D;[g*]+E*(q)
since ¢ does not commute with all the elements of E*(g).

Case 9. K = Ds;[hR, R*]. We show that, up to conjugacy, we have G = Ds[h, R|
or G = Ds[hR, R*+ Z3[v,]. Since
Nr(K) = D3[hR, R*|+(Zs[R*|+ Zs[vy]),
we need to find maximal-Abelian cyclic subgroups G’ of
Nr(K)/K = Zy|R*|+ Z3(v,).

If G’ is generated by (e,v), where 0 # v € Zs[v;], then G' = Z3[v;] is maximal
Abelian. If v = 0, then G’ = 1 is strictly included in the Abelian group Z,[R?],
say. If G’ is generated by (R3,v), where v € Zs[v;], then G’ = Z,[(R?,v)] is max-
imal Abelian. Note that DslhR, R?]+Z,[(R3,v;)] and Ds[hR, R*|+Z,[(R3, 2v,)]
are conjugate to Dg[h, R]. The conjugacy for the first group is given by (e, v;)
and for the second group by (e, 2v;). |

(b) Square lattice
For the square lattice, we have the following result.

Theorem 7.2. Up to conjugacy, the pairs of subgroups K C G, where K is
a shifted subgroup, G C Nr(K), G/K is cyclic or isomorphic to 8* and G/K is
maximal Abelian in Nr(K)/K, are

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on November 14, 2012

144 B. Dionne and others
(1) K = Dylh, R?] and G = Dylh, R2]4—Z4[(Rh,y1)],
(2) K = Dg[( ,'Ud), RQ] and G = DQ[(h, 'Ud), R2]+Z4[(Rh, ’Ul)],
(3) K = D,[h,R] and G = D4[h,R]+Z2[1gd],
4) K = D4[(h, ’Ud), R] and G = D4[h,R]+Z2[Ud], and

(5) K = D.|Rh] and G = D,[Rh] x E*(Rh).

Proof. The method of proof is to determine, for each K in theorem 6.4, the
possible G's for which G/K is cyclic or isomorphic to S, and maximal Abelian
in Nr(K)/K.

Case 1. K = 1. We show that there are no subgroups G that pair with 1; the
proof is similar to the one in theorem 7.1. If G is isomorphic to S!, then G is
a strict subgroup of T'? and therefore is not maximal Abelian. The subgroup G
must be a cyclic maximal Abelian subgroup of I'. Let (S,v) € I" be the generator
of G. If S = e, then G is strictly included in T2 and therefore G is not maximal
Abelian. If S is a reflection, then G is strictly included in G x E*(S) and again
G is not maximal Abelian. Finally, if S is a rotation, then we may assume that
G is generated by (S,0) after conjugacy. Hence, G = Z,[R?| or Z,[R]. In either
case, G is strictly included in G x Z,[v,| and G is not maximal Abelian.

Case 2. K = Z,[R?]. 'We show that there are no subgroups G that pair with K.
We know that Z,[R*] C G C Nr(Z,[R?]) = D4[h, R]+3L. In this case,

Nr(K)/K = (Dilh, R/ Z,[R*))+ 5L

is a sixteen-element group. By direct calculation one can show that the elements
of Nr(K)/K have order one, two or four. The elements of order two can be
embedded either in a subgroup isomorphic to Z,[R] or Dy[h, R?]. In either case
these cyclic groups are not maximal Abelian. There are four elements of order
four; they are the cosets of (R, v), (R,vs), (Rh,v;) and (Rh,v,). Each of these
commutes with the coset of (h,0) in (D,[h, R]/Z,|R?])43L and the element of
order four together with (h,0), generates an eight-element non-cyclic Abelian
group.

Case 3, 7, 8. K = Z,[R|, K = Dy[(h,v,),R?*| or K = Dy[Rh,R*]. In these
cases Nr(K)/K is Abelian but not cyclic. Hence, there are no Gs associated with
these Ks.

Case 4. K = Dy[(h,v)] where v =0 or v =wv,;. We first show that there are no
finite subgroups G associated with these K's. We note that

Nr(K) = Dy[(h,v)] X (Zo|R*|+F*(h)).

We have to find cyclic maximal Abelian subgroups G’ of Np(K)/K =
Zy|R?|+F*(h). Let (S,w) € Np(K) be the generator of G'. As usual, if S = e
then G’ is strictly included in F'*(h). Thus, G’ is not maximal Abelian. If S = R?,
then (S, w) is of order two. Moreover, (S, w) commutes with (e, v;); and G’ is not
maximal Abelian. There is no group G such that G/K = §' and G/K is maxi-
mal Abelian in Np(K)/K. Note that there is no subgroup G’ of F*(h) such that
G' = §' and G’ is maximal Abelian in F*(h) for F*(h) & E*(h) x Z;[v,] % S'.

Case 5. K = D;[Rh]. There are no finite Gs such that G/K is cyclic and
maximal Abelian in Np(K)/K; the proof proceeds exactly as in case 4 when
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However, there is a group G such that G/K = S' and G/K is maximal Abelian
in Np(K)/K. It is G = D,[Rh| x E*(Rh). Note that

Ni(K) = Dy[Rh) % (Z,[R’]-E* (Rh)).
and E*(Rh) = 8" is maximal Abelian in Z,[R*|4+E* (Rh).

Case 6. K = Dy[R?, (h,v)] where v =0 or v = v;. We show that we can have
G = Dy|R?, (h,v)|+Z4[(Rh,v,)]. Since

Nr(K) = K x (D,[Rh]+1L),

we need to find cyclic maximal Abelian subgroups G’ of Np(K)/K = D[Rh]+1L.
Let (S,v) be the generator of G'.

If S = e, then G’ is strictly included in %E and G’ is not maximal Abelian.

If S = Rh and v = 0 or v = vy, then G’ is strictly included in D, [Rh] X Z;[v,]
and again G’ is not maximal Abelian.

If S = Rh and v = vy or v = vy, then G’ = Z,[(Rh,v,)] is cyclic and maximal
Abelian. Moreover, only the subgroup K+ Z,[(Rh,v,)] of Np(K) projects onto
Zy[(Rh,v,)] in Np(K)/K.

Case 9. K = Dy[h,R] or K = Dy[(h,vs),R]. In this case G must be Np(K)
since Np(K)/K = Z,[v,] is cyclic. [ ]

(¢) Rhombic lattice
Finally, we consider the rhombic lattice.

Theorem 7.3. Up to conjugacy, the pairs of subgroups K C G where K is a
shifted subgroup, G C Nr(K), G/K is cyclic or isomorphic to S*, and G/K is
maximal Abelian in Np(K)/K are

(1) K = Z,[P] and G = Z,[P] x Z,[(h,v,)],

(2) K = Dslh, P] and G = Dy|h, P] X Z;[v,),

(3) K = Dy[h] and G = D;[h] x E*(h), and

(4) K = D,[Ph| and G = D,[Ph] x E~(h).

Proof. We consider in order the five Ks listed in proposition 3.3.

