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ABSTRACT. In this article we discuss the symmetries of periodic solutions to
Hamiltonian systems with two degrees of freedom in mechanical form. The
possible symmetries of such periodic trajectories are generated by spatial sym-
metries (a finite subgroup of O(2)), phase-shift symmetries (the circle group
S1), and a time-reversing symmetry (associated with mechanical form). We
focus on the symmetries and structures of the trajectories in configuration
space (R?), showing that special properties such as self-intersections and brake
orbits are consequences of symmetry.

1. INTRODUCTION

In [4] the notion of admissibility for symmetries of attractors was introduced.
Let X be a subgroup of a finite group I' acting on R™. The subgroup ¥ is admissible
if there is a I'-equivariant mapping f : R® — R™ with an attractor A whose symme-
tries are exactly . The question of admissibility for discrete dynamical systems is
discussed in [4, 2] and for diffeomorphisms in [5]. A similar question can be asked
in Hamiltonian systems and in time-reversible systems. In such systems, however,
the notion of attractors must be replaced by stable invariant sets.

In this note we address one small aspect of this larger question: What are the
possible symmetries of periodic solutions in time-reversible systems with two de-
grees of freedom? We classify these symmetries by the symmetries of the projected
trajectory in configuration space. Montaldi, Roberts and Stewart [8] have addressed
this and more general questions for normal modes — periodic solutions of Hamil-
tonian systems occuring near equilibria. Our results are stronger in that they are
global, but weaker in that we have not indicated how to find solutions with these
types in specific equations.

Our approach has important differences from the admissibility results considered
in these previous works, and these differences simplify substantially the answers we
find. In our work we consider only the symmetry type that periodic solutions can
have when the group I' is a finite subgroup of O(2). Our classification of these
symmetry types is obtained using only properties of reflections and rotations in
O(2). Asaresult we do not answer the question of admissible subgroups for periodic
solutions of a given I'; rather we answer the question of finding all symmetry types
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for some I' C O(2). In our approach, we view symmetries of periodic solutions as
consisting of space symmetries (elements in I'), phase-shift symmetries (in S!, see
[6]), and time-reversing symmetries (using the standard time-reversing symmetry of
second order equations). These symmetries of the Hamiltonian equations manifest
themselves when viewing periodic trajectories in configuration space in several ways.
There are spatial symmetries that fix the solution pointwise, and there are spatial
symmetries that move the trajectory onto itself (without fixing every point on the
trajectory) either by preserving the direction of the flow (phase-shift symmetries) or
by reversing it (time-reversing symmetries). A primary complication in classifying
symmetries of periodic solutions stems from distinguishing these various types of
symmetry.

In Table 1 we list the 14 possible symmetry types of periodic solutions. In Fig-
ures 1-3 we illustrate each of the various symmetry types by schematic oriented
trajectories in configuration space. In Figures 4 and 5 we illustrate some of these
symmetry types by showing actual periodic solutions obtained by numerical inte-
gration of a Dgs-invariant Hamiltonian system. For each of the symmetry types
3c, 4a and 5¢c we give a quadratic Hamiltonian that has periodic solutions with
this symmetry type, thus showing that periodic orbits of these types may be the
solution curves of linear Hamiltonian vector fields.

Specifically, we consider Hamiltonian equations of the form

(1.1) z=p and p:—%—‘;(x),

where z,p € R™ and the Hamiltonian H has the form
1
(12) H(z,p) = ol + V().

Note that all solutions of this potential system have the form X (t) = (z(t), z(¢))
and that all such systems have time-reversing symmetries. In particular, define
(R-X)(t) = (x(—t), —&(—t)). If X is a solution, then so is R - X.

We also assume that the Hamiltonian is invariant under the action of a compact
Lie group I' C O(n), that is, H(vyx,yp) = H(x,p) for all ¥ € T. This is equivalent
to requiring that the potential V' be group invariant, that is, V(yz) = V() for all
v € I'. Later we specialize to the case where n = 2 and I' is a finite subgroup of
0(2).

