PRIMITIVE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS

Martin Golubitsky and Bruce Rothschild

The object of this paper is to classify (up to inner automorphism) the primitive, maximal rank, reductive subalgebras of the (complex) exceptional Lie algebras. By primitive we mean that the subalgebras correspond to (possibly disconnected) maximal Lie subgroups.

In [3], the corresponding classification for the (complex) classical Lie algebras was completed, as was the classification of the nonreductive maximal rank subalgebras of all the simple Lie algebras.

Using case by case techniques and some more general results proved in § 1 , we prove the following theorem:

Theorem 0. The primitive maximal rank, reductive subalgebras of the exceptional (complex, simple) Lie algebras are listed (up to conjugacy by an inner automorphism) in the table below. Further, all subalgebras isomorphic to one of these are conjugate by an inner automorphism.

We note that Theorem 5.5 (p. 148) in the reductive case of Dynkin [2] is incorrect. In particular $A_{3} \oplus D_{5}, A_{5} \oplus A_{2} \oplus A_{1}, A_{7} \oplus A_{1}$ in $E_{8}, A_{3}^{2} \oplus A_{1}$ in E_{7} and $A_{3} \oplus A_{1}$ in F_{4} are not maximal subalgebras.

Algebra	Subalgebra	*	Reference in text
E_{8}	$\begin{aligned} & A_{1} \oplus E_{7} \\ & A_{1}^{8} \\ & A_{2} \oplus E_{6} \\ & A_{2}^{4} \\ & A_{4}^{2} \\ & D_{4}^{2} \\ & D_{8} \\ & A_{8} \\ & T^{8} \end{aligned}$	maximal maximal maximal maximal maximal Cartan subalgebra	$\S 2$ case 1 , (a) (i) $\% 2$ case 1 , (b) (i) $\% 2$ case 2 , (a) (i) \& 2 case 2, (b), (i) 82 case 4 , (i) $\xi 2$ case 5 , (i) $\xi 2$ case 6 , $\$ 2$ case 7, (i)
E_{7}	$\begin{aligned} & A_{1} \oplus D_{6} \\ & A_{1}^{3} \oplus D_{4} \\ & A_{1}^{7} \\ & A_{2} \oplus D_{5} \\ & A_{2}^{3} \oplus T^{1} \\ & A_{7} \\ & E_{6} \oplus T^{1} \\ & T^{7} \end{aligned}$	maximal maximal maximal maximal Cartan subalgebra	$\S 2$ case 1 , (a), (ii) $\xi 2$ case 1 , (b), (ii) $\S 2$ case 1 , (b), (ii) $\S 2$ case 2 , (a), (ii) $\S 2$ case 2 , (b), (ii) § 2 case 7, (ii) $\% 2$ case 9 ,

Algebra	Subalgebra	*	Reference in text
E_{6}	$\begin{aligned} & A_{1} \oplus A_{5} \\ & A_{2}^{3} \\ & D_{4} \oplus T^{2} \\ & D_{5} \oplus T^{1} \\ & T^{6} \end{aligned}$	maximal maximal maximal Cartan subalgebra	$\$ 2$ case 1 , (a) (iii) \& 2 case 2 , (b), (iii) $\$ 2$ case 5 , (iii) 82 case 6 ,
F_{4}	$\begin{aligned} & A_{1} \oplus C_{3} \\ & A_{2}^{2} \\ & B_{4} \\ & D_{4} \end{aligned}$	maximal maximal maximal algebra of longer roots	\& 3 case 1 , (a) 83 case 2 83 case 7 § 3 case 8
G_{2}	$\begin{aligned} & A_{1}^{2} \\ & A_{2} \end{aligned}$	maximal maximal	$\begin{aligned} & \S 4 \text { case } 1 \\ & \S 4 \text { case } 3 \end{aligned}$

T^{k} denotes the center of the subalgebra, where k is the dimension of the center. The other superscripts refer to the number of summands of the corresponding algebra.
(See Table 12, p. 150 of [12]).
The authors wish to thank Robert Steinberg for several helpful remarks.

1. Preliminaries. We now present some basic notation and a characterization of primitivity from [3].

Let p be a maximal rank subalgebra of a simple Lie algebra g. By maximal rank, we mean that there exists a Cartan subalgebra h of g which is contained in p. We fix h.

Let W be the Weyl group relative to $h . p$ is then decomposed by h into

$$
p=h \oplus \sum_{\omega} e_{\varphi}
$$

where the φ 's are roots in g determined by h, and the e_{φ} 's are the corresponding one dimensional root spaces. p is then uniquely determined by the roots φ for which $e_{\varphi} \subset p$. Let $K_{p}=\{\varphi$ a root of g relative to $\left.h \mid e_{\varphi} \subset p\right\}$. Define $W_{p}=\left\{\alpha \in W \mid \alpha\left(K_{p}\right)=K_{p}\right\}$.

Proposition 1.1. Let p be a maximal rank subalgebra of g. Then p is primitive if and only if the following holds: If l is a subalgebra of g such that $p \subset l$, and $W_{p} \subset W_{l}$, then $p=l$ or $l=g$.

Proof. This is just Proposition 3.2 of [3].
We will use this as our definition of primitivity.
In our notation K_{g} is the set of all roots in g. We introduce an operation [,] on $K_{g} \times K_{g}$ which is induced from the Lie algebra structure of g. Let $\varphi, \psi \in K_{g}$, then

$$
[\varphi, \psi]=\left[\begin{array}{ll}
0 & \text { if }\left[e_{\varphi}, e_{\psi}\right]=0 \\
\varphi+\psi & \text { if }\left[e_{\varphi}, e_{\psi}\right]=e_{\varphi+\psi} .
\end{array}\right.
$$

Note that $\alpha[\rho, \psi]=[\alpha(\varphi), \alpha(\psi)] \forall \alpha \in W$. Denote by (φ, ψ) the standard inner product on h^{*}, the dual space to h, given by the CartanKilling form.

Now let p be reductive, i.e., p is given uniquely as the direct sum of simple algebras and its center. Thus there exists nonisomorphic simple Lie subalgebras of $g: X_{1}, X_{2}, \cdots, X_{r}$ such that $p=X_{1}^{k_{1}} \oplus \cdots \oplus X_{r}^{k_{r}} \oplus T$ where T is the center of p and where $X_{i}^{k_{i}}$ denotes the direct sum of all ideals of p isomorphic to X_{i}, and k_{i} is the number of such ideals. Note that since $X_{i}=\left(h \cap X_{i}\right) \oplus \sum_{\varphi} e_{\varphi}$, where the φ are unique, $K_{X_{i}}$ and $W_{X_{i}}$ make sense.

Lemma 1.2. Let $q_{i}=X_{i}^{k_{i}}$. Then $W_{p} \subset W_{q_{i}}$.
Proof. Let $\alpha \in W_{p}$. Let f be an inner automorphism of g representing α. Then $f(p)=p$. Also $f\left(X_{i}\right)$ is an ideal of p isomorphic to X_{i}. Thus $f\left(X_{i}\right) \subset q_{i}$ since all ideals of p isomorphic to X_{i} are in q_{i}. Hence $f\left(q_{i}\right)=q_{i}$ and $\alpha \in W_{q_{i}}$.

Let z be a subalgebra of g with Cartan subalgebra $h_{z} \subset h$. Assume that z is regular (in the sense of Dynkin [2]), i.e., let $K_{z}=\left\{\varphi \in K_{g} \mid e_{\varphi} \subset z\right\}$, then $z=h_{z} \oplus \sum_{\varphi \in K_{z}} e_{\varphi}$. Denote by K_{z}^{\perp} all of the roots in K_{g} orthogonal to the set K_{z}. Let h_{z}^{\perp} be the subspace of h orthogonal to h_{z}.

Let $z^{\perp}=h_{z}^{\perp} \oplus \sum_{\varphi \in K_{z}^{\perp}} e_{\varphi}$. Note that if φ, ψ are roots of g such that $[\varphi, \psi]=0$, then $(\varphi, \psi)=0$. We then leave it to the reader to show that

Lemma 1.3. $z^{\llcorner }$is a subalgebra of g, and $K_{z\llcorner }=K_{z}^{\perp}$.
Theorem 1.4. Let p be a maximal rank, reductive subalgebra. Let $p=X_{1}^{k_{1}} \oplus \cdots \oplus X_{r}^{k_{r}} \oplus T$ (as described above). Let $q_{i}=X_{i}^{k_{i}}$, and let $Y=q_{1}^{\perp}$. If p is primitive, then either $Y=q_{2} \oplus \cdots \oplus q_{r}$ or the subalgebra, l, generated by the vector subspace $q_{1}+Y+h$ is g.

Proof. Since elements of the Weyl group act as isometries, $W_{q_{1}}=W_{Y} . \quad$ Now $\left[q_{2} \oplus \cdots \oplus q_{r}, q_{1}\right]=0$, thus $\left(q_{2} \oplus \cdots \oplus q_{r}, q_{1}\right)=0$. Hence $X_{2}^{k_{2}} \oplus \cdots \oplus X_{r}^{k_{r}} \subseteq Y$, and $p \subseteq l$.