Case 0. K = 1. We first show that there is no finite G associated with K. The
subgroup G must be a cyclic maximal Abelian subgroup of I'. Let (S,v) € I’
be the generator of G. If S = e, then G is strictly included in T'? and therefore
G is not maximal Abelian. If S is a reflection, then G is strictly included inside
G x E*(S), where ET(S) = {v € T? : Sv = v}, and again G is not maximal
Abelian. Finally, if S = P, then we may assume that G is generated by S alone
after conjugacy. Hence, G = Z,[P] and G is strictly included in G' x £ and G
is still not maximal Abelian. If G = S§!, then G is a strict subgroup of T'? and
therefore is not maximal Abelian.

Case 1. K = Z,[P]. We have that

Ne(K) = Z,(P] % (Dy[h)-5L).
We wish to find cyclic subgroups G’ of Np(K)/K = D;[h]4+1L which are also
maximal Abelian. Let (S,v) € Nr(K) be the generator of G'. If S = e, then G’
is not maximal Abelian since it is strictly included in $£. Similarly, if S = h and

v =0 or v = v, then G’ is strictly included in D, [h] X Z3[vy|. However, if S = h
and v = vy or v = vy, then G' = Z,[(h,v,)], which is maximal Abelian.
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Case 2. K = Dy[h, P]. The only choice for G is Np(K) since Nr(K)/K = Zy[v,]
is cyclic.

Case 3. K = D;[h]. In this case,
Ne(K) = Dy[h] x (Dy[PREE* (h).

First we show that there is no finite subgroup G associated with K by considering
cyclic subgroups G’ of D;[Ph]+E*(h) and showing that they are not maximal
Abelian. Let (S,v) € Np(K) be the generator of G'. As usual, if S = e then
G’ is strictly included in E*(h). Thus, G’ is not maximal Abelian. If S = Ph,
we may assume that v = 0 for (e,w)(S,v)(e, —w) = (S,v + 2w) = (5,0) and
(e,w)(h,0)(e,—~w) = (h,0) for some w € E*(h). Hence, G' is strictly included
in Dy[Ph] x Z[vy] and G’ is again not maximal Abelian. However, there is a
group G for which G/K = S§' and G/K is maximal Abelian in Np(K)/K. It is
G = Dy[h] x E*(h), since E*(h) = §' is maximal Abelian in D,[Ph]+E*(h).

Case 4. K = D;[Ph|. The computations for this case are similar to those for
D, [h] above. There are no finite Gs such that G/K is cyclic and maximal Abelian
in Nr(K)/K and there is a group G such that G/K = 8! and G/K is maximal
Abelian in Np(K)/K. It is G = D,[Ph] x E~(h). ]

8. Irreducible representations

We wish to determine which of the wave pairs found in the previous section
characterize symmetries of discrete or rotating waves that are guaranteed to ex-
ist by the equivariant Hopf theorem (see Golubitsky et al. 1988, theorem XVI,
§4.1). In particular, we need to determine those wave pairs that support twisted
subgroups with two-dimensional fixed-point subspaces in V & V, where V is a
I'-absolutely irreducible subspace of the space of L-periodic functions. This is
achieved in the following two sections. In this section we:

(i) describe the I-absolutely irreducible translation-free subspaces of the space
of L-periodic function; and

(ii) describe the action of I" on these (finite) I" absolutely irreducible, translation
free subspaces.

First, in table 2, we give (without loss of generality) basis vectors for each
planar lattice and its dual lattice.

It is shown in Dionne & Golubitsky (1992) that the I-absolutely irreducible
translation-free subspaces of the space of L-periodic functions are of the form

V = {Z(zjeQwin-ﬁ + C.C.) 12 = C} [ CS,

j=1

where the possible values of dim V' = 2s and the Kjs are given in table 3 for the
pertinent lattices. Note that the rectangular and obhque lattices do not support
translation-free absolutely irreducible subspaces (Dionne & Golubitsky 1992).

To compute the dimensions of the fixed-point subspaces of the finite twisted
subgroups obtained in theorems 7.1-7.3 (see §9), we need only define the action of
some finite subgroups of I" on V. This is performed in the next three subsections.
To compute the dimensions of the fixed-point subspaces of the infinite twisted
subgroups obtained in theorems 7.1-7.3, the action of I' x §* on V @ V will have
to be considered (see §10).
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Table 2. Lattices in two dimensions

name holohedry basis of £ basis of L*
hexagonal Ds 4 =(1/4/3,1) ki =(0,1)
£ =1(2/+/3,0) k2 = (v/3/2,-1/2)
square Dy 4 =(1,0) k. = (1,0)
£ =(0,1) k2 =(0,1)
rhombic D, 4y = (1,—cot ) k= (1,0)
£5 = (0, cosec 9) k2 = (cosf,sin )
0<0<7/2,0#7/)3
rectangular D, 4 =(1,0) k= (1,0)
€2 = (O, C) kg = (0, 1/0)
0<exl1
oblique Z 1] # |62
0l £0

Remark. The generalized eigenspace of
Dy F(ug, Ac) (8.1)

associated with the eigenvalues +i is generated by finite sums of expressions of
the form
Ze27ri(sz+t) _I_weZ'/ri(—K-z—i-t) + c.c.,

where K is in the dual lattice £* and |K| = k. is the critical wavenumber.
Hence, this eigenspace may not be of the form V &V with V being I'-absolutely
irreducible. Instead, V may be the direct sum of I'-absolutely irreducible sub-
spaces of the space of L-periodic functions. For the square lattice this is the
case if there exist two distinct integer pairs, (ai, ;) and (ag, (), such that
a + 2 =al+ 62 =k2 eg., (a,01) = (4,3) and (aq,B2) = (5,0). Similarly, for
the hexagonal lattice, the assumption of absolute irreducibility may not be satis-
fied for certain positive integer pairs (ay, 3;) if their exists another non-negative
integer pair (ay, 8;) such that a? + 87 — a1 81 = a3 + B; — axfs = K2.

(a) Hezagonal lattice
The action of Dg[h, R] on C? is generated by

R(Zl722723) = (5, Z_Sa z_l)a
h(21722723) = (Z_Q, Z,z)

To compute the dimensions of the fixed-point subspaces of the finite twisted
groups G® in theorem 7.1, we also need to know that:

(e,v1)(21, 29, 23) = (—21, 22, —23),
(e,v2)(z1, 22, 23) = (—21, —22, 23),
(e,v;)(21, 22, 23) = €*™/3(21, 25, 23).
The action of Dg[h, R] on C® is generated by
h(z1, 22, 23, 24, 25, 26) = (26, 25, 24, 23, 22, 21).
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Table 3. Translation-free irreducible representations. («, 3) denotes the greatest common
divisor of a and (3.

Name dim V' K,
rhombic 4 K=k
Ky = ko
square 4 K, =k
K> = k>
8 K| = aki + Ok

K = (—a+ B)k — aks
K3 = 0k + ok
Ky = —aki + Bk
«a and [ are integers,
a>03>0
a+ (is odd and (a,3) =
hexagonal 6 Ky = ki + ko
K> = —k;
Ks = —k
12 Ky = aki + Bk
K; = (—a+ 0Bk — ak:
K3 = -k + (o — B)ks
Ky = aki + (o — Bk
K5 = — (ki — ak:
Ks = (—a+ Bk + Bk
« and (3 are integers,
a>p>a/f>0,
(a,8)=1and (3,a+3) =1.