The spatial symmetry group of a solution X (t) = (z(t),4(t)) in configuration
space is defined as the subgroup

T={yel:Hz(t)} ={=(t)}}.

In our discussions, we shall use only the facts that our systems are second order
equations (& = F(z,)) which have a first integral, are time-reversible (F'(x, —y) =
F(z,y)), and are I'-equivariant (F'(yx,vy) = vF(z,y) for all v € I'). We end this
section by mentioning a few physically motivated examples.

Polar coordinates (r, ) provide a simple way to write a Ds-invariant system. In
these coordinates the Hamiltonian has the form

1
H =2 (p} +p5) + V(r,0),
where (p,, pg) are the momentum coordinates and the potential V(r, 8) is given by

V(r,0) = f(r.0) + f(r,0 — 2%

4
3 )+f(7”,9—?),
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where f(r,60) is an arbitrary function. Here are two examples.

(1) In a plane consider a mass being drawn by three identical springs of unit
length, whose ends are fixed at the corners of an equilateral triangle. Then

fﬁﬂ)z—%kbﬂ—ﬂrmﬂ@+r”—4{

where k is the force constant of the springs [3]. This example generalizes
easily to give a D,,-invariant example.

(2) Consider localized electrons in a two-dimensional hexagonal lattice of positive
ions where electrons are placed in the neighborhood of the center of each
triangle, and consider nearest-neighbor interaction. Under these assumptions
we can consider the dynamics in each triangle separately, and

f('r? 0) =

a
_\/1 — 2rcos(f) + 2’

where « is the strength of interaction [1].

Finally, we mention a Ds-invariant example: a hydrogen electron in a uniform
magnetic field. In cylindrical coordinates (r, ¢, z) the Hamiltonian is independent
of ¢ and is given by

1 2

1
H=_ + ar®,

2 2
T‘+ z T TS
5Pt PE) - e

where « is a constant related to the strength of the magnetic field [7].

2. SYMMETRIES OF PERIODIC SOLUTIONS

We suppose that X (¢) is a periodic solution with minimum period 27, and show
that the spatial symmetry group 7T is obtained from a certain isotropy subgroup
of X. Periodic solutions have three symmetry groups. We have described two
previously: the space symmetries I" and the time-reversing symmetry R. The third
one is the phase-shift symmetry group S!, where § € S! acts on X by 6 - X(t) =
X(t+6). Since S! and R do not commute, they generate a group isomorphic to
O(2). The full group of symmetries acting on periodic solutions is I' = I’ x O(2).
More precisely, if (v,0,¢) € I’ where & = £1, then

(2.1) (7,0,e) X (t) = (ya(et + 0),eva(et + 6))

is also a periodic solution of (1.1) with minimum period 2.
Given the group action of I' on 2m-periodic solutions, we can define the isotropy
subgroup X of a given solution X (¢); that is,

S={(r,0.e) €l (7,0,6)X = X}.
Let IIr : T — I be projection. We prove the following:
Proposition 2.1.

T =T ().

This proposition states that the symmetry group T of the periodic solution in
configuration space is the projection of the isotropy subgroup ¥ of the periodic
solution in phase space.
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Proof. Tt follows directly from (2.1) that v{z(t)} = {z(t)}; hence T D IIp ().

To prove the converse, let 7 € T'; that is, let 7{x(¢t)} = {z(¢)}. Since 72(0) = z(0)
for some 6 € S, it follows that 7z(¢) for ¢ near 0 lies on the curve x(t') for ¢’ near 6.
Hence 74(0) is a scalar multiple of ©(6). Since the Hamiltonian H must be constant
on the trajectory X (t) = (x(t), £(¢)), it follows from (1.2) that 72(0) = ex(f), where
¢ = £1. Uniqueness of solutions to systems of ODE now implies that (7,6, ¢) fixes
the solution X and is in 3. Thus 7 € ITp(2), as desired. O

3. CLASSIFICATION OF SYMMETRIES
Let 3 be the group of spatio-temporal symmetries of X (¢); that is, let
So=%n(CxSYh).
Observe that 3 is a twisted subgroup, that is, there is a group homomorphism
(3.1) 0:T, — 8!,
where Ty = I (f]o), such that
(3.2) So={(1,0(7) €T x §' 1 7 € Ty}

This follows from uniqueness of solutions to systems of ODE.