Now if $\alpha \in W_{p}$ then (a) $\alpha\left(K_{q_{1}}\right) \subset K_{l}$ and (b) $\alpha\left(K_{Y}\right) \subset K_{l}$. (a) follows from Lemma 1.2 and (b) from the above remark that $X_{q_{1}}=W_{Y}$. Now $K_{q_{1}} \cup K_{Y}$ forms a set of generators for K_{l} (under [,]). Thus $\alpha\left(K_{l}\right) \subset K_{l}$ (since α acts as a "homomorphism" relative to [,]). So we have shown that $W_{p} \subset W_{l}$. By Proposition 1.2 and by the primi-
tivity of p, either $l=p$ or $l=g$. If $l=p$, then clearly $Y=$ $X_{2}^{k_{2}} \oplus \cdots \oplus X_{r}^{k_{r}}$. Otherwise $l=g$.

Let φ, ψ be roots in a simple Lie algebra where all of the roots have the same length. If $(\varphi, \psi)=0$, then $[\rho, \psi]=0$. Otherwise $[\rho, \psi]=\varphi+\psi$ and the length of $\varphi+\psi$ is greater than the length of φ or ψ since $(\varphi, \psi)=0$. Hence the following.

Corollary 1.5. Let g be a simple Lie algebra all of whose roots have the same length (in particular E_{6}, E_{7} and E_{8}). Then if p is a primitive subalgebra, $Y=X_{2}^{k_{2}} \oplus \cdots \oplus X_{r}^{k_{r}}$.

Proof. In such an algebra $X_{1}^{k_{1}}+X+h=l$.
If $l=g$, then g can be decomposed into to direct sum of two ideals, which contradicts the fact that g is simple.

As an immediate application of this corollary we get:
Corollary 1.6. Let g be a simple Lie algebra whose roots all have the same length. Let p be a subalgebra of g. If $K_{p}^{\perp} \neq \varnothing$, then p is not primitive.

Note: This corollary is true even if the roots of g do not have the same length.
2. E_{6}, E_{7} and E_{8}. We first describe the roots of the algebras E_{6}, E_{7} and E_{8} (see [1]). Let $z_{1}, z_{2}, \cdots, z_{8}$ be the standard orthonormal basis for the dual space to a fixed Cartan subalgebra of E_{8}. With respect to this basis the roots of E_{8} are given by

$$
(I)_{8}=\left\{ \pm z_{i} \pm z_{j} \mid 1 \leqq i<j \leqq 8\right\}
$$

and

$$
(I I)_{8}=\left\{ \pm 1 / 2\left(z_{1} \pm z_{2} \pm \cdots \pm z_{8}\right) \mid \text { the number of minus signs is even. }\right\}
$$

We shall refer to these as type I roots and type $I I$ roots respectively. The roots of type I will be denoted by $\pm i \pm j$ when no confusion arises; e.g., $-z_{2}+z_{3}$ is denoted by $-2+3$, etc. The roots of Type II will be denoted by the corresponding sequences of signs, e.g., $1 / 2\left(z_{1}+z_{2}-z_{3}+z_{4}-z_{5}-z_{6}-z_{7}+z_{8}\right)=(++-+---+)$.

We take E_{6} and E_{7} to be regular subalgebras of E_{8}. The roots of E_{7} are all of those roots of E_{8} orthogonal to $7+8$. Thus

$$
\begin{aligned}
(I)_{7}= & (I)_{8} \cap K_{E_{7}}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq 6\} \cup\{7-8\} \\
(I I)_{7}= & (I I)_{8} \cap K_{E_{7}}=\{ \pm(* * * * * *+-) \mid \text { an odd number } \\
& \text { of the } * \text { are }- \text { and the others are }+\} .
\end{aligned}
$$

The roots of $E_{6} \subseteq E_{7}$ are as follows:

$$
\begin{aligned}
(I)_{6}=(I)_{8} \cap K_{E_{6}}= & \{ \pm i \pm j \mid 1 \leqq j<j \leqq 5\} \\
(I I)_{6}=(I I)_{8} \cap K_{E_{6}}= & \{ \pm(* * * * *++-) \mid \text { and odd number } \\
& \text { of the } * \text { are }- \text { and the others are }+\} .
\end{aligned}
$$

When no confusion arises, we shall write merely (I) or ($I I$). Also, we note that $(I)_{s}$ generates a maximal rank subalgebra, which we also denote by $(I)_{s}$ (or sometimes by (I)). The algebra $(I)_{s}$ is maximal in E_{s}.

We note that all roots of E_{8} have the same length, $\sqrt{\overline{2}}$. Thus the Weyl group acts transitively in each of these algebras. As observed in Corollary 3.3. of [3], the Cartan subalgebras in E_{s} are primitive.

In order to classify the primitive, reductive, maximal rank subalgebras we need some information about their Weyl groups. We note first that the reflections about roots of type I are just determined by signed permutations of z_{1}, \cdots, z_{8}. For if α and β are roots, then

$$
\begin{aligned}
& S_{\alpha}(\beta)=\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha=\beta-(\alpha, \beta) \alpha, \text { as }(\alpha, \alpha)=2 . \\
& \text { If } \alpha=i-j, \text { then } S_{\alpha}\left(z_{k}\right)= \begin{cases}z_{i} & \text { if } k=j \\
z_{j} & \text { if } k=i \\
z_{k} & \text { otherwise }\end{cases} \\
& \text { If } \alpha=i+j \text {, then } S_{\alpha}\left(z_{k}\right)=\left\{\begin{aligned}
-z_{i} & \text { if } k=j \\
-z_{j} & \text { if } k=i \\
z_{k} & \text { otherwise } .
\end{aligned}\right.
\end{aligned}
$$

We can thus, for example, identify S_{α} with the transposition $\left(\begin{array}{llll}1 & 2 & 3 & \cdots \\ 2 & 1 & 3 & \cdots\end{array}\right)$ if $\alpha=1-2$, and with $\left(\begin{array}{rrr}1 & 2 & 3 \\ -2 & -1 & 3\end{array} \cdots 88\right)$ if $\alpha=1+2$. These reflections, then, generate signed permutations with an even number of sign changes.

Lemma 2.1. (a) Any two sets of three mutually orthogonal roots in E_{s} are conjugate by an inner automorphism (i.e., by a Weyl group element).
(b) Any set of mutually orthogonal roots is conjugate by a Weyl group element to a set of roots (mutually orthogonal) of type I.

Proof. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be mutually orthogonal roots in E_{s}. Since the Weyl group acts transitively on the roots, we may assume $\alpha_{1}=1-2$.

Suppose α_{2} is a root of type II. Since $\left(\alpha_{2}, \alpha_{1}\right)=0, \alpha_{2}=$ $\pm(++* * * * * *)$, say $(++* * * * * *)$. Let $\beta=(--* * * * * *)$,
where β is taken to agree with α in the last six signs. Then $S_{\beta}(1-2)=1-2, S_{\beta}(\alpha)=1+2$. Since no root of type $I I$ is orthogonal to both of these, (b) holds. In particular, $S_{\beta}\left(\alpha_{3}\right)$ is of type I, say $i+j, i, j \neq 1$ or 2 . Then there is some signed permutation f fixing 1 and 2 , and taking $i+j$ into $3-4$. The permutation can be taken from $W_{E_{6}}$ or $W_{E_{7}}$ if $i-j$ is in $K_{E_{6}}$ or $K_{E_{7}}$, respectively. Thus $f S_{\beta}$ takes $\alpha_{1}, \alpha_{2}, \alpha_{3}$ into $1 \pm 2,3-4$, and (a) holds.

On the other hand, if α_{2} is a root of type I, and if $\alpha_{2} \neq 1+2$, then we can find a signed permutation f, as above, such that f fixes. 1 and 2 and $f\left(\alpha_{2}\right)=3-4$. Then let $\beta=(+++-+++-)$. $S_{\beta}(1-2)=1-2, S_{\beta}(3-4)=(--+----+)$. Thus we have reduced the problem to the case where α_{2} is of type $I I$, and the lemma is proved.

Let N_{s} be the subgroup of the Weyl group of E_{s} consisting of the signed permutations. We have the following normal forms for elements of the Weyl group:

Theorem 2.2. Let g be a Weyl group element. Then one of the following three cases holds:
(a) $g \in N_{s}$.
(b) $\exists f \in N_{s}, \alpha \in(I I)_{s} \ni g=f S_{\alpha}$.
(c) $\exists f \in N_{s}, \alpha, \beta \in(I I)_{s} \ni(\alpha, \beta)=0$ and $g=f S_{\beta} S_{\alpha}$.