Moreover,
(=21, —29, 23, —24, 25, —26) if only « is odd,
(eavl)(zlaZZ,Z3>Z4>Z5>Z(> (Zla TR2, TR3, B4y T 257_26) if Only B 1S Odda
(=21, 29, —23, —24, —25,2¢) if both are odd.
(21, =22, —23, —24, —25.2) if only « is odd,
(=21, 22, —23, —24, 25, —2¢) if only 3 is odd,
(=21, —22, 23, 24, —25, —2¢) if both are odd.
—27i(a+03)/3 2mi(2a— 3 2wi(—a+23)/3
(C,Ut>(21,22,23,24,25,26 (e ( 2 Z1,€ ( A Z2,€ ( )/ 23,

eZWi(72a+[i)/3z4’ e27'ri((x+['1)/3z5’ e27ri((x72[i)/3zl)'

(C, Uz)<21,22,23, 24, %5, 26

(b) Square lattice

To compute the dimensions of the fixed-point subspaces of the finite twisted
groups G in theorem 7.2, it is enough to define the action of D,[h, R]+LL on
C? and C*.

The action of Dy[h, R]+1L on C? is generated by
h(z1,22) = (21, 72),
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R(z1,29) = (%3, 21),
(e,v1)(z1,22) = (—21, 22),
(e,v4)(21,22) = (=21, —22).
The action of Dy[h, R]+-1L on C* is generated by
R(z1, 22, 23, 24) = (%2, 21, %4, 23),
(2’4723,22721)

(=21, 29,23, —24) if ais odd,
(21, —22, —23,24) 1if B is odd,

( 21y, — 27—2’3,—2’4)'

h 21,22, 23y 24

( )=
(e,v1)(%1, 22, 23, 24)
(e,va) (21, 22, 23, 24) =
(¢

) Rhombic lattice

To compute the dimensions of the fixed-point subspaces of the finite twisted
groups G® in theorem 7.3, it is enough to define the action of D,[h, P]4+-1L on
C?. Tt is generated by

h(z1,22) = (22, 21),

P(z1,20) = (71, %2),
(e,v1)(z1,22) = (—21, 22),
(e,va)(21,22) = (—21, —22).

9. Discrete waves

The following theorems determine the branches of time-periodic solutions with
discrete spatio-temporal symmetries (i.e. the discrete waves) which can be ob-
tained by using the equivariant Hopf theorem (see Golubitsky et al. 1988, the-
orem XVI, §4.1). To guarantee that the solutions associated with the twisted
subgroups G listed in the theorems of this section do not have more symmetries,
it is necessary to check that the G®s are isotropy subgroups. Easy computations,
using the action of I' on V @& V (see § 10 and 11), show that this is indeed the
case.

Remark. To obtain a complete list of (branches of) time-periodic solutions bi-
furcating from a group-invariant equilibrium by Hopf bifurcation, we need also to
consider the possibility that w(z,t) in (1.1) depends only on one space variable;
that is, the solutions are constant along lines perpendicular to a vector ¢ € R?
and periodic in the direction of £. Without loss of generality, we may assume that
the period is one. The action of the Euclidean group on the only translation-free
absolutely irreducible subspace

V=1{z2""+4cc:2€ C}=C,
reduces to the action of O(2) & Z,[—e]+T"' on C generated by
(—e,0)z =%,
(0,0)z = ™2™z,

where e is the identity on R and T' = {6/ : 0 < 6 < 1}. The results for Hopf
bifurcation with O(2)-symmetry are well known and can be found in Golubitsky
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Table 4. Discrete and rotating waves in one dimension

K G generators of G® fixed-point subspace
Zz[—e] Zg[—e] X Zz[%] ((—6,0),0) and ((6, %), %) 21 = 29
1 T! ((e,8),0),0<0<1 22 =0

Table 5. Pairs K C G for the hexagonal lattice

dimV =6 dimV =12
K G K G
1 Zs(R) Zs(R) Dglh, R)
2[R Z,|R%] x Zs|(h,n1)]  Dslh, R?] Ds|h, R
Z,[ R Zs|R] Ds[hR, R?] Ds|h, R)
D:h, R?] Dy[h, R*] x Zs[v2]  Di[hR,R?| DslhR, R?|+2Z3[vs)
Ds[hR, R?] Dg|h, R) Dsh, R) Dsh, R
Ds[hR,R?]  Ds[hR, R*+2Zs[vs]
D6 [h'a R] D6 [hv R]

et al. (1988), § XVII, 1(c). There are two branches of time-periodic solutions bi-
furcating from the group-invariant equilibrium: a discrete wave and a rotating
wave. They are given in table 4. Note that the action of O(2) x S! on

V@V = {22t 4 4ematt) oo pe O} 2 C?
is given by
((—e,0),0)(21,22) = (22, 21),
((e,4),0)(21, 22) = (e "2y, €™ 2),
((€,0),0) (21, 22) = €™ (21, 22).

(a) Hezagonal lattice

Theorem 9.1. Up to conjugacy, the pairs of finite groups K C G in table 5
produce twisted subgroups G® with two-dimensional fixed-point subspaces where
I' acts on V @ V; V is a translation free, absolutely irreducible representation of
I' in the space of L-periodic functions.

Proof. This proof proceeds by an easy calculation. For each of the the first
nine cases of theorem 7.1, we compute dim Fix (G®) using the formulae listed in
table 1. In particular, the precise formula that is used is determined by the twist
type G/K. Then, the computation of dim Fix (G®) proceeds using the dimensions
listed in table 6. The results are listed in table 7.

We note that in order to use the formulae in table 1 we must compute the
dimension of the fixed-point subspace of certain intermediate groups. In partic-
ular, in case 1 we must compute the dimension of the fixed-point subspaces of
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Table 6. Fized-point subspaces of V

dimV =6 dimV =12
K Fix(K) dim Fix(K) dim
1 c? 6 o 12
Z>[R? 2=z 3 2=z 6
Z2[Rg] X Z2 ['U2] 21 = 22 = 0 1 * 2
zZ3 = 23
Z3[R2] 21 = 22 = 23 2 Z1 = 22 = Z3 4

24 = 25 = 26

Zs|R) 21 =22 = 23 1 21 =22 = 23, 24 = 25 = 26 2
2=z z2=2Z
Ds[h, R 21 = 22 2 21 = 2g, 22 = 25, 23 = 24 3
z2=Z z2=Z
Ds[h, R®] x Zo[v2] 21 =22=0 1 * 1
z3 = Z3
D;h, R?) 21 =22 = 23 1 21 =22 =23 =724 =25 = 28 2
z2=Z
D3[hR,R2] Z1 = 22 = 23 2 Z1 = 22 = 23 —ZZZ.};:_‘(}_ 2
Ds[hR, R*)+2Z5[v:) z2=0 z2=0
Dglh, R] 21 =22 = 23 21 =22 =23 =24 =25 = Z 1
z2=Z z2=7Z

x denotes fixed-point subspaces that vary with the parity of o and f.
Table 7. Dimensions of fixed-point subspaces in V @V

dim Fix (G®)
formula

Case G/K d(¥) = dimFix (X) dimV =6 dimV =12
1 Zs  d(Zs[R]) +d(1) — d(Z:[R®]) — d(2Z5[R?)) 2 4
2 Z, d(2Z2[R®]) — d(Z2[R?] x Za[v2]) 2 4
3 Z, d(Z2[R®]) — d(Zs[R)) 2 4
4 Z> 2(d(D2[h, R®)) — d(Dsh, R®] x Z2[v2]) 2 4
5 Z> 2(d(Zs[R)) — d(Dslh, R))) 0 2
6 Z> 2(d(Dslh, R?]) — d(Dg[h, R])) 0 2
7 Z, 2(d(Ds[hR, R?)) — d(De[h, R))) 2 2
8 Z, d(Ds[hR, R?]) — d(Ds[hR, R*]+Z3[v:]) 2 2
10 1 2d(Dslh, R)) 2 2

the intermediate groups L = Z,[R?] and M = Z;[R?], while in case 2 we must
compute the dimension of the fixed-point subspace of the intermediate group
M = Z2[R3] X Zz['l}2].

