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Abstract. Numerical simulation of periodic solutions in large arrays of Josephson 
junctions indicates the existence of periodic solutions where each junction oscillates with 
the same waveform, but with equal phase lags. These solutions are called ponies on a 
merry-go-round or POMS for short. In this paper we prove the existence of POMS in the 
equations modelling large arrays of Josephson junctions by using global bifurcation 
techniques. The basic idea is to view the period of the solution and the phase lag as 
independent parameters and to prove, using a priori estimates, that the synchronous 
solution (with phase lag set to zero) can be continued to a solution with phase lag equal 
to (l/N)th of the period, a POM. 

AMS classification scheme numbers: 58F22,34(325,34K99 

1. Introduction 

We continue here the study of periodic solutions in large arrays of Josephson 
junctions begun in [AGK]. We demonstrate the existence of ponies on a 
merry-go-round (POMS) periodic solutions, by using a global existence theorem for 
differential delay equations coupled with symmetry. These POMS are observed 
numerically in [AGK] for a certain type of Josephson junction model, thus 
motivating this analysis. 

We divide this paper into three short sections. The equations for coupled arrays 
of Josephson junctions are described in the following section. Further discussion of 
this system may be found in the papers of Beasley, Hadley and Wiensenfeld 
[H, BHW] (which stimulated our own interest in this area) and [AGK]. Ponies on a 
merry-go-round are defined in section 3, where our main theorem is stated. The 
proof is given in section 4. 
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2. Arrays of Josephson junctions 

Following [AGK, BHW] we write the equations for a coupled array of N Josephson 
junctions as follows. Let rpj ( j  = 1, . . . , N) denote the difference in the phases of the 
quasiclassical superconducting wavefunctions on the two sides of the kth junction, 
and let ZL denote the current flowing through the load. We assume that all 
individual junctions are identical and that each junction feels the load Z, identically. 
Thus the circuit equations describing arrays of Josephson junctions are SN 
symmetric, where SN is the group of permutations of the junctions. 

The evolution of the rpj and ZL is governed by the system of equations: 

8@, + @j + sin( qj) + Z, = ZB ( j = 1 ,  . . . ,  N )  (2. la)  

(2. lb) 
k = l  

where fl is a dimensionless measure of the capacitance of the junctions, ZB is the bias 
current applied to each junction, and 9 is an integro-differential operator which 
depends on the particular load considered. 

[BHW] consider a variety of loads, two of which are singled out for study in 
[AGK]. These are pure capacitive load for which (with appropriate normalization) 

and pure resistive load for which 
r N  

(2.2c) 

(2.2r) 

In the resistive case we can eliminate ZL from the first N equations of (2.1) by simply 
substituting the right-hand side of (2.2r) for Z,. We can also eliminate ZL in the 
capacitive case with a little more algebraic effort. The resulting system is 

where for a capactive load 

and 
A = C = l  B = O  (2.4r) 

for a resistive load. 
A running solution to (2.3) is one for which there is a minimal T > 0 such that 

rpj(t + T )  = Vj( t )  + 2n  ( j = l , .  . . , N )  (2- 5 )  
for all t E R. We call T the period of the running solution. A symmetric or in-phase 
running solution is one for which 

(PI = rp, = . . . = Q)N. (2.6) 
It is shown in [AGK] that any symmetric running solution is asymptotically stable in 
the subspace of the full phase space defined by (2.6). Hence there can exist at most 
one symmetric running solution to (2.3) for any particular choice of parameter 
values. 
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3. Ponies on a merry-go-round 

A running solution to (2.3) is said to be a discrete travelling wave solution or, more 
picturesquely, a ponies on a merry-go-round solution (POM) if 

Q,j ( t )  = Q , I ( ~  - (i - 1)TlN) ( j = l , .  . . , N )  (3.1) 

To simplify notation we will write Q, instead of q1 when we are dealing with a POM. 
In view of the permutation symmetry of the system (2.3), the existence of a POM for 
one ordering of the junctions implies the existence of POMS for any other ordering. 
Moreover, when N = KM then POMS can also be formed by grouping the junctions 
into M blocks of K synchronous junctions each with a delay of TIM between 
successive blocks. 

The existence of POM solutions has been studied in rings of oscillators by 
Alexander and Auchmuty [AA] and, as part of a study of Hopf bifurcation with 
dihedral symmetry, by Golubitsky and Stewart [GS, GSS]. Indeed, using the same 
group theoretic techniques as in [GSS] it would be possible to find POMS in S, 
symmetric systems via Hopf bifurcation. However, this is not the way in which POMS 
arise in the Josephson junction models. This is because in the Josephson junction 
equations, running solutions (and hence POMS) can never have small amplitude. 