To summarize: T is the subgroup of symmetries acting on configuration space
which leave the periodic trajectory {x(t)} invariant; Ty C T is the subgroup con-
sisting of symmetries that preserve the direction of time; and ker® C Tj is the
subgroup consisting of symmetries that fix the trajectory x(t) pointwise.

In this note we address the question: What are the possible symmetry subgroup
triplets (T, Tp, ker ©) when X is a periodic orbit? We simplify this question by
classifying the symmetries of periodic solutions up to conjugacy in O(2) rather
than up to conjugacy in the space group I' C O(2) — as is often done. We prove
the following:

Theorem 3.1. Up to conjugacy in O(2) x O(2), the symmetries of periodic solu-
tions are given in Table 1.

Before proceeding with the proof we define a special class of periodic solutions de-
fined by their trajectories in configuration space. A periodic solution is a brake orbit
if the trajectory z(t) in configuration space lies on a smooth curve with endpoints.
This result, stated in a slightly different form, may be found in [8], Remark (IV),
p. 707.

Lemma 3.2. A trajectory X (t) is a brake orbit if and only if X (t) has a phase-shift
X (t+ 60) with time-reversing symmetry (1,0, —1).

Proof. If X(t) is a 2m-periodic solution that has (I,0,—1) as a symmetry, then
x(—t) = x(t). It follows that the trajectory x(t) runs from z(0) to z(xw) and then
retraces its path back to x(0). (Note that z(0) # z(r); otherwise, uniqueness of
solutions would imply that X is m-periodic.) Thus X is a brake orbit.

Conversely, suppose that X (t) = (x(t),2(t)) is a brake orbit. Phase shift X so
that z(0) is an endpoint; thus £(0) = 0. The form of (1.1) implies that Y'(¢) =
(x(—t),—x(—t)) is also a solution. However, the initial conditions for X and Y at
t = 0 in phase space are the same. Hence X and Y are identical, and (1,0, —1) is
a symmetry of X. O



F1cURE 1. Configuration space illustrations of brake orbits. Dot-
ted lines indicate coordinate axes.
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TABLE 1. Possible symmetries for periodic solutions: 7, 7, and 7
denote reflections.

| Name | T || To [ker© | reversing [ reference | features |
LD [De®=3)] Zx | L [ (#0-D [ (b2 | |
| @ [Ze (k>3] Ze [ 1 | mone [ (a) | |

(3&) D2 ZQ 1 (T, 0, —1) (b2)

(3b) D2 D2 D1 (I, O, —1) (bl) brake

(3¢) D, Di(ry)| 1 (12,0,—-1) (b2) intersecting

(4a) D, D, 1 none (a) intersecting

(D) D, D, 1 | (,0,-1) | (bl brake

(4C) D1 D1 D1 (I, O, —1) bl) brake

(4d) D, 1 1 | (r0,-1) (b2)

(ba) Ly Ly 1 none (a)

(5b) 72 72 1 (1,0,-1) (b1) brake

(5¢) Ly 1 1 (—1,0,-1) (b2) intersecting

(6a) 1 1 1 none (a)

(6b) 1 1 1 (1,0,-1) (b1) brake

R=(1,0,-1)
> —
(30) | (40)
> =<
(4b)
CoON (6)
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R=(1,0,-1)

)

(33 ‘ (4d)

FiGURE 2. Configuration space illustrations of trajectories having
time-reversing symmetry (7,0, —1)

No time reversing symmetry

A
LoD

2 Ga)

\

R=(L0,-1)

(5¢)

T
R

F1GURE 3. Configuration space illustrations of the remaining trajectories
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(4b)

FIGURE 4. Type (1) trajectory: V(z,y) = 3 (2?+y?)+3 (2®—3zy?)
with energy ﬁ; initial conditions (0.0,0.0,0.00895,0.2). Type
(4b) trajectory: V(z,y) = £(2* +y?) + 2(2® — 3zy?) with energy
%; initial conditions (0.0, 0.052,0.2416,0.038).