Proof. Any Weyl group element g has the form $g=S_{\alpha_{n}} \cdots S_{\alpha_{1}}$, where the α_{i} are roots of the algebra. Recalling that $S_{\alpha} S_{\beta}=S_{\beta} S_{S_{\beta}(\alpha)}$, we may move any $S_{\alpha_{i}}$, where α_{i} is of type I, to the left past all roots of type $I I$. Thus we may assume $g=S_{\beta_{1}} \cdots S_{\beta_{k}} S_{r_{1}} \cdots S_{r_{i}}$ $(k+l=n)$, where the β_{i} are of type I, and the γ_{j} of type II. Let this be a representation of g so that l is minimal. Then all the γ_{j} are mutually orthogonal. For if $(\alpha, \beta)=0$, then $S_{\alpha} S_{\beta}=S_{\beta} S_{\alpha}$, and thus if there are any γ_{i} and γ_{j} not orthogonal, we may assume that we have $\left(\gamma_{1}, \gamma_{2}\right)= \pm 1$ or ± 2. If $\left(\gamma_{1}, \gamma_{2}\right)= \pm 2$, then $\gamma_{1}= \pm \alpha$, and $S_{r_{1}} S_{r_{2}}=1$, the identity. If $\left(\gamma_{1}, \gamma_{2}\right)= \pm 1$, then $S_{r_{1}} S_{r_{2}}=S_{r_{2}} S_{S_{\gamma_{2}}\left(\gamma_{1}\right)}$, where $S_{r_{2}}\left(\gamma_{1}\right)$ is a root of type I. In either case, we can decrease l, a contradiction. Thus we may write $g=f S_{r_{1}} \cdots S_{r_{\gamma}}$ where all the γ_{j} are mutually orthogonal type $I I$ roots, and f is a signed permutation.

Two roots of type $I I$ are orthogonal if and only if they agree in four signs, and disagree in four signs, e.g., $(++++++++)$ and $(++++----)$. Thus in E_{6} it is easy to see that there can be at most two mutually orthogonal roots of type $I I$. Thus, for E_{6} the theorem is proved.

Suppose that for E_{7} or E_{8} we have γ_{1}, γ_{2}, and γ_{3} mutually orthogonal. Then for an appropriate signed permutation h we have

$$
\begin{aligned}
& h\left(\gamma_{1}\right)=(+-+-+-+-) \\
& h\left(\gamma_{2}\right)=(-+-++-+-) \\
& h\left(\gamma_{3}\right)=(-++--++-) .
\end{aligned}
$$

Thus $\quad S_{r_{1}} S_{r_{2}} S_{r_{3}}=h^{-1} h S_{r_{1}} h^{-1} h S_{r_{2}} h^{-1} h S_{r_{3}} h^{-1} h=h^{-1} S_{h\left(r_{1}\right)} S_{h\left(r_{2}\right)} S_{h\left(r_{3}\right)} h$. Let $\beta=-++-+--+$. Then $S_{h\left(r_{1}\right)} S_{h\left(r_{2}\right)} S_{h\left(r_{3}\right)} S_{\beta}=(-1) \cdot(12)(34)(56)(78)=$ $a \in N_{s}$. Thus $S_{r_{1}} S_{r_{2}} S_{r_{3}}=h^{-1} S_{h\left(r_{1}\right)} S_{h\left(r_{2}\right)} S_{h\left(\gamma_{3}\right)} S_{\beta} S_{\beta} h=h^{-1} a S_{\beta} h$. Thus $g=$ $f h^{-1} a S_{\beta} h S_{r_{4}} \cdots S_{r_{l}}$. By the arguments above, this reduces l by two, a contradiction. Hence $l \leqq 2$. This proves the theorem.

We now proceed with the classification of the primitive, maximal rank, reductive subalgebras, p, of E_{s}.

The general plan of attack in classifying the possible algebras p will be to assume that X_{1} is some particular algebra, say A_{3} or D_{4}, etc., and then to conjugate X_{1} (by Weyl group elements) into a form suitable for deciding whether or not the various maximal rank, reductive subalgebras with X_{1} as an ideal are primitive. Theorem 2.1 is used for the latter. The number of cases to consider is kept small this way since there are only a few choices for X_{1}, and, of course, the rank of X_{1} is limited by 8. In particular, X_{1} cannot be B_{n}, C_{n}, G_{2} or F_{4} since the roots of E_{s} have only one length. Because the arguments are essentially the same, we treat E_{6}, E_{7} and E_{8} together.

We consider the following cases for X_{1} :

$$
A_{1}, A_{2}, A_{3}, A_{4} D_{l}\left(l>4, A_{l}(l>4)\right) E_{7}, E_{6} .
$$

Case 1. $\quad X_{1}=A_{1}$.
(a) $k_{1}=1$. (See § 1 for the definition of k_{1}).

By Corollary 1.5 and the primitivity of $p, p=A_{1} \oplus Y$, where $Y=A_{1}^{\perp}$.
(i) In E_{8} let $K_{A_{1}}=\{ \pm(7+8)\}$. This can be done without loss of generality since the Weyl group acts transitively. Then $A_{1}^{\perp}=E_{7}$. As is easily checked, $A_{1} \oplus E_{7}$ is maximal, and hence primitive.
(ii) In E_{7}, let $K_{A_{1}}=\{ \pm(7-8)\}$. Since the roots of Y must be orthogonal both to $7-8\left(A_{1}\right)$ and to $7+8$ (since they are roots of E_{7}), Y must have only roots of type I. Then

$$
K_{Y}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq 6\}
$$

or $Y=D_{6} . \quad A_{1} \oplus D_{6}$ is the algebra $(I)_{7}$, which is maximal, and thus primitive.
(iii) In E_{6}, let $K_{A_{1}}=\{ \pm(1-2)\}$. Then $Y=A_{1}^{\perp}$, and $K_{Y}=$ $\{ \pm(1+2), \pm i \pm j, 3 \leqq i<j \leqq 5$, and all type II roots of the form $\pm(++* * *++-)$ and $\pm(++* * *--+)\}$.

We see, then, that $Y=A_{5}$. In this case $p=A_{1} \oplus A_{5}$ is maximal,
and thus primitive.
(b) $k_{1}>1$

Here we let $p=A_{1}^{k_{1}} \oplus Y$.
(i) In E_{8}, since each A_{1} summand has a root orthogonal to the others, we can assume that for the first two summands $A_{1} \oplus A_{1}=$ $A_{1}^{2}, K_{A_{1}^{2}}=\{ \pm 1 \pm 2\}$, by Lemma 2.1. Let $\bar{Y}=A^{k_{1}-2} \oplus Y$. Then $\bar{Y} \cong\left(A_{1}^{2}\right)^{\perp}$, and thus $K_{\bar{Y}} \subseteq(I)$.

If $k_{1}=2$, then $K_{Y}=K_{\left(A_{1}^{2}\right) \perp}=D_{6}$.
Here we digress to prove a lemma about D_{l} factors of reductive subalgebras.

Lemma 2.3. $D_{l} \subseteq E_{s}$ is always conjugate to the algebra with roots $\{ \pm i \pm j \mid 1 \leqq i<j \leqq l\}$. If D_{l} has only type I roots, and if $l>4$, then $W_{D_{l}} \subset W_{\left(I_{s}\right)}$.

Proof. Let $D_{l} \subset E_{s}$. Let h be the Cartan subalgebra of E_{s}. Let \bar{h} be the Cartan subalgebra of D_{l}. Note that $\operatorname{dim} \bar{h}=l$. We can choose an orthonormal basis $w_{1}, w_{2}, \cdots, w_{l}$ of \bar{h} so that the roots of D_{l} are just $\pm w_{i} \pm w_{j}, 1 \leqq i<j \leqq l$.

Now $w_{1} \pm w_{2}$ are orthogonal. Thus by Lemma 2.1 we can assume $\left\{ \pm w_{1} \pm w_{2}\right\}=\{ \pm 1 \pm 2\}$ in $E_{s} . \quad w_{2}-w_{3}$ is not orthogonal to $w_{1}+w_{2}$ nor to $w_{1}-w_{2}$. But any type $I I$ root is orthogonal either to $1-2$ or to $1+2$. Thus $w_{2}-w_{3}$ is of type I. By use of a signed permutation fixing the set $\{ \pm 1+2\}$, we can take $w_{2}-w_{3}$ to be $2-3$. Clearly $w_{2}+w_{3}$ then becomes $2+3$ under this same signed permutation. Thus we may assume $\pm 1 \pm 2, \pm 2 \pm 3$ and therefore $\pm 1 \pm 3$ are roots of D_{l}. Continuing in this way, we can assume $\pm i \pm j$, $1 \leqq i<j \leqq l$, are roots of D_{l}. These are all the roots of D_{l}, and hence the first part of the lemma is proved.

Now in fact what we saw was that if D_{l} has only type I roots, then up to conjugacy by a signed permutation the roots of D_{l} are $\pm i \pm j, 1 \leqq i<j \leqq l$.

Thus it is sufficient for establishing the last part of the lemma to assume that the roots of D_{l} are $\pm i \pm j, 1 \leqq i<j \leqq l$.