We also point out that to compute the fixed-point subspace of
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Table 8. Pairs K C G for the square lattice

dimV =4 dimV =8
K G K G
Ds[h, R  Dalh, R?] x Z4[(Rh,v1)] Ds[h, R Ds[h, R?] x Zu[(Rh,v1)]
D,y[h, R] Dy[h, R] x Zs[vd)] Ds[(h,vq), R?]  Dz[(h,va), R?] x Z4[(Rh,v1))
D4[h,R] D4[h, R] X Zz[’l}d]
D4[(h, ’L)d),R] D4[h, R] X Zo [’Ud]

Table 9. Fized-point subspaces of V

dimV =4 dimV =8
K Fix(K) dim Fix (K) dim

Dz[h,R2] z2=2 2 21 = 24, 22 = 23 2
z2=7Z

Dg[(h,v,1)7R2] z=0 0 21 = —24, 22 = —23 2
Z2=7Z

Dah, R?] X Zs[va) z2=0 0 z2=0 0

DQ[(h,vd),R2] X Zs[va] z2=0 0 z=0 0

Dy[h, R) 21 = zo 1 21 = 2o = 23 = 24 1
z2=7 z2=7Z

Dy[(h,vq), R] z2=0 0 21 =20= —23 = —24 1
z2=Z

Dy[h, R+ Z2[va) z=0 0 z=0 0

D;[hR, R*+Z5[v,], when dim V = 12, we need to use the inequality e?™(@+8)/3 £
1, which comes from (« + 3,3) = 1. [ |

(b) Square lattice

Theorem 9.2. Up to conjugacy, the pairs of finite groups K C G in table 8
produce twisted subgroups G® with two-dimensional fixed-point subspaces, where
I'acts on V @ V; V is a translation-free absolutely irreducible representation of
I' in the space of L-periodic functions.

Proof. We proceed as in the proof of theorem 9.1. We use the formulae of table 1
combined with the dimensions of the fixed-point subspaces given in table 9 to
compute dim Fix (G®) for each of the first four cases of theorem 7.2. The results
are listed in table 10. Note that in the first two cases, we need to compute
the dimensions of the fixed-point subspaces of the intermediate groups M =
DQ[h,R2] X ZQ[’Ud} and M = DQ[(h, Ud>?R2] X ZQ[’Ud}. |
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Table 10. Dimensions of fized-point subspaces in V ® V

dim Fix (G®)
formula
case G/K d(¥) = dim Fix (X) dimV =4 dimV =8
1 Z, d(Dah, R?]) — d(D2[h, R*] X Zs[va]) 2 2
2 Z;  d(D2[(h,va), R*)) — d(D2[(h,va), R?] x Z2[va]) 0 2
4 Z> 2(d(Da[h, R]) — d(Dalh, R] X Za[va)) 2 2
5 Z, 2(d(Da[(h,va), R]) — d(Dalh, R] x Z2[va]) 0 2

Table 11. Pairs K C G for the rhombic lattice

K G

Z5[P]  Z2[P] x Zy[(h,v1)]
Dz [h, P] D2 [h, P] X Z2 [’l)d]

Table 12. Fized-point subspaces of V'

K Fix (K) dim
Z2[P] z2=7Z 2
ZQ[P] X ZQ['I)d] z=0 0
Ds|h, P] 21 =22,2=% 1
Dz[h, P] X Zz[’vd] z2=0 0

(¢) Rhombic lattice

Theorem 9.3. Up to conjugacy, the pairs of finite groups K C G in table 11
produce twisted subgroups G® with two-dimensional fixed-point subspaces, where
I'acts on V @ V; V is a translation-free absolutely irreducible representation of
I' in the space of L-periodic functions.

Proof. Using the formulae in table 1 and the dimensions of the fixed-point sub-
spaces given in table 12, we compute the dimension of the fixed-point subspace for
each discrete twisted group G® given by theorem 7.3. The results are in table 13.
In the first case, the dimension of the fixed-point subspace of the intermediate
group Z,[P] x Z[v,] needs to be computed. |

10. Rotating waves

The following theorem determines the branches of time-periodic solutions with
continuous spatio-temporal symmetries (i.e. the rotating waves) which are ob-
tained by using the equivariant Hopf theorem (see Golubitsky et al. 1988, theorem
XVI, §4.1).
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Table 13. Dimensions of fized-point subspaces in V &V

case G/K formula dim Fix (G®)
1 Z4[(h, ’01)] dim Fix (Z2 [P]) — dim Fix (Z2 [P] X Z2 [’Ud]) 2
2 Z,|P] 2(dim Fix (Dy[h, P]) — dim Fix (Dz[h, P] x Z3[va])) 2

Table 14. Pairs K C G for all three lattices in the continuous case

Hexagonal Lattice

dim vV K G
TH1 6 D1 [h] D] [h] X E+ (h)
TH2 Di[hR®] D:i[hR® x E™(h)
12 None

Square Lattice
dimV K G

TS 4 D;[Rh] D:[RA] x E*(Rh)
8 None

Rhombic Lattice

dimV K G
TR1 4 D, [h] Dy [h] x Et(h)
TR2 D, [Ph] D, [Ph] x E~(h)

Theorem 10.1. Up to conjugacy, the pairs of finite groups K C G such that
G/K = 8! listed in table 14 produce isotropy subgroups G® with two-dimensional
fixed-point subspaces, where I" acts on V @ V; V is a translation-free absolutely
irreducible representation of I' in the space of L-periodic functions.

The rest of this section is devoted to the proof of this theorem. We can not use,
as we did in the previous section, the dimensions of the fixed-point subspaces of
some subgroups of I' acting on the absolutely irreducible subspace V' to compute
the dimensions of the fixed-point subspaces in V @& V of the twisted subgroups
associated with the wave pairs K C G, where G/K = S'. We have to directly
compute the fixed-point subspaces of these twisted subgroups. To do this we will:
(i) list the generators of the twisted subgroups associated with the wave pairs
K C Gj; and (ii) define the actions of these generators on the translation-free
subspaces of the form V @& V', where V is I'-absolutely irreducible.