We apply global bifurcation techniques to prove the existence of POMS for (2.3). 
Substitution of (3.1) in (2.3) yields the delay differential equation 

A N - 1  B N - t  

N k=O N k=O B@(t) + +(f) + sin q(f)  + - @(t - k T / N )  + - c sin(@(t - k T / N ) )  = CZB. 

This delay equation is special in that the delays kTIN are coupled to the period T 
of the running solution q. To use global techniques we decouple the period T and 
the delay z and consider the equation 

A N - 1  B N-1 

N k=O N k=O @Q(t)  + @ ( t )  + sin q(t) + - @(t  - k t / N )  + - sin(& - k t / N ) )  = CZ,. (3.2) 

Here we make the natural restriction that 0 S z < NT. Note that when r = 0 the 
running solution to (3.2) corresponds to the in-phase running solution to (2.3). 

Our method for proving the existence of POMS is to prove the existence of a 
global branch of running solutions to (3.2) emanating from the in-phase running 
solution in the (T, r)-plane, and to use the specific form of the Josephson junction 
equations to show that this branch must cross the line T = z. This is done by finding 
a priori upper and lower bounds for the period T of any running solution Q, of (3.2) 
and an upper bound for l+l which are uniform in z. 

Theorem 3.1. POM solutions exist for the Josephson junction system (1.3) at least 
when ZB > 1 and /3 > 0. Moreover, if K divides N ,  then POM solutions exist when the 
junctions are subdivided into NIK groups each consisting of K junctions. 

Remark. The restriction Z, > 1 is certainly too stringent, since POMS have been 
observed numerically for values of IBc 1 (at least for capacitive loads). Both 
theoretical considerations and numerical evidence suggest that the numerically 
observed POMS are born as heteroclinic orbits. We will discuss the question in more 
detail elsewhere. 
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4. The proof of theorem 3.1 

We will prove only the first assertion of theorem 3.1. The proof of the assertion 
concerning blocks of junctions is almost idential except for notation. 

Let Q, be a running solution of (3.1) with period T. We derive a bound for T 
which is independent of t and p. To this end, integrate both sides of (3.2) over 
(0, T). Since Q is T-periodic and Q, satisfies (2.5) we find 

T 

( l + A ) 2 n + ( l + B ) J  Sing?dt=CzBT 
0 

Thus, using (2 .4~)  and (2.4r) we obtain the identity 

2np + [sin Q, dt = ZBT 

where p = 1 for a capacitive load and p = 2 for a resistive load. This equation may 
be rewritten as: 

T = 2np/(zB - (sin q)) .  
where 

(sin q )  =- sin g? dt. irb 
Bounding the sine by fl yields the estimate 

when 1, > 1. 
Next, we seek bounds for 

which are independent of t. We claim that for a capacitive load 

M s Z, + 1 + 6//3 
and 

M < N(IB + 1)/2 

(4.2~) 

(4.2r) 

for a resistive load. 

Note that @(g = 0. For a resistive load, equation (3.2) at t = f becomes 
To verify this claim, let 7 be a point in [0, TI where 191 achieves the value M. 

and (4.2r) follows. Similarly in the case of a capacitive load, at t = 7 equation (3.2) 
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becomes 

3 N - 1  

= JL Z, - sin ~ ( 0  + sin q(F - k z / N ) .  

3 

3 + 8  N(3  8 )  k=n 
Therefore 

Z , + l + -  
3 + 8  3 + 8  
JL M = M - -  3 8 

which implies (4.2~).  
We seek T-periodic running solutions of (3.2). We do this by treating the 

parameter z as a homotopy parameter, and looking for a continuum of T-periodic 
running solutions for z in the range 0 S z S T. 

If q ( t )  is a T-periodic running solution of (3.2) then so are all of its time 
translations q(f + e). Let s = t /T and define 

~ ( ~ 1  = q ( t  + e) - 2 n ~  
where 8 is uniquely determined by requiring that 

Note that since q ( t  + 0) is a running solution, 

q ( s  + 1) = v ( s ) .  (4- 4) 
The periodic function q ( s )  satisfies the non-autonomous delay differential equation 

 AT^-' 
/3V” + TV’ + T2 sin(q + 2x3) + - 2 q ’ ( s  - k u / N )  

N k=O 

BT2 N-1 

N k=O 
+ - 2 sin[v(s - k d / N )  + 2 4 s  - k u / N ) ]  

= C&T2 - 2nT(1 + A )  (4- 5) 
where ’ = d/ds and U = z/T plays the role of the homotopy parameter. 