Let $g \in W_{D_{l}}$. Suppose, contrary to the assertion, that g is not a signed permutation. Then by Theorem 2.1, either $g=f S_{\alpha}$, or $g=$ $f S_{\beta} S_{\alpha}, f$ a signed permutation, and α, β roots of type $I I$ with $(\alpha, \beta)=0$. In the first case, either $S_{\alpha}(1+2)$ or $S_{\alpha}(1-2)$ is of type $I I$, and thus $f S_{\alpha}(1+2)$ or $f S_{\alpha}(1-2)$ is of type $I I$, and hence not in $K_{D_{l}}$, contradicting the assumption that $g \in W_{D_{l}}$.

For the second case, let $g=f S_{\alpha} S_{\beta},(\alpha, \beta)=0$, and let $i \pm j \in K_{D_{l}}$. As above, $g(i \pm j) \in K_{D_{l}} \subseteq(I)$. Thus $S_{\alpha} S_{\beta}(i \pm j) \subseteq(I)$. Now if α and β, disagree in sign in one of the i or j positions, and agree in
the other, then $S_{\alpha S} S_{\beta}(i \pm j)$ are both in (II). (We see this by observing $S_{\alpha} S_{\beta}=S_{\beta} S_{\alpha}$, and if $(\gamma, \alpha)=0$, then $S_{\alpha}(\gamma)=\gamma . i-j$ is orthogonal to one of α and β, and $i+j$ to the other). Thus α and β must agree in both the i and j positions, or both disagree. Changing i and j, we see that α and β must totally agree or totally disagree on positions $1,2, \cdots, l$. If $l>4$, this contradicts $(\alpha, \beta)=0$. This completes the proof of the lemma.

We now return to the case at hand, namely $A_{1}^{2} \oplus D_{6}$ in E_{8}. By Lemma 1.2 we have $W_{p} \subseteq W_{D_{6}}$ and by Lemma 2.3, $W_{D_{6}} \subseteq W_{(I)}$. But $A_{1}^{2} \oplus D_{6} \subsetneq(I)$. Hence $A_{1}^{2} \oplus D_{6}$ is not primitive, by Prop. 1.1.

This means that we may assume $k_{1}>2$. By Lemma 2.1 we may assume that $K_{A_{1}^{3}}=\{ \pm(1 \pm 2), \pm(3-4)\}$, the roots for the first three factors A_{1}. Now $3+4$ is in $K_{\left(A_{1}^{3}\right),}^{\perp}$. If $3+4 \notin K_{p}$, then p is not primitive, by Corollary 1.6. If $3+4 \in K_{Y}$, then since Y has no summands of type A_{1} in it, $K_{Y} \subseteq(I)$ contains another root α such that $[3+4, \alpha] \neq 0$. But then either $[-3+4, \alpha] \neq 0$ or $[3-4, \alpha] \neq 0$, contradicting the fact that $\pm(3-4)$ are the roots for a direct summand A_{1} of p.

This all implies that k_{1} can't just be 3 . In fact, the same kind of reasoning implies that k_{1} must be even if $k_{1}>1 . k_{1}=6$ is not possible, since, by Lemma 2.1, we can assume $K_{A_{1}^{6}}$ consists of six of the following eight roots, together with their negatives: $1 \pm 2,3 \pm 4$, $5 \pm 6,7 \pm 8$. But then $K_{A_{1}^{6}}^{\perp_{1}}$ consists of the other two, and we have two more summands of A_{1}. Thus $k_{1}=4$ and $k_{1}=8$ are the only possibilities. By Corollary 1.5, then, the only remaining possibilities are $A_{1}^{4} \oplus D_{4}$ and A_{1}^{8}, where $K_{A_{1}^{4} \oplus D_{4}}=\{ \pm(1 \pm 2), \pm(3 \pm 4), \pm i \pm j$, $5 \leqq i<j \leqq 8\}$ and $K_{A_{1}^{8}}=\{ \pm(1 \pm 2), \pm(3 \pm 4), \pm(5 \pm 6) \pm(7 \pm 8)\}$.

We first show that $A_{1}^{4} \oplus D_{4}$ is not primitive by showing $W_{A_{1}^{4} \oplus D_{4}}=$ $W_{D_{4} \oplus D_{4}}$, where $K_{D_{4} \oplus D_{4}}=\{ \pm i \pm j \mid i, j \leqq 4$ or $i, j \geqq 5\}$. Let $g \in W_{A_{4} \oplus D_{4}}$. If g is a signed permutation, then $g \in W_{D_{4} \oplus D_{4}}$. If $g=f S_{\alpha}, f$ a signed permutation, $\alpha \in(I I)$, then $f S_{\alpha}$ must take one of $1+2$ and $1-2$ into (II), contradicting $g \in W_{A_{1}^{4} \oplus D_{4}}$.

If $g=f S_{\beta} S_{\alpha},(\alpha, \beta)=0$ then, just as in the proof of Lemma 2.3, α and β must totally agree or totally disagree in sign in positions $5,6,7,8$, say they agree. Then since $(\alpha, \beta)=0$, they must totally disagree in positions $1,2,3,4$. Thus $S_{\beta} S_{\alpha}$ are in $W_{D_{4} \oplus D_{4}}$ (by computation). Since $g \in W_{A_{4} \oplus D_{4}}, f=g S_{\beta} S_{\alpha}$ is in $W_{A_{4} \oplus D_{4}}$, and thus in $W_{D_{4} \oplus D_{4}}$ by the observations above. Hence $g \in W_{D_{4} \oplus D_{4}}$. This completes the proof that $W_{A_{4} \oplus D_{4}} \subseteq W_{D_{4} \oplus D_{4}}$. Hence $A_{4} \oplus D_{4}$ is not primitive.
A_{1}^{8}, the last case, is primitive. We show this by noting that the following elements are in $W_{A_{1}^{8}}$: (c) (13)(24), (d) (35)(46), (e) (57)(68), (f) arbitrary sign changes (even number), and (g) $S_{\beta} S_{\alpha}$, where $\alpha=$
$(++++++++)$ and $\beta=(++++----)$. Let q be an algebra strictly containing A_{1}^{8}, and invariant under $W_{A_{1}^{8}}$ If K_{q} contains a root of (I) not in K_{p}, then using (c), (d) and (e) above we see that K_{q} must contain all of (I). But $S_{\beta} S_{\alpha}(4+5)$ is in (II), and thus K_{q} also has a root of type $I I$. But then K_{q} has all roots of type $I I$ since (I) is a maximal subalgera, and $q=E_{8}$. If K_{q} contains a root of type $I I$, say α_{1} then we can assume $\alpha_{1}=\alpha$, using (f). Similarly, using (f) we see that $(+--+++++) \in K_{g}$. But then $S_{\beta} S_{\alpha}(+--+++++)=-2-3 \in K_{g}$, and $q=E_{8}$ by the case above, as this is a new root of type I. Thus the only algebra larger than A_{1}^{8} invariant under $W_{A_{1}^{8}}$ is E_{8}, and A_{1}^{8} is primitive. This completes the case $X_{1}=A_{1}$ for E_{8}. (ii) In E_{7} we may assume that the first copy of A_{1} is given by $K_{A_{1}}=\{ \pm(7-8)\}$, and the second by $\{ \pm(1-2)\}$, using Lemma 2.1. Just as k_{1} had to be even in the E_{8} case above, the same argument shows that k_{1} must be odd for E_{7}, and thus $k_{1}=3,5$ or 7 , as $k_{1}>1$. But if $k_{1}=5$, then $K_{A_{1}^{5}}=$ $\{ \pm 1 \pm 2, \pm 3 \pm 4, \pm(7-8)\}$ up to signed permutations, and thus $K_{A_{1}^{5}}^{\perp_{1}^{5}}=\{ \pm 5 \pm 6\}$, and $\left(A_{1}^{5}\right)^{\perp}=A_{1}^{2}$, contradicting $k_{1}=5$. Hence this case is impossible. The only remaining possibilities are $A_{1}^{3} \oplus D_{4}$ and A_{1}^{7}, by rank considerations and Corollary 1.5.

$$
K_{A_{1}^{3} \oplus D_{4}}=\{ \pm 1 \pm 2, \pm i \pm j, 3 \leqq i<j \leqq 6, \pm(7-8)\}
$$

We show that $A_{1}^{3} \oplus D_{4}$ is primitive. Let $\alpha=(+-+++++-)$, $\beta=(-+++++-+)$. Then $S_{\beta} S_{\alpha}$ is in $W_{A_{1}^{3} \oplus D_{4}}$. Let q be a subalgebra of E_{7} properly containing $A_{1}^{3} \oplus D_{4}$ and invariant under $W_{A_{1}^{3} \oplus D_{4}}$. Suppose K_{q} contains a root of type I not in $K_{A_{1}^{3} \oplus D_{4}}$. Then K_{q} contains all of $(I)_{7}$, using the algebra multiplication [,] of q. Now $S_{\beta} S_{\alpha}(2-3) \in K_{q}$ a root of type $I I$. Thus, since $(I)_{7}$ is a maximal subalgebra of $E_{7}, q=E_{7}$. On the other hand, if K_{q} contains a root, γ, of type (II), then, since $f=\left(\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 1 & -2 & -3 & 4\end{array} \cdot 88\right)$ is in $W_{A_{1}^{3} \oplus D_{4}}, f(\gamma)$ must be in K_{q}. Thus $[\gamma, f(\gamma)] \in K_{q}$. But this is one of the four roots $\pm 2 \pm 3$ which is not in $K_{A_{1}^{3} \oplus D_{4}}$. Thus $q=E_{7}$ by the previous argument, and $A_{1}^{3} \oplus D_{4}$ is primitive.