It is generally easy to give generators for the twisted groups G® associated
with the wave pairs of subgroups K C G. It is enough to note that © : G — S*
is a group homomorphism with kernel K — recall that S' < R/Z.
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If we introduce time, V ® V is of the form
{Z(zje%ri(t—i-Kj.m) + ,wje%ri(t—Kj.w) + C.C.) D zj,w; € C} o CZS, (10.1)
Jj=1

where s(= 1 dim V') and the K;s are defined in table 3.

(a) Hezagonal lattice

Theorem 7.1 shows that there are only two pairs K C G, where G/K = S*,
that need to be considered. The twisted group G® associated with the wave
pair K = D;[h] and G = D;[h] x E*(h) is generated by h and ((e, 8¢,),6) for
0 < 6 < 1, and the twisted group G® associated with the wave pair K = D;[hR?]
and G = D,[hR®*] x E~(h) is generated by R*h and ((e,0(—2¢; + £3)),0) for
0<d<1.

The actions of these elements on V @ V can be deduced from the actions of
the following elements.

When dimV = 6: let 2 = (21, 29, 23) and w = (wy, wq, w3):

R(z,w) = (w2, w3, w1, 22, 23, 21),
h(z,w) = (w2, wy, w3, 22, 21, 23), (10.2)
((e,005),0)(2,w) = (21, €™ 2y, €2 23, 4™ 1w, Wy, €2 wy), ’
((e, =204, + 6£5),0)(z,w) = (e*™¥ 21, ™02y, 7201 25 w1, wo, €5™010w;).

When dim V' = 12: let z = (24, 22, 23, 24, 25, %), W = (W1, Wa, W3, W4, W5, We) and
27r91
xX=e

\
R(% ) (w27w37w1,w5,w6,w4,22,23,21,25,26,Z4),

h(z,w) = (ze, 25, 24, 23, 22, 21, We, W5, Wa, W3, Wa, W1),
e,005),0)(z,w) = X(X_ﬁzl,xazaX(ﬁ_a)ZB,X(ﬁ_a)24,Xa25,X_ﬁze,
Xﬁ'wl’ X~ Ywy, X(a—ﬁ)ws’ X(a—ﬁ)w4, X “zs, XB26)7
((e,0(£y —261)),0)(2,w) = x(XP¥ P 2y, x 2= 2y, x (TP 25, x(@FP) 2y,
2(@=26) 2o A (B=20) 5\ (B=20)yy \(a=2)y

X(a+ﬁ)w3, X(_O‘_ﬁ)’w4, X(Zﬁ—a)w5, X(Qa—ﬁ)w(),)_
(10.3)

In table 15, we list the fixed-point subspaces in V@V of the twisted subgroups
associated with the wave pairs K C G, where G/K = S', mentioned above.
Simple computations show that the G®s are isotropy subgroups when dim V &V
=12. However, they are not isotropy subgroups when dimV & V = 24. When
K = DA and G = D, [h] x E*(h ) v=(1/(a+B))(€ + Bl) & G° acts trivially
on Fixygy G®. When K = D;[hR®] and G = D, [hR3|x E=(h),v = (1/a)ly & G®
acts trivially on Fixy gy G©.

The computations of the fixed-point subspaces when dimV @ V = 24 are as
follows.

First, we consider D;[h] x {((e,0¢3),0) : 0 < 6 < 1}. The result follows easﬂy
from the following two remarks. From h(z, w) = (z,w), we obtain that z; = z7_;
and w; = wy_; for j = 1,2 and 3. Moreover, if A = {((e,0/2),6) : 0 < 8 < 1}
acts non- tr1v1ally on z; (respectlvely w;), then z; = 0 (respectively w; = 0). Since
a > > a/B > 0, we can see from the definition of the action of A on (z,w) given
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Table 15. Fized-point subspaces for subgroups G® of theorem 7.1, where G/K = §*

Fix(G®)
G° dimV =6 dimV =12
D1 [h]x z1 = wp and z3 = 24 and
{((e,0¢2),0): 0 < 0 <1} zo=z3=wi =w3 =0 z; =w; =0 otherwise

fa—-0=1
z=w=0ifa-0#1

D, [hR*]x wy = wy and 22 = ws and
{((e, —2001 + 052),0) :0<b0< 1} z1=22 =23 =w3 =0 Z; =Wy = 0 otherwise
ifa—-20=1

z5 = wo and

zi = wj = 0 otherwise

ifa—28=-1
z=w=0~0
if o — 20 # +1

above that A acts trivially on some components of (z,w) only when o — 3 = 1.
In this case, it acts trivially on z3 and z4.

Second, we consider D;[hR?*] x {((e,—20¢; + 64,),0) : 0 < 6 < 1}. From
hR?(z,w) = (z,w), we obtain that z; = w,_; for j = 1,2,...,6. As before, if
A = {((e,—264, + 0¢,),0) : 0 < 6 < 1} acts non-trivially on z; (respectively w,),
then z; = 0 (respectively w; = 0). Since o« > [ > a/F > 0, A acts trivially on
some components of (z,w) only when oo — 23 = +1. It acts trivially on 2z, and ws
if « — 28 =1, and on z5 and w, if & — 26 = —1. It is now easy to complete the
computation of the fixed-point subspace.

(b) Square lattice

Theorem 7.2 determines that there is only one pair K C G, where G/K = S*,
that needs to be considered. The twisted group G® associated with the wave pair
K = D;[Rh] and G = D,[Rh]x E*(Rh) is generated by R*h and ((e, 0(¢1+45)),0)
for 0 <0 < 1.

The actions of these elements on V & V can be deduced from the actions of
the following elements.

When dimV = 4: let 2 = (21, 22) and w = (wy, ws).

R(z,w) = (wg, 21, 22, w1 ),
h(Z,’LU) = (zlwa,wlazQ), (104)
((6’ 9(61 + £2))’0)(Z’w) = (Zla z2’e4ﬂeiw1;e4w0iw2)'
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Table 16. Fized-point subspaces for subgroups G® of theorem 7.2, where G/K = §*

Fix(G®)
G°® dimV =4 dimV =8
D [Rh] x {((e,0(¢f1 + £2)),0) : 0 < 0 < 1} Z21 = 22 Zp = w4 and
wy =w2 =0  z; =w; =0 otherwise
ifa—pF=1

r=w=0ifa-F#1

Table 17. Fized-point subspaces for subgroups G® of theorem 7.3, where G/K =~ §*

Fix (G°)
G®° dimV =4

D1[h] X {((6,9(61 +€2)),9) : 0 < 6 < 1} 21 =20 and w1 = wo =0
D, [Ph] x {((e,0(£1 — £2)),0) :0< 0 <1} 2z =wzand zo=w; =0

Table 18. Generators of twisted subgroups — hexagonal lattice

K G generators of G®
1 Zs[R) ((R,0),3)
Z5[R?] Z>[R*] x Zy|(h,v1)] (R?,0) and ((h,v1), 1)
7[R’ Zs[ 1] ((R,0), 3)
Ds[h, R?] Dy [h, R*] x Zy[vs)  ((R?,0),0),((h,0),0) and ((e,v2), 5)
Zs|R) Dg[h, R) ((R,0),0) and ((h,0), 3)
D3[h’R2] Dﬁ[h’R] ((R’ 0)’ %) and ((h,O), %)
Ds[hR, R?] Dslh, R] ((R,0), %) and ((h,0),0)
D3[hR,R*]  Ds[hR, R*|+2Z3[v:] ((R?,0),0), ((hR,0),0)
and ((e, vt), %)
Dgh, R) Dsh, R] ((R,0),0) and ((h,0),0)

When dim V' = 8: let z = (21, 22, 23, 24), w = (w1, W, w3, ws) and x = *™.