(4c) (4d)

V

FIGURE 5. Type (4c) trajectory: V(z,y) = (2% +y?) + 3(2® —
3zy?) with energy %; initial conditions (0.0,0.0,0.125, —0.2165).
Type (4d) trajectory: V(z,y) = 5(2? +y?) 4+ 22 (2* — 3ay?) with

energy s; initial conditions (0.0,0.011,0.2497, —0.0055).
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Proof of Theorem 3.1. It follows from (3.1) that ker © is a normal subgroup of Tj
and that Tp/ ker © is cyclic. Note that the elements of ker © fix x(t) pointwise, so
that x(t) € Fix(ker ©).

Since I'x 8 T is of index two, either 3 = 3 or |[3/3| = 2. In the former case
T = Ty is immediate, while in the latter case there are two possibilities: T = Ty
and |T/Tp| = 2. Altogether, the symmetry group 7" may be constructed in one of
three ways from 3 as follows:

(a) i} = 20,
(bl) [X/%0| =2 and T = Tp, or
(b2) |X/X0| =2 and |T/Tp| = 2.

We consider each of these possibilities in turn.

First, we specialize to the two degrees of freedom case and assume that I' C O(2)
is a finite group. Since z(t) is not constant, it follows that the only possibilities
for ker © are the trivial group 1 and the two element reflection group D;. If
ker ® = Dy, then the trajectory x(¢) must lie in the line of symmetry of Dy and
hence be a brake orbit. Lemma 3.2 implies that after a phase shift we may assume
that (1,0, —1) is a symmetry; hence |3/3| = 2. Since Tp/ ker © is cyclic, the only
possibilities for TO are TO = D1 or TO = DQ.

If ker © = 1, then either Ty = Zj, for some k > 1, or Ty = D1.

(a) i} = 20.

The assumption S =3 implies that X () has no time-reversing symmetry. If
ker©® = Dy, then {z(t)} is a brake orbit and by Lemma 3.2 has a time-reversing
symmetry, contradicting the assumption. Thus ker® = 1 and T is cyclic. Hence
T = Zj, for some k > 1 (case 2 when k > 3, case 5a when k = 2, and case 6a when
k=1),or T = D (case 4a).

(b1) |£/3| =2 and T = Tp.

The assumption |3/%0| = 2 implies that X (¢) has a time-reversing symmetry,
and the assumption T" = Tj implies that this time-reversing symmetry has the form
(I,0,—1) € I". After phase shifting we may assume that X (t) has the time-reversing
symmetry (1,0, —1). Lemma 3.2 implies that these trajectories are brake orbits.

Should ker ©® = D;, then the trajectory is an interval in the line of symmetry
of Dy. Thus T = Dy if that interval is symmetric about the origin (case 3b), and
T = D; otherwise (case 4c).

If ker © = 1, then the trajectory z(¢) is a planar curve with two distinct endpoints
2(0) and x(r). Note that the symmetry group T must preserve endpoints. If a
symmetry 7 € T fixes these two endpoints, then 7 must be a reflection and, by
uniqueness of solutions, x(t) lies in Fix(r). It follows that ker ® # 1, which is a
contradiction. Thus, all nontrivial elements in 7" must interchange endpoints, and
it follows that T has order two. Hence T' = 1 (case 6b), T = D; (case 4b), or
T = Zs (case 5b).

(b2) |/3%0| = 2 and |T/Tp| = 2.