Now consider A_{1}^{7}. We claim that this is primitive also,

$$
K_{A_{7}}=\{ \pm 1 \pm 2, \pm 3 \pm 4, \pm 5 \pm 6, \pm(7-8)\}
$$

Let q be a subalgebra properly containing A_{1}^{7} and invariant under $W_{A_{1}^{7}}$, and in particular under (c) (13)(24), (d) (35)(46), (e) $\left(\begin{array}{rrrrr}1 & 2 & 3 & 4 & \cdots \\ 1 & -2 & -3 & 4 & \cdots\end{array}\right)=f$ and $S_{\beta} S_{\alpha}$, where $\alpha=(+-+++++-)$ and $\beta=(-+++++-+)$. If K_{q} contains a root of type I not in $K_{A_{1}}$, then using (c), (d) and the algebra multiplication we see K_{q} contains all of $(I)_{7}$. Further, K_{q} contains $S_{\beta} S_{\alpha}(2-3)$, which is a root of type $I I$. Thus, since $(I)_{7}$
is maximal, $\mathrm{q}=E_{7}$. On the other hand, if K_{q} has a root γ, of type $I I$, then $f(\gamma) \in K_{q},[\gamma, f(\gamma)] \in K_{q}$ and $[\gamma, f(\gamma)]$ is a root of type I not in $K_{A_{1}^{7}}$. Then the previous argument yields $q=E_{8}$. Thus A_{1}^{7} is primitive.

Note. As can be seen in the last few arguments, the crucial thing in demonstrating that a given subalgebra p is primitive is knowing which elements of W_{p} to use in showing that larger algebra invariant under W_{p} is E_{s}. The arguments thereafter are just like the ones above. Thus, from now on, rather than show in detail why a given algebra is primitive, we shall simply indicate which elements of W_{p} one uses
(iii) In E_{6} we can assume $K_{A_{1}^{2}}=\{ \pm 1 \pm 2\}$, by Corollary 1.5. Then $K_{d_{1}^{2}}^{\perp_{2}} \subseteq(I)_{6}$. In this case, as in E_{8}, we must have k_{1} even, by the same arguments. $k_{1}=6$ is impossible since $(I)_{6}$ doesn't contain $K_{A_{1}^{6}}$. Thus only $A_{1}^{2} \oplus A_{3}$ and A_{1}^{4} remain. We claim that neither of these is primitive.
$K_{A_{1}^{2} \oplus A_{3}}=\{ \pm 1 \pm 2, \pm 3 \pm 4, \pm 4 \pm 5, \pm 3 \pm 5\}$. We show that $W_{A_{1}^{2} \oplus A_{3}} \cong W_{(I)_{6}}$. Let $g \in W_{A_{1}^{2} \oplus A_{3}} \cdot g$ cannot be of the form $f S_{\alpha}, f$ a signed permutation and $\alpha \in(I I)_{6}$, for either $f S_{\alpha}(1-2)$ or $f S_{\alpha}(1+2)$ would be in $(I I)_{6}$, and thus not in $K_{A_{1}^{2} \oplus A_{3}}$. Suppose $g=f S_{\beta} S_{\alpha}$, $(\alpha, \beta)=0, f$ a signed permutation, $\alpha, \beta \in(I I)_{6}$. As we saw in the proof of Lemma 2.3 (since $A_{3}=D_{3}$, β and α must agree in each of positions 3,4 and 5 , or disagree in these three position. Similarly they must agree or disagree in both positions 1 and 2 . Since they are both in $(I I)_{6}$, they must totally agree or totally disagree in positions $6,7,8$. It is impossible, then, for α and β to agree in exactly four positions, contradicting $(\alpha, \beta)=0$. Thus g must be in $\mathrm{W}_{(I)_{6}}$, and $W_{A_{1}^{2} \oplus A_{3}} \subset W_{(\tau)_{6}}$. So $A_{1}^{2} \oplus A_{3}$ is not primitive.

We now consider the last case, $A_{1}^{4} . K_{A_{1}^{4}}=\{ \pm 1 \pm 2, \pm 3 \pm 4\}$. Here we show that $W_{A_{1}^{4}} \cong W_{D_{4}}$, where $K_{D_{4}}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq 4\}$, and thus that A_{1}^{4} is not primitive. Let $g \in W_{A_{1}^{4}}$. As above, $g=f S_{\alpha}$ is not possible, as $f S_{\alpha}\left(K_{A_{1}^{4}}\right) \nsubseteq(I)_{6}$ If $g=f S_{\beta} S_{\alpha}$, as above, α and β must agree in both positions 1 and 2 or disagree in both, and similarly for positions 3 and 4. Also, as $\alpha, \beta \in(I I)_{6}$, they totally agree or totally disagree in positions 6,7 and 8 . Since $(\alpha, \beta)=0$, α and β must agree in exactly four positions, and these must be $1,2,3$ and 4 or 5, 6, 7 and 8. In either case, $S_{\alpha} S_{\beta} \in W_{A_{1}^{4}}$ and $S_{\alpha} S_{\beta} \in W_{D_{4}}$ (by computation). Then $f=g S_{\beta} S_{\alpha} \in W_{A_{1}^{4}}$. But a signed permutation in $W_{A_{1}^{4}}$ is clearly also in $W_{D_{4}}$. Thus $f \in W_{D_{4}}$, and $g=f S_{\beta} S_{\alpha} \in W_{D_{4}}$, and A_{1}^{4} is not primitive.

Before beginning Case 2, we prove a lemma about subalgebras $A_{l} \cong E_{s}$.

Lemma 2.4. Let $A_{l} \subset E_{s}$.
(a) If $l \leqq 6$ for $s=8, l \leqq 4$ for $s=7$, or $l \leqq 3$ for $s=6$, then all A_{l} are conjugate, and in particular conjugate to A_{l} with $K_{A_{l}}=$ $\{ \pm(i-j) \mid 1 \leqq i<j \leqq l+1\}$.
(b) If $l=7$ for $E_{8}, l=5$ for E_{7}, or $l=4$ for E_{6}, then there are two conjugacy classes of A_{l} whose simple roots are respectively $\pm(i-(i+1)), 1 \leqq i \leqq l$, and $\pm(i-(i+1)), 1 \leqq i \leqq l-1$, together with $\pm(l+(l+1))$. (Note: where we write $(i+1)$ and $(l+1)$ above we mean numerical addition, of course).

Proof. Let h be the fixed Cartan subalgebra of E_{s}. Let $h_{l} \subseteq h$ be the Cartan subalgebra of A_{l}. We can choose vectors w_{1}, \cdots, w_{l+1} in h such that h_{l} is the hyperplane in the span of $\left\{w_{1}, \cdots, w_{l+1}\right\}$ determined by the $w_{i}-w_{i+1}, 1 \leqq i \leqq l$. We can assume that the $w_{i}-w_{i+1}$ are the simple roots of A_{l}, since $l<s$ in all cases. We can assume $w_{1}-w_{2}$ is $1-2$, by conjugating with a Weyl group element. If $w_{2}-w_{3}$ is of type I, then a signed permutation can conjugate $\left\{w_{1}-w_{2}, w_{2}-w_{3}\right\}$ to $\{1-2,2-3\}$. If $w_{2}-w_{3}$ is of type $I I$, it must have the form $\pm(+-* * * * * *)$. Using a signed permutation, we can assume that $w_{2}-w_{3}$ is $(+-++* * * *)$. Let $\beta=(++-+* * * *)$, where β and $w_{2}-w_{3}$ agree in the last four positions. Then $S_{\beta}(1-2)=1-2, \quad S_{\beta}(+-++* * * *)=-2+3$. Hence we can assume $w_{2}-w_{3}$ is a root of type I, and $\left(w_{1}-w_{2}, w_{2}-w_{3}\right\}=$ $\{1-2,2-3\}$. Next consider $w_{3}-w_{4}$. If it is in $(I)_{s}$, then using a signed permutation we can assume that $w_{3}-w_{4}=3-4$. If $w_{3}-w_{4} \in$ $(I I)_{s}$ then since it is orthogonal to $1-2$ and not to $2-3$, using a signed permutation we can assume it is $(++-++* * *$.) Letting $\beta=(+++-+* * *)$, and using S_{β}, we can assume $w_{3}-w_{4} \in(I)_{s}$. Continuing in this way yields (a).