R(z,w) = (w2, 21, W4, 23, 22, W1, 24, W3),
h(z,w) = (w4, w3, wa, W1, 24, 23, 22, 21),
((e,001),0)(z,w) = x(x™*z1, X" 22, X P23, X" 24, X w1, X P wa, X w3, X~ wa),
((e,0(¢1 + £2)),0)(z,w) = x(x™PT 2y, X0 25, x~(0F g, x (=P 2,
O, @By By (—octB)y,)

(10.5)
In table 16, we list the fixed-point subspace in V & V of the twisted subgroup
G® above. To compute this fixed-point subspace, we proceed as for the hexagonal
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lattices. Simple computations show that G® is an isotropy subgroup when dim V@
V = 8. However, it is not an isotropy subgroup when dim V' & V = 16. The non-
trivial translation v = (1/(a + 3))(41 + £5) & G® acts trivially on Fixygy G°.

(¢) Rhombic lattice

Theorem 7.3 shows that there are two pairs K C G, where G/K = S, that
need to be considered. The twisted group G®© associated with the wave pair
K = D,[h] and G = D;[h] x E*(h) is generated by h and ((e,0(¢1 + ¢3)), ) for
0 < 6 < 1, and the twisted group G® associated with the wave pair K = D, [Ph
and G = D,[Ph] x E~(h) is generated by Ph and ((e,0(¢; —/3)),0) for 0 < 6 < 1.

The actions of these elements on V @ V', where dimV = 4, can be deduced
from the actions of the following elements.

P(21, 22, w1, ws) = (w1, wa, 21, 22),
h(zla Z2aw1aw2) - (ZZ’ZlawZ’wl)a

((6, H(Zl + ZZ) )(Zl, 22, Wy, w2) - (Zl, 29, e47r9iw1’ e47r9iw2)’
((e, 0(4y = £2)

)(21, 22, w1, wa) = (21,4 25, 4™ wy, wy).

In table 17, we list the fixed-point subspaces in V @V of the twisted subgroups
G® mentioned above. The computations of these fixed-point subspaces proceed
as for the hexagonal and square lattices. One readily verifies that the G®s are
isotropy subgroups.

¥ (10.6)
), 6

11. Pictures

In this section we present pictures of the planforms obtained in §9 and 10
using the equivariant Hopf theorem. This is accomplished by introducing time
explicitly into the problem and computing the fixed-point subspaces in V @ V.
In particular, V @ V has the form (10.1). The corresponding superposition of
Fourier modes in (10.1) can then be represented by a two-dimensional density
plot for discrete values of the time ¢ during one period of the oscillation. For the
application of oscillatory hydrodynamic convection problems, these plots indicate
the possible appearance of shadowgraph images of (small-amplitude) convection
patterns. Such images trace the (vertically averaged) fluid density in the convect-
ing fluid layer; the dark regions correspond to hot (buoyant) rising fluid and the
light regions correspond to cold (heavy) descending fluid.

In §10 we determined the fixed-point subspaces for the rotating waves guaran-
teed by the equivariant Hopf theorem (see theorem 10.1). In figure 1 we present
some ‘snapshots’ of the rotating-wave planforms. The remainder of this section
is devoted to computing the fixed-point subspaces in V @& V of the discrete waves
obtained in §9 (see tables 19, 21 and 23).

To achieve this we will (as we did for the rotating waves): (i) list the generators
of the twisted subgroups G® associated with the wave pairs K C G; and (ii) define
the actions of these generators on the translation-free subspaces of the form V@V,
where V' is I'-absolutely irreducible.

(a) Hezagonal lattice

We list in table 18 generators for each of the twisted groups of theorem 9.1.
In table 19, we describe the fixed-point subspaces in V @& V of the twisted
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Table 19. Fized-point subspaces of twisted subgroups — hexagonal lattice

K G Fix (G°)

dimV =6

2= (21,22, 23), w = (w1, wa, ws), xy = e2™/3

H1 1 Zs(R) 21 =x22 = X’z3, w =~z
H2 Z2[R3] Z2[R3] X Z4[(h, U1 )] z21 = —izg, 23 =0, w = 2
H3 Z,[R®) Zs|R) 21 =x%22 = x23, w =2
H4 D;[h, R® Ds[h, R?] x Z»[va] 21 =122,23=0,w=2
H5  Ds[hR,R? Dsh, R 2 =20= 23, W= —2
H6  D3;[hR,R?] DslhR, R?4+Zs[vs] z2=0, w =ws = w3
H7 De[h, R] De[h,R] Z1 =22 =23, W=2
dimV =12

z = (21, 22, 23, 24, 25, 26), W = (W1, W2, W3, W4, Ws, W), oW = (W4, W5, We, W1, W2, W3)

H8aﬁ Ze[R] De[h, R] 21 =22 =23 = —24 = —25 = —26,W=2
H9q, Ds[h, R?] Dg[h, R) 21 =2y =23= —24= —25 = —2, W= —2
H54.5 DslhR, R? Dg[h, R] 1= 2= 23 = 24 = 25 = 2, W= —2
H6,s D3lhR,R?] DslhR, R+ Zs[vs) 21 =20 =23, 24 = 25 = 26 = 0,

ocw=zifa+ =1 (mod3)

21 =20 =23 =0, 24 = 25 = 26,

ow =z, if a+ [ =2 (mod3)
H7. Dg|h, R] Dg[h, R] 21 =22 = 23 = 24 = 25 = 26, W =2

subgroups in table 18. To compute the fixed-point subspaces of the twisted sub-
groups in table 18, we need to define the actions of their generators on V@ V.
For dimV = 6, the actions of h and R are given in (10.2). Let z = (21, 2, 23),

w = (wy,ws,ws) and x = e*™/3, Using
(e,v1)(z,w) = (—21, 22, —23, —W1, W2, —W3),
(e,02)(2,w) = (=21, =22, 23, —W1, —Wy, W3),
(e,v0)(2,w) = (xz, X w),
((6,0),9)(2,w) = ™ (2, w),

one obtains the action of the generators when dimV = 6. .
For dimV = 12, the actions of » and R are given in (10.3). Let x = e*"/3,
z = (21, 29, 23, 24, 25, 26) and w = (w1, Wa, W3, Wq, Wy, We). Using

28— -2 —2
o aZSaX a+BZ4,Xa+ﬁ25aXa Bz(:‘n

26—a

(e,v¢)(2,w) = (X—a_ﬁzla Xzahﬁz% X
X Py, x 2 Pwg, x P wg, X Pwa, x TP ws, X
((e,0),9) (2, w) = (2, w),
one readily determines the action of the generators when dimV = 12.