As noted previously, the only possibilities for ker ©® are 1 and D;. However if
ker® = D, then the trajectory is a brake orbit and has been classified in the
previous subsection. So ker © = 1, and T, must be cyclic. There are three cases:

() To = Zy, for some k > 2 (cases 1 and 3a),
(6) To =1 (cases 4d and 5¢), or
(v) To = Dy (case 3c),
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In case (o) |T/To| = 2, T may be either T = Dy, (cases 1 and 3a) or T' =
Zoy,. In fact, T = Zoy cannot occur when k > 2. To verify this point, note that
IIp (3~ 30) = T — Ty. Hence the periodic solution X (t) must have a symmetry of
the form (7,6, —1), where v is rotation by 7. It follows that (2,0, 1) is a symmetry
of X (t), and hence that 2 fixes x(t) pointwise. Since 72 is a rotation, 72 = 1. Hence
T = Zoy, is impossible when k > 2.

In case () we have Ty = 1 and two possibilities for T'; namely, T = Zo (case 5¢)
and T = Dy (case 4d). Case (v) leads directly to T = Dy (case 3c). O

Suppose that a periodic solution has a projection in configuration space with Dy
symmetry where £ > 3. Then Theorem 3.1 implies that the reflectional symmetries
in Dy must be time-reversing.

4. TRAJECTORY GEOMETRY

Lemma 3.2 shows that a trajectory is a brake orbit if and only if (a phase-shift
conjugate of) the trajectory has (1,0, —1) as a time-reversing symmetry. We remark
that for non-brake orbits self-intersection points are sometimes forced by symmetry.
In particular, we prove the following;:

Proposition 4.1. Let X(t) be a periodic trajectory that is not a brake orbit. If
either

(a) (1,0,1) is a space symmetry where T is a reflection or
(b) (=1,0,—1) is a time-reversing symmetry of X,
then X has a self-intersection point in configuration space.
In case (a) there must be a self-intersection on the line of symmetry of T, while
in case (b) there must be a self-intersection point at the origin.

Proof. Suppose that (7,6,1) is a space symmetry of X = (z,4). Since (72,26, 1)
= (1,20,1) is also a space symmetry, either § = 0 or § = w. Note that (7,0, 1)
is a space symmetry if and only if z(t) € Fix(7). Therefore, if § = 0, then X (t)
is a brake orbit; so we may assume § = 7. Symmetry and continuity imply that
{z(t)} NFix(r) # 0 — say, x(ty) € Fix(r). The symmetry (7, 7,1) implies that
x(tg) = x(to + ), which shows that there is a self-intersection.

Suppose that (—1,0,—1) is a symmetry of X. Then z(—t) = —z(t) and z(0) = 0.
Similarly, z(7) = z(—n) = —x(7) so that (7) = 0, showing that = goes through
the origin at two different times. O

5. CONSTRUCTIONS OF TRAJECTORIES

Proposition 4.1 implies that trajectories of type 3c, 4a and 5¢ must have self-
intersections. It can be verified that each of these symmetry types occurs in periodic
solutions of linear Hamiltonian equations. See Table 2. We assume that the Hamil-
tonian has the form

1
H(z,y,p,q) = §(|p|2 + [al?) + V(z,y).

In Figures 1-3 we draw plausible sketches for each of the possible symmetry
types. In these drawings we show that for each of the symmetry types that are not
brake orbits and are not covered by Proposition 4.1, there are possible trajectories
x(t) without self-intersections. In Figures 4 and 5 we show numerical solutions for
several symmetry types.
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TABLE 2. Periodic solutions with self-intersections.

V(z,y) solution type
.12 . .
c .7 —i—22y2 , (s'ln(t), SlI'l(Qf), COjS(t), 2 co§(2t)) 3c
(@ +y°) — 5oy (sin(t) + sin(2t), sin(t) — sin(2t), 5¢
cos(t) + 2 cos(2t), cos(t) — 2 cos(2t))
2z% + 1y? (sin(2t), 2 cos(t) + sin(t), 2 cos(2t), —2sin(t) 4 cos(t)) | 4a
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