2’= { q  E C2(R): T#I satisfies (4.3) and (4.4)) 
To formulate (4.5) in a functinal analytic setting, defined the real Banach spaces 

endowed with the C2-norm, and 
9 = { 11 E C(R) : q satisfies (4.4)) 

with the supremum norm. Also define 

and 
2 ? : % X R + 9  

N o : 2 ’ X R + 9  

2(q, T) = pq”(s) + T 
and 

&(q, T) = - T + Tq‘ + TZ sin(q + 2ns) + - ATN-’ 
q ’ ( s  - k u / N )  

N k=O 

BT2N-l 

N k=O 
+ - 2 sin{ V(s - u k / n )  + 2 4 s  - u k / N ) }  - CIBT2 + 2nT(A + 1) 
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for each U E [0, 11. Then (4.5) becomes 
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3 5  + NX5) = 0, 
where E = (q, T )  E 2? X R. Indeed, 
onto 9 we can write 

5 + 3-1Nu( 5)  = 0. 

Moreover, the nonlinear operator 

(4.6) 
since 3 is a linear isomorphism from $? x Iw 

(4.7) 
5?-lNU is a compact operator, uniformly in 

a E [0, 11. It is also jointly continuous in (a, T )  and smooth i n  5 for each fixed U. 

Degree theory is therefore the natural technique with which to solve (4.7). 
We recall the uniform bounds (4.1) on the periods of running solutions to (3.2), 

which we write as 

0 < Ti < T < T2. (4- 8) 
In view of the estimates (4.2), we also have uniform C2 bounds on running solutions 
to (3.2). These bounds together with (4.8) imply the uniform bound 

llvlla < K 
for solutions to (4.6). Therefore, all our solutions of (4.7) lie in the interior of the 
set 

0 = { ( v, T )  E $? X R : 11 < K, < T < T,} 
and none lies on 30, for each U E [0, 11. To prove existence of at least one such 
solution for each a, we show that the Leray-Schauder degree at a = 0 is non-zero: 

deg(f + 3- ’N0 ,  0, 0 )  # 0. (4.9) 
To verify (4.9), recall that it has been shown in [AGK] that (2.3) has a unique 

&-periodic symmetric running solution q0 in a parameter region which includes the 
quarter-space Z, > 1, /3 > 0. The linearization of (3.2), with z = 0, about qo is 

pf + (1 + A ) g  + (1 + B)ccos qO= 0 

and f = @,, is a &-periodic solution to this equation corresponding to the Floquet 
multiplier 1.  The remaining Floquet multiplier is exp{-(1 + A)To//3} E (0, 1). The 
construction in [AGK] shows that 

Therefore another solution to the linearized equation which is linearly independent 
of @o is given by 

~ ( t )  = +O(t) f e-(l+A)S’o+,;2(s) d ~ .  
0 

Define 

where s = t/TO and 0 is chosen so that q0 E 2. Without loss of generality we can set 
8 = 0. The pair = ( W O ,  TO) E $? X [w is the unique solution to (4.6) at u = 0. To 
complete the proof we have to show that the Frkchet derivative 5?+ D&(EO) is 
non-singular, i.e., that 

q O ( s )  = qo(t + e) - 2ns 

kerW + D.No(Sn)) = {(O,O)}. (4.10) 
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Suppose that f' = ( q ,  A) E 2Z x R is an element of ker(2 + DNO(.$,)). Then 

a + DNO(E0) f' = 0 

and it follows by a straightfonvard calculation that ( q ,  A) must satisfy the linear 
inhomogeneous ordinary differential equation 

&"+ (1 +A)T,q' + (1 + B)Tiq  COS q,o(t) 

= -A{(l+ A)T,@,,(t) + 2(1+ B)T,sin qo(t) - 2CT,ZB}. (4.11) 

In view of the fact that qo is a To-periodic symmetric running solution to (2.3), it 
is easy to verify that the general solution to (4.11) has the form 

9(s) = rPo(T,s)W(s) 
where 

with arbitrary constants c1 and c2. Since Qo is To-periodic and q E 2, it follows that 
q ( ~ ) / @ ~ ( T , s )  is 1-periodic in s. On the other hand W ( s )  can only be periodic if 
c ~ = A = O .  Thus 

q ( s )  = CI@O(Td). 

However, q E 2? and q0 being a &-periodic symmetric running solution to (2.3) 
imply 

Therefore we must also have c1 = 0 so that (4.10) holds. 
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