Usually, the computations of the fixed-point subspaces are simple. We men-
tion that when ((e,v;), ) acts non-trivially on a coordinate of (z,w), then this

w6)a
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Table 20. Generators of twisted subgroups — square lattice

K G generators of G®
Ds[h, R?] Dalh, R?] x Zs[(Rh,v1)] ((R?,0),0), ((h,0),0) and ((Rh,v1), 1)
Da[(h,va), R*]  Da[(h,va), R*] x Za|(Rh,v1)]  ((R?, 0) 0), ((h,va),0) and ((Rh,v1), 1)
D4[h>R] D4[h’7 RJ+Z2['U¢1] (( ) )7 ((h>0) O) and ((e,vd)’ %)

D4[(hvvd)7R] D4[h7RH—ZZ[Ud} (( 3 ), ),((h,vd)> )a'nd ((e,vd),%)

Table 21. Fized-point subspaces of twisted subgroups — square lattice

K G Fix (G®)
dimV =4
S1 Ds[h, R? Ds [k, R%] x Z4|(Rh,v1)] 21 = —izg = w1 = —iws
82 D4[h, R} D4[h, R]+Z2[vd] 21 = 22 = W1 = W2

dimV =8, z = (21, 22, 23, 24), w = (W1, W2, W3, W4)

Sla,s Dsh, R?) Ds[h, R?] x Z4[(Rh,v1))) 2 = —lzg = —izz3 = 24, w = 2
if v is odd
21 = 122 12’3 =24, W =2
if 8 is odd
S3a,5  D2[(h,va),R*] Da[(h,va), R?] x Zs[(Rh,v1)] 21 =iz = —iz3 =21, w =2
if « is odd
21 = —lzg = i23 = —2z4, W = 2
if B is odd
S2q,8 Dy[h, R Dy[h, R+ Z>[va) 21 =22 =23 = 24, W= 2
S4a,/3 D4[(h,vd),R] D4[h,RH—Z2[1)d] Bl = 22 = —23 = —24, W=2

coordinate must be zero. In particular, when dimV &V =24 and a+ 8 = 1
(mod 3) then ((e,vy), %) acts trivially on the six coordinates z, 2o, 23, Wy, W5, We.
When a + 3 = —1 (mod 3) then ((e,v;), 3) acts trivially on the six coordinates
Z4, 25, 26, W1, Wa, ws. This observation follows from the definition of the action of
((e,vy),3) on (z,w) and the fact that —1(a + 8) = +(2a — 8) = :(—a + 20)
(mod1). Note that we always have a + 3 = £1 (mod 3) since o + § and 3 are
coprime.

Examples of the pictures associated with elements of these fixed-point sub-
spaces are presented in figure 2.

(b) Square lattice

We list in table 20 generators for each of the twisted groups of theorem 9.2.
In table 21, we describe the fixed-point subspaces in V & V of the twisted
subgroups in table 20. To compute the fixed-point subspaces of the twisted sub-
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Table 22. Generators for twisted subgroups — rhombic lattice

K G generators of G®

Zo[P]  Z2[P] x Zs[(h,v1)]  ((P,0),0) and ((h,v1), 7)
D[h, Pl Dslh, P] x Zz[vd] (( 0),0),((h,0),0)
((e,vd)> %)

Table 23. Fized-point subspaces of twisted subgroups — rhombic lattice

K G Fix (G®)

R1 Zz [P] Zz[P] X Z4[(h,1)1)] z1 = "_iZQ = wi = ~—iw2
R2 Dz[h,P] DQ[h,P] X Zg[vd] 21 = 29 = W1 = W2

groups in table 20, we need to define the action of the generators on V @ V. For
dim V' = 4, the actions of h and R are given in (10.4). Using
(e,v1)(21, 22, w1, Wa) = (—21, 22, —W1, Wa),
(€,va) (21, 22, Wi, wa) = (=21, —22, —W1, —W2),
((6, 0)7 ¢)(zl7 %2, W1, w2) = e2w¢l(zl’ Z2, W1, w2)7
it is easy to determine the action of the generators when dimV = 4.
For dim V = 8, the actions of h and R are given in (10.5). Using
(6, Ul)(zb Z9,y %3y 24, W1, W2, W3, U)4)
_ { (=21, 22, 23, =24, —W1, W, W3, —Wy) if o odd,
(Zl,—ZQ,—23,24,w1,—1U2,—7U3,w4) lfﬂ Odda
(67 vd)(zly R, 23, 24, W1, W2, W3, U)4) = _(Zly 29, 23y 24, W1, W2, W3, U}4),
((67 0)7 ¢)(Zla 22, %3y 24, W1, W2, W3, U)4) = eZmbl(
one obtains the action of the generators when dimV = 8.

Representative elements of these fixed-point subspaces are presented in figure 3
as they might appear in shadowgraph images of a convecting fluid layer.

21, 2oy 23, 24, W1, Wo, W3, Wy ),

(¢) Rhombic lattice
We list in table 22 generators for each of the twisted groups of theorem 9.3.
In table 23, we describe the fixed-point subspaces in V @ V of the twisted
subgroups in table 22. To compute the fixed-point subspaces of the twisted sub-
groups in table 22, we need to define the actions of their generators on V @&V,
where dim V' = 4. The actions of h and P are given in (10.6). Using
(e,v1)(21, 22, w1, wa) = (—21, 22, —wy, Ws),
(e,va)(21, 22, W1, W3) = (=21, =22, —W1, —W2),
((6, 0)7 ¢)(217 29, W1, w2) = e27r¢l(zlv 22, wla w2)7
it is easy to determine the action of the generators.
Representative elements of these fixed-point subspaces are presented in figure 4.
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(a)

t=1/4

(b)

t=1/2 t=3/1

t=1,/4 t=1,/2 t=3/4

Figure 1. (a) Rotating wave TH1 for the six-dimensional representation V of the hexago-
nal lattice (see theorem 10.1). The Fourier sum in (10.1) is plotted at discrete times with
(z,w) = (1,0,0,0,1,0) and —2//3 < z,y < 2/4/3. The pattern travels horizontally to the
left. The pattern TH2 (not shown here) moves vertically. (b) Rotating wave TS for the
eight-dimensional representation V' of the square lattice. The Fourier sum in (10.1) is plotted at
discrete times with (z,w) = (1,1,0,0); the pattern travels diagonally to the left and down. (c)
Rotating wave TR1 for the four-dimensional representation V' of the rhombic lattice. The Fourier
sum in (10.1) is plotted at discrete times with (z,w) = (1,1,0,0) and — cot 25° < z,y < cot 25°.
The pattern travels diagonally to the left and down. The pattern TR2 (not shown here) moves
in the perpendicular direction.