For (b) we do the E_{8} case, E_{6} and E_{7} being entirely similar. By (a) we can assume $w_{i}-w_{i+1}=i-(i+1)$ for $1 \leqq i \leqq 6$. Now if $w_{7}-w_{8}$ is a root of type I, then since $\left(w_{7}-w_{8}, i-(i+1)\right)=0$ for $1 \leqq i \leqq 5$, and $\left(w_{7}-w_{8}, 6-7\right) \neq 0$, we can assume $w_{7}-w_{8}$ is $7-8$ or $7+8$, and if $w_{7}-w_{8}$ is of type $I I$, then it must be $\pm(++++++--)$ for the same reasons. Let $\alpha=(++++++++)$. Then S_{α} fixes $i-(i+1), i \leqq 6$, and takes $w_{7}-w_{8}$ into a root of type I. Thus it is reduced to the previous case. The two forms (the one with $7-8$ and the one with $7+8$) obtained here are not conjugate, since in the first case all the roots are orthogonal to $(++++++++)$, whereas in the second case no root is orthogonal to all of them. This completes the proof of (b).

Case 2. $\quad X_{1}=A_{2}$
(a) $k_{1}=1, Y=A_{2}^{\perp}$
(i) In E_{8}, we can take $K_{A_{2}}=\{ \pm(6-7), \pm(7+8), \pm(6+8)\}$, since by Lemma 2.4 all A_{2} in E_{8} are conjugate. Then $A_{2}^{\perp}=E_{6}$. Now $A_{2} \oplus E_{6}$ is maximal and thus primitive.
(ii) In E_{7}, take $K_{A_{2}}=\{ \pm(7-8), \pm(+++++-+-)$, $\pm(+++++--+)\}$ (by Lemma 2.4). Then $A_{2}^{\perp}=A_{5}$, where $K_{A_{5}}=\{ \pm(i-j), \pm(i+6) \mid i \neq j, i, j=1, \cdots, 5\}$. This is maximal, and thus primitive.
(iii) In E_{6}, by Lemma 2.4, we can take

$$
K_{A_{2}}=\{ \pm(1-2), \pm(2-3), \pm(1-3)\}
$$

Then $K_{A_{2}}^{\perp}=\left\{ \pm 4 \pm 5, \pm\left(+++\varepsilon_{1} \varepsilon_{2}++-\right), \pm\left(+++\varepsilon_{3} \varepsilon_{4}--+\right) \mid\right.$ $\left.\varepsilon_{1} \neq \varepsilon_{2}, \varepsilon_{3}=\varepsilon_{4}\right\}$. Thus $A_{2}^{\perp}=A_{2} \oplus A_{2}$. Either we have a summand of A_{1}, and Case 1 applies, another summand of A_{2}, violating $k_{1}=1$, or neither and hence a root orthogonal to p, contradicting primitivity by Corollary 1.6.
(b) $k_{1}>1$
(i) In E_{8}, let one copy of A_{2} have $K_{A_{2}}=\{ \pm \alpha, \pm \beta, \pm \delta\}$ where $\delta=\alpha+\beta$, and let γ be a root in another copy of A_{2}. By Lemma 2.1 we can assume $\alpha=1+2, \gamma=1-2$. Now $(\beta, 1+2) \neq 0$, and $(\beta, 1-2)=0$. Thus β must be of type $I I$, and using a signed permutation we may assume $\beta=(++++++++)$. Since $[\alpha, \beta]=$ δ, we have $\delta=(--++++++)$.

The roots in the second copy of A_{2} are orthogonal to δ and β, but not to $1-2$. Thus they are $\pm(1-2), \pm \eta, \pm \tau$, where η and τ are of type $I I$. Using a signed permutation, then, which fixes z_{1} and z_{2}, we can assume $\eta=(+-+++---)$ and $\tau=(-++++---)$.

Then $K_{A_{2}^{2}}^{\downarrow_{2}^{2}}=\{ \pm(3-4), \pm(4-5), \pm(3-5), \pm(6-7), \pm(7-8)$, $\pm(6-8)\}$, and $A_{2}^{2}\left\llcorner=A_{2}^{2}\right.$ (two more copies). Thus $Y \cong A_{2}^{2}$. If $Y \neq A_{2}^{2}$, then either $Y=A_{1} \oplus Z$, which is already covered by Case 1 , or $Y=$ A_{2} or A_{2}^{2}. If $Y=A_{2}$, then there is a root orthogonal to p in E_{8}, which can't happen by Corollary 1.6. Thus $Y=A_{2}^{2}$ and $p=A_{2}^{4}$. This is primitive, as can be seen using the following elements of $W_{A_{2}^{4}}:(46)(57)(38)$ and $\left(\begin{array}{rrrrr}1 & 2345 & 6 & 7 & 8 \\ 1 & -2345 & -6 & -7 & -8\end{array}\right)$.
(ii) In E_{7} we can assume that for one copy of $A_{2}, K_{A_{2}}=$ $\{ \pm(7-8), \pm(+++++-+-), \pm(+++++--+)\} . \quad A_{2}^{\perp} \cong(I)_{7}$, since any root of $A_{2} \subseteq E_{7}$ must be orthogonal to $7+8$ and, in this case, to $7-8$. Thus, by using signed permutations, we can assume that for the second copy of A_{2} we have $K_{A_{2}}=\{ \pm(1-2), \pm(2-3)$, $\pm(1-3)\}$. Then $K_{A_{2}}^{\perp_{2}}=\{ \pm(4-5), \pm(5+6)$, $\pm(4+6)\}$. Hence A_{2}^{3} is the only possibility. A_{2}^{3} is primitive, which can be seen using the elements of $W_{A_{2}^{3}}$: $\left(\begin{array}{rrrr}12 & 345 & 678 \\ 45-612-378\end{array}\right)$ and $f S_{\beta} S_{\alpha}$, where $f=\left(\begin{array}{rrrr}12 & 3 & 4 & 578 \\ 12 & -3 & -4 & -5 \\ \hline\end{array}\right)$ $\alpha=(+--++-+-), \beta=(+-+--++-)$.
(iii) In E_{6} we can assume that the first copy of A_{2} has $K_{A_{2}}=$ $\{ \pm(1-2), \pm(2-3), \pm(1-3)\}$, by Lemma 2.4. Then $A_{2}^{\perp}=A_{2} \oplus A_{2}$. As in subcase (a) (iii) of case $2, p=A_{2}^{3}$ is the only possibility. This is maximal in E_{6} and hence primitive.

Case 3. $X_{1}=A_{3}$
(a) $k_{1}=1$.

In E_{s} we can assume by Lemma 2.4, that

$$
K_{A_{3}}=\{ \pm 1 \pm 2, \pm 2 \pm 3, \pm 1 \pm 3\}
$$

(i) In E_{8}, then $A_{3}^{\perp}=D_{5}$, with $K_{D_{5}}=\{ \pm i \pm j \mid 4 \leqq i<j \leqq 8\}$. By Lemma 2.3, we have $W_{A_{3} \oplus D_{5}} \cong W_{D_{5}} \subseteq W_{(I)_{8}}$. Thus $A_{3} \oplus D_{5}$ is not primitive.
(ii) In $E_{7}, A_{3}^{\perp}=A_{3} \oplus A_{1}$, where $K_{A_{3}}^{\perp}=\{ \pm 4 \pm 5, \pm 5 \pm 6, \pm(7-8)\}$. Either this violates $k_{1}=1$ or it has been included in a former case.
(iii) In $E_{6}, A_{3}^{\perp}=A_{1}^{2}$ with $K_{A_{3}}^{\perp}=\{ \pm 4 \pm 5\}$. This was treated in Case 1.
(b) $k_{1}>1$. Then $k_{1}=2$ since the rank of A_{3}^{3} is greater than 8.
(i) In E_{8} there are two non-conjugate ways to imbed A_{3}^{2} in E_{8}. We see this as follows. By Lemma 2.4 we can assume that the first copy of A_{3} has $K_{A_{3}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 4\}$. Let \bar{h} be the Cartan subalgebra of the second copy of A_{3}. We can assume the coordinates are chosen so that the roots are given by

$$
\pm\left(w_{i}-w_{i}\right)(1 \leqq i<j \leqq 4)
$$

Now $w_{i}-w_{j}$ is orthogonal to the roots of the first copy of A_{3}. So if $w_{1}-w_{2}$ is a root of type I, by use of a signed permutation we can assume that $w_{1}-w_{2}$ is $5-6$. If $w_{1}-w_{2}$ is of type $I I$, it must be of the form $\pm(++++* * * *)$ in order to be orthogonal to the first copy of A_{3}. But then conjugating by an element β which agrees with $w_{1}-w_{2}$ in all positions except 5 and 6 gives us a root of type I while keeping fixed the first copy of A_{3}. Thus we may assume $w_{1}-w_{2}=5-6$.

Now if $w_{2}-w_{3}$ is of type $I I$, then it must be $\pm\left(++++\varepsilon_{5} \varepsilon_{6} * *\right)$, where ε_{5} and ε_{6} disagree, in order that it not be orthogonal to $5-6$. Now conjugating by a root β which agrees with $w_{2}-w_{3}$ everywhere except in positions 6 and 7 we fix the first copy of A_{3} and $5-6$ as well. $w_{2}-w_{3}$ becomes a root of type I, which can be assumed to be $6-7$, using a signed permutation. Thus, we can assume $w_{2}-w_{3}=$ 6-7.

Now $w_{3}-w_{4}$ must be orthogonal to $5-6$ but not to $6-7$, and, of course, orthogonal to the first copy of A_{3}. If $w_{3}-w_{4}$ is of type $I I$, then it must be of the form $\pm(++++++--)$ or
$\pm(++++--++)$. Conjugating by $(++++++++)$ or (++++----), respectively, we fix $5-6,6-7$ and the first copy of A_{3}, while conjugating $w_{3}-w_{4}$ into a root of type I, in particular $\pm(7+8)$. Hence we may assume $w_{3}-w_{4}$ is of type I. There are two cases: $w_{3}-w_{4}=7+8$ or $7-8$.

Thus we have the two non-conjugate imbeddings of A_{3}^{2} in E_{8}, namely

$$
K_{A_{3}^{2}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 4,5 \leqq i<j \leqq 8\}
$$

and

$$
K_{A_{3}^{2}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 4,5 \leqq i<j \leqq 7\} \cup\{ \pm(i+8) \mid 5 \leqq i \leqq 7\} .
$$

These are not conjugate since in the first case there is a root, (++++++++), orthogonal to $K_{A_{8}^{2}}$, whereas in the second case there is no such root.

But then in the first case, $\left(A_{3}^{2}\right)^{\perp} \neq \varnothing$, and thus p has a factor of lower rank, which has already been covered in Cases 1 and 2. Thus only the second case need be considered. Here we claim that A_{3}^{2} is not primitive, and in fact that $W_{A_{3}^{2}} \subseteq W_{D_{4}^{2}}$, where

$$
K_{D_{4}^{2}}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq 4,5 \leqq i<j \leqq 8\} .
$$

Let $g \in W_{A_{5}^{2}}$. If g is a signed permutation, then clearly $g \in W_{D_{4}^{2}}$. Suppose $g=f S_{\alpha}$, where f is a signed permutation and $\alpha \in(I I)_{s}$. Then S_{α} must take all roots of A_{3}^{2} into roots of type I, and $\alpha=$ $\pm(+++++++-)$ or $\pm(++++---+)$ and neither of these is a root of E_{8}. Thus $g \neq f S_{\alpha}$. Finally, then, let $g=f S_{\beta} S_{\alpha}$, $(\beta, \alpha)=0, f$ a signed permutation. But β and α must agree completely or disagree completely on the first four positions, by the same reasons as were used in the proof of Lemma 2.3. Thus, as $(\alpha, \beta)=0, \alpha$ and β must disagree completely or agree completely, respectively, on positions 5, 6, 7 and 8. But then $S_{\beta} S_{\alpha} \in W_{A_{3}^{2}}$, and therefore $f=g S_{\alpha} S_{\beta}$ is in $W_{A_{3}^{2}}$. We already saw that this implies $f \in W_{D_{4}^{2}}$ since α and β agree or disagree completely on $1,2,3$ and 4 . Thus $g \in W_{D_{4}^{2}}$, and A_{3}^{2} is not primitive.
(ii) In E_{7} we can assume for the first copy of A_{3} that $K_{A_{3}}=$ $\{ \pm 1 \pm 2, \pm 2 \pm 3, \pm 1 \pm 3\}$. Then as in Case 2, (a), (ii) above, $A_{3}^{\perp}=$ $A_{3} \oplus A_{1}$. Then either $p=A_{3}^{*} \oplus A_{3} \oplus A_{1}$, which was covered in Case 1, or $p=A_{3} \oplus A_{3}$ and there is a root, namely the root of A_{1}, orthogonal to p, and hence p isn't primitive (Corollary 1.6).
(iii) In $E_{6} A_{3}^{1}=A_{1}^{2}$, so A_{3}^{2} isn't a subalgebra of E_{6}.

Case 4. $X_{1}=A_{4}$.
(i) In E_{8}, by Lemma 2.4, we can assume

$$
K_{A_{4}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 5\}
$$

Then $K_{A_{4}}^{\perp}=\{ \pm 6 \pm 7, \pm 7 \pm 8, \pm 6 \pm 8$; all roots of type $I I$ having the same sign in positions 1 through 5\}. Thus $A_{4}^{\perp}=A_{4}$, and A_{4}^{2} is the only possibility in this case. This subalgebra is maximal, and thus primitive.
(ii) In E_{7}, by Lemma 2.4, we can assume

$$
K_{\Lambda_{4}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 5\}
$$

Then $K_{A_{4}}^{\perp} \neq \varnothing$, and there must be another summand. This has rank less than 4 , and hence is covered by previous cases.
(iii) In E_{6} Lemma 2.4 implies that there are two possible imbeddings of A_{4}, up to conjugacy. In both cases $K_{A_{4}}^{\perp} \neq \varnothing$, and thus we obtain only cases previously considered.

Case 5. $\quad X_{1}=D_{4}$.
We can assume by Lemma 2.3 that $K_{D_{4}}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq 4\}$.
(i) In $E_{8} K_{D_{4}}^{\perp}=\{ \pm i \pm j \mid 5 \leqq i<j \leqq 8\}$. Thus $D_{4}^{\perp}=D_{4}$, and the only case not previously considered is $D_{4} \oplus D_{4}$. This algebra is primitive in E_{8}. To see this we use $S_{\beta} S_{\alpha} \in W_{D_{4} \oplus D_{4}}$, where $\alpha=$ $(++++-++-), \beta=(+++++--+)$, and sign changes, all of which are in $W_{D_{4} \oplus D_{4}}$.
(ii) In $E_{7}, K_{D_{4}} \neq \varnothing$. The only possibilities here were covered by earlier cases.
(iii) In $E_{6}, K_{D_{4}}^{~_{4}}=\varnothing$. In fact, D_{4} is primitive in E_{6}, which can be seen by using $S_{\beta} S_{\alpha}$ from (i) above, together with sign changes on the first five coordinates.

Case 6. $\quad D_{l}, l>4$.
By Lemma 2.3 we can assume that $K_{D_{l}}=\{ \pm i \pm j \mid 1 \leqq i<j \leqq l\}$. Let p be a primitive subalgebra of E_{s} with a D_{l} summand. Since $K_{D_{l}}^{\perp} \subset(I)_{s}$, we can apply Lemma 2.3 to get

$$
W_{p} \subset W_{D_{l}} \subset W_{(I)_{s}}
$$

Since p is primitive and $p \subset(I)_{s}$, we have that $p=(I)_{s}$. Thus the only possibilities are D_{8} in E_{8}, D_{5} in E_{6}, (both are maximal and hence primitive) and $D_{6} \oplus A_{1}$ in E_{7} (which is covered by a previous case).

Case 7. $X_{1}=A_{l}, l>4$.
(i) In E_{8}, suppose $l \leqq 7$ and suppose

$$
K_{A_{l}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq l+1\}
$$

Then $K_{A_{l}}^{\perp} \neq \varnothing$, as it contains $(++++++++)$, and since $l>4$,
the rank of A_{l}^{\dagger} is less than 4 , and these possibilities have been covered by previous cases. Thus, by Lemma 2.4, we have one other possibility, namely $l=7$ and

$$
K_{A_{7}}=\{ \pm(i-j) \mid 1 \leqq i<j \leqq 7\} \cup\{ \pm(i+8) \mid 1 \leqq i \leqq 7\}
$$

$K_{A_{7}}^{\perp}=\varnothing$. We claim that A_{7} is not primitive. In particular, we show $W_{A_{7}} \subset W_{D_{8}}$.

To see this, let $g \in W_{A_{7}}$. Then if g is a signed permutation, $g \in W_{D_{8}}$. Let $g=f S \alpha, f$ a signed permutation, $\alpha \in(I I)_{8}$. Then S_{α} must not take any root of $K_{A_{7}}$ into a root of type II. The only possibilities are $\alpha= \pm(+++++++-)$, which is not a root. Finally, suppose $g=f S_{\beta} S_{\alpha},(\beta, \alpha)=0, f$ a signed permutation. But β and α must either agree completely or disagree completely in all positions, or else some root of $K_{A_{7}}$ would be taken by $S_{\beta} S_{\alpha}$ into a root of type $I I$, and $f S_{\beta} S_{\alpha} \notin W_{A_{7}}$. This violates $(\alpha, \beta)=0$. Hence if $g \in W_{A_{7}}$, then g is a signed permutation, and $W_{A_{7}} \subseteq W_{D_{8}}$.