(a)

t=1/12 t=2/12

t=4,/12

t=9,/12 t=10/12 t=11/12

Figure 2. (a) For description see p. 165
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t=7,/8

t=1/6 t=2/6

t=5/6

t=3/6

(d)

t=1,/2
(e)

t=3/4
)

1=3/6 t=4/6 t=5/6
Figure 2. (b)—(f) For description see p. 165.
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(k)
=0 t=1/6 t=2/6
(1)
(g)
(n)
t=1/2
(i)
t=1/4 { t=3/4
()

t=1/4 . t3/4
Figure 2. (g)—(1) For description see p. 165.
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t=1/2

Figure 2. Discrete waves for the hexagonal lattice: (a) H1 [wavy rolls (2)]; (b) H2 [wavy rolls (1)];
(c) H3 [twisted patchwork quilt]; (d) H4 [standing patchwork quilt]; (e) H5 [standing regular
triangle]; (f) H6 [oscillating triangle]; (g) H7 [standing hexagon|. The Fourier sum in (10.1)
is plotted at discrete times for representative elements of the fixed-point subspaces listed in
table 19. If the time step is divided by two in (d), (e), (9), (h), (i), (§) and (m), the extra
pictures that we get show constant functions in the space variables. The first seven pictures
illustrate discrete waves on the six-dimensional representation V. The names between square
brackets are those given in Roberts et al. (1986). In each case the spatial domain is larger than
the unit hexagonal cell (namely, —2/4/3 < z,y < 2/4/3) and (z,w) is determined by 21 = 1,
except for (f) and (k) where (z,w) is determined by wi = 1. The last six pictures illustrate
discrete waves on 12-dimensional representations on V. The subscripts a and 3 are the values
used in table 3 to describe the 12-dimensional representations V: (h) H83 2; (¢) H93,2; (j) Hb53,2;
(k) H63,2; (1) HB4,3; (m) H732.

(a)

t=1/8 t=2/8

t=4/8 t=5/8 t=6,/8 t=7/8

(5)

t=0 t=7/2

Figure 3. Discrete waves for the square lattice: (a) S1 (alternating rolls); (b) S2 (standing
square). The Fourier sum in (10.1) is plotted at discrete times for representative elements of the
fixed-point subspaces listed in table 21. If the time step is divided by two in (b), (g) and (h) the
extra pictures that we get show constant functions in the space variables. The first two pictures
illustrate discrete waves on the four-dimensional representation V. The names between square
brackets are those given in Silber & Knobloch (1991). In each case the spatial domain contains
four unit square cells (namely, —1 < z,y < 1) and (z,w) is determined by 21 = 1. The last six
pictures illustrate discrete waves on eight-dimensional representations V. The subscripts o and
B are the values used in table 3 to describe the eight-dimensional representations V: (c) S1z,1;
(d) S1s.2; (€) 832,15 (f) S3s,2; (9) 822,15 (h) Sd21.
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t=4/8 t=5/8 t=6,8 t=7,8

t=0 t=1/8 t=2/8 t=3/8

t=0 t=1/8 t=2/8 t=3/8

Figure 3. (¢)-(f) For description see p. 165.
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(8)

t=1/2

(n)

t=1/2
Figure 3. (g), (k) For description see p. 165.

t=4/8 t=5/8 t=6/8 t=7/8

t=0 t=1/2

Figure 4. Discrete waves for the rhombic lattice: (a) R1 (alternating rolls); (b) R2 (standing
rectangle). The two basic vectors {1 and ¢3 form a 25° angle. The Fourier sum in (10.1) is plotted
at discrete times for representative elements of the fixed-point subspaces listed in table 23. If
the time step is divided by two in (b) the extra pictures that we get show constant functions
in the space variables. In each case the spatial domain is —cot 25° < z,y < cot25° and (z,w)
is determined by z; = 1. The names between square brackets are those given in Silber et al.
(1992).
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Figure 1. (a) Rotating wave THI1 for the six-dimensional representation V' of the hexago-
nal lattice (see theorem 10.1). The Fourier sum in (10.1) is plotted at discrete times with
(z,w) = (1,0,0,0,1,0) and -2//3 < z,y < 2/+/3. The pattern travels horizontally to the
left. The pattern TH2 (not shown here) moves vertically. (b) Rotating wave TS for the
eight-dimensional representation V' of the square lattice. The Fourier sum in (10.1) is plotted at
discrete times with (z,w) = (1,1,0,0); the pattern travels diagonally to the left and down. (¢)
Rotating wave TRI1 for the four-dimensional representation V of the rhombic lattice. The Fourier
sum in (10.1) is plotted at discrete times with (2, w) = (1,1,0,0) and — cot 25° < z,y < cot 25°.
The pattern travels diagonally to the left and down. The pattern TR2 (not shown here) moves
in the perpendicular direction.
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Figure 2. (a) For description see p. 165
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t=1/4 t=3/4

t=2/6

t=3/6 t=4/6 t=5/6
Figure 2. (b)—(f) For description see p. 165.
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(g)
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t=1/4 t=3/4
Figure 2. (g)-(!) For description see p. 165.
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t=1/2

Figure 2. Discrete waves for the hexagonal lattice: (a) H1 [wavy rolls (2)]; (b) H2 [wavy rolls (1)];
(¢) H3 [twisted patchwork quilt]; (d) H4 [standing patchwork quilt]; (e) H5 [standing regular
triangle]; (f) H6 [oscillating triangle|; (¢) H7 [standing hexagon|. The Fourier sum in (10.1)
is plotted at discrete times for representative elements of the fixed-point subspaces listed in
table 19. If the time step is divided by two in (d), (e), (g), (h), (2), () and (m), the extra
pictures that we get show constant functions in the space variables. The first seven pictures
illustrate discrete waves on the six-dimensional representation V. The names between square
brackets are those given in Roberts et al. (1986). In each case the spatial domain is larger than
the unit hexagonal cell (namely, —2//3 < z,y < 2/4/3) and (z,w) is determined by z; = 1,
except for (f) and (k) where (z,w) is determined by w; = 1. The last six pictures illustrate
discrete waves on 12-dimensional representations on V. The subscripts a and 3 are the values
used in table 3 to describe the 12-dimensional representations V: (h) H83 2; (i) H93,2; (j) H53,2;
(k) H63 2; (f) H64 3; (m) H73 5.
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t=2/8 t=3/8
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t=4/8 t=5/8 t=6/8 t=7/8

t=1/2

Figure 3. Discrete waves for the square lattice: (a) S1 (alternating rolls); (b) S2 (standing
square). The Fourier sum in (10.1) is plotted at discrete times for representative elements of the
fixed-point subspaces listed in table 21. If the time step is divided by two in (b), (g) and (h) the
extra pictures that we get show constant functions in the space variables. The first two pictures
illustrate discrete waves on the four-dimensional representation V. The names between square
brackets are those given in Silber & Knobloch (1991). In each case the spatial domain contains
four unit square cells (namely, —1 < z,y < 1) and (z,w) is determined by z; = 1. The last six
pictures illustrate discrete waves on eight-dimensional representations V. The subscripts a and
3 are the values used in table 3 to describe the eight-dimensional representations V: (¢) Sl2 1;

(d) S13,2; (E) S3s.1: (f] S33.9; (9’) S201; (h) S42 ;.
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Figure 3. (¢)-(f) For description see p. 165.
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t=0 t=1/2

t=0 t=1/2
Figure 3. (g), (h) For description see p. 165.
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t=1/2

Figure 4. Discrete waves for the rhombic lattice: (a) R1 (alternating rolls); (b) R2 (standing
rectangle). The two basic vectors ¢; and ¢; form a 25° angle. The Fourier sum in (10.1) is plotted
at discrete times for representative elements of the fixed-point subspaces listed in table 23. If
the time step is divided by two in (b) the extra pictures that we get show constant functions
in the space variables. In each case the spatial domain is — cot 25” < z,y < cot 25” and (z,w)
is determined by z; = 1. The names between square brackets are those given in Silber et al.
(1992).
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