The only other case of $A_{l} \subseteq E_{8}$ is $l=8$. Since $A_{6} \subset A_{7} \subset A_{8}$, using Lemma 2.4, we can assume that $K_{A_{8}}$ contains

$$
\{ \pm(i-j) \mid 1 \leqq i<j \leqq 7\}
$$

Then it is easy to see that this can only happen when

$$
\begin{aligned}
K_{A_{8}} & =\{ \pm(i-j) \mid 1 \leqq i<j \leqq 7\} \cup\{i+8 \mid 1 \leqq i \leqq 7\} \\
& \cup\{ \pm(++++++++), \pm(++++++--)\}
\end{aligned}
$$

Then A_{8} is maximal, and hence primitive.
(ii) In $E_{7}, A_{5} \subseteq A_{l}$, and we can assume by Lemma 2.4 that $K_{A_{5}} \subset\{ \pm i \pm j \mid 1 \leqq i<j \leqq 6\}$. Thus $K_{A_{5}}^{\perp} \neq \varnothing$, as it contains $7-8$. Since $K_{A_{5}}^{\perp}$ has rank less than 4 , we have already covered these possibilities by previous cases.

Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{6}$ be the simple roots of A_{6}. By Lemma 2.4 we can assume that for $i \leqq 4, \alpha_{i}=i-(i+1)$, and α_{5} is either $5-6$ or $5+6$. We have $\left(\alpha_{6}, \alpha_{i}\right)=0$ for $i \leqq 4$, and $\left(\alpha_{6}, \alpha_{5}\right) \neq 0$. Thus α_{6} must be a root of type $I I$ of the form $\pm(+++++-+-)$ or $\pm(+++++--+)$ (since we are in E_{7}), and thus α_{5} must in fact be 5-6.

Now $A_{7} \supset A_{6}$, and hence we can assume $K_{A_{7}}=K_{A_{6}} \cup\{ \pm(7-8)\}$. A_{7} is maximal, and thus primitive.
A_{6} itself is not primitive, and in fact $W_{A_{6}} \subseteq W_{A_{7}}$. For let $g \in W_{A_{6}}$. If g is a signed permutation, then $g \in W_{A_{7}}$ also. Suppose $g=f S_{\alpha}, f$ a signed permutation, $\alpha \in(I I)_{7} . \quad S_{\alpha}$ must take one of $1-2,2-3, \cdots$, or $5-6$ into a root of type $I I$, for not all of the first six positions of α can have the same sign (in $\left.(I I)_{7}\right)$. Thus we
can assume $S_{\alpha}(1-2)$ is in $(I I)_{7}$. Now if $S_{\alpha}(3-4), S_{\alpha}(4-5)$ or $S_{\alpha}(5-6)$ is a root of type $I I$, say $f S_{\alpha}(3-4)$, then $f S_{\alpha}(3-4)$ and $f S_{\alpha}(1-2)$ would be two orthogonal roots of type $I I$ in A_{6}. Such a pair of roots does not exist. Thus S_{α} must not take $3-4,4-5,5-6$ into roots of type II. α has the same sign on positions $3,4,5,6$, and must have in positions 1 and 2 different signs. There are four possibilities:
(a) $\pm(+-+++++-)$
(b) $\pm(+-----+-)$
(c) $\pm(-++++++-)$
(d) $\pm(-+----+-)$.

We note that in all four cases, $\alpha \in K_{A_{7}}$. In cases (a) and (c), $\alpha \in K_{A_{6}}$, hence $S_{\alpha} \in W_{A_{6}}$, and $f \in W_{A_{6}}$. By the remark above, $f \in W_{A_{7}}$. Since $K_{A_{6}} \subset K_{A_{7}}, S_{\alpha} \in W_{A_{7}} . \quad$ Thus $g \in W_{A_{7}}$.

In case (b), for $i=2,3,4,5, f S_{\alpha}(i-(i+1))=f(i-(i+1))$, and these must not be $\pm(7-8)$, as $\pm(7-8)$ is orthogonal to all other roots of type I. Thus f fixes $\pm(7-8)$. Now $f=f^{\prime \prime} f^{\prime}$, where f^{\prime} is a permutation, and $f^{\prime \prime}$ changes some signs. Clearly, if $f^{\prime \prime}$ changes any signs on $f^{\prime}(2), \cdots, f^{\prime}(6)$, then it changes them all, or else some $f(i-(i+1)) \notin K_{A_{6}}$. Since $f^{\prime \prime}$ must change an even number of signs, and f^{\prime} must fix $\{7,8\}$, then if $f^{\prime \prime}$ changes any signs on $f^{\prime}(2), \cdots, f^{\prime}(6)$, it must also change sign on either $f^{\prime}(1)$ or 7,8 . In either case, $f^{\prime \prime}$ changes sign on $\left\{f^{\prime}(1),, \cdots, f^{\prime}(6)\right\}=\{1, \cdots, 6\}$. Thus $f^{\prime \prime}$ either changes all signs or no signs on $1,2, \cdots, 6$. Then $f \in W_{A_{6}}$, and therefore $f \in W_{A_{7}}$. But $\alpha \in K_{A_{7}}$, and thus S_{α} and $f S_{\alpha}$ are in $W_{A_{7}}$.

In case (d), the argument is the same with 1 and 2 interchanged.
Finally, let $g=f S_{\alpha} S_{\beta}, \quad(\alpha, \beta)=0$. Then since α and β are orthogonal, they can't totally agree or totally disagree in sign on $1,2,3,4,5$ and 6 . Hence there is some root $i-j$ which $S_{\beta} S_{\alpha}$ takes into a type $I I$ root. We can assume $S_{\beta} S_{\alpha}(1-2) \in(I I)_{7}$. Now since all of $i-j, 3 \leqq i<j \leqq 6$ are orthogonal to $1-2$, none of them are taken into roots of type $I I$, as there aren't two orthogonal type $I I$ roots in $K_{A_{6}}$, as noted above. Thus α and β must totally agree or totally disagree in sign on $3,4,5$ and 6 . Since $S_{\beta} S_{\alpha}(1-2) \in(I I)_{7}, \beta$ and α must agree on exactly one of positions 1 and 2 . Thus α and β totally agree or totally disagree on five positions, contradicting $(\alpha, \beta)=0$. Thus g cannot be of the form $f S_{\beta} S_{\alpha}$.
(iii) In E_{6} let $A_{5} \subset E_{6}$. We have $A_{4} \subset A_{5}$. Now by Lemma 2.4, $K_{A_{4}}$ is either $\{ \pm(i-j) \mid 1 \leqq i<j \leqq 5\}$ or $\{ \pm(i-j) \mid 1 \leqq i<j \leqq 4\} \cup$ $\{(i+5) \mid 1 \leqq i \leqq 4\}$.

In the first case, there is a simple root in A_{5} orthogonal to $1-2,2-3,3-4$ and not to $4-5$. This root must be of type $I I$,
so it is $\pm(++++-++-)$, and A_{5} is the subalgebra generated by $1-2,2-3,3-4,4-5$ and $(++++-++-)$. But then $K_{A_{5}}^{\perp}$ contains $(+++++--+$), and thus we have considered this in previous cases.

In the second case, the argument is the same.
Finally, A_{6} cannot be imbedded in E_{6}. For $A_{5} \subset A_{6}$, and we can assume that $K_{A_{5}}$ is one of the two possibilities described above. Then there would be a simple root α in $K_{A_{6}}$ orthogonal to $1-2$, $2-3,3-4$, and $4-5$ (resp. $4+5$), and not orthogonal to $(++++-++-)$ (resp. $(+++++--+))$. This is impossible in E_{6}.

Case 8. $\quad X_{1}=E_{7}$.
We need only consider $E_{7} \subset E_{8}$. There are seven mutually orthogonal roots of E_{7}. By Lemma 2.1 we can assume that these roots are all of type I. There is a root of type I orthogonal to these seven. This root is in $K_{E_{7}}^{\perp}$, and thus we are done by previous cases.

Case 9. $\quad X_{1}=E_{6}$.
Let $E_{6} \subset E_{s}, s=7,8 . \quad D_{5} \subset E_{6}$. By Lemma 2.3 we can assume that $K_{D_{5}}=\{ \pm i \pm j \mid 1<i<j \leqq 5\}$. There is no further root of type I in E_{6} or else either we obtain $D_{6} \subset E_{6}$ or we obtain five mutually orthogonal roots in E_{6}, both impossible. Thus all other roots of E_{6} are of type $I I$. We can assume that $(+++++--+)$ is in $K_{E_{6}}$. But then $K_{E_{6}}^{\perp} \neq \varnothing$ in E_{8}, and hence we are done by previous cases. In E_{7}, E_{6} is maximal and hence primitive.
3. F_{4}. The roots of F_{4} are described as follows. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be the standard orthonormal basis for the dual space to a fixed Cartan subalgebra h of F_{4}. With respect to this basis the roots of F_{4} are given by

$$
\begin{aligned}
(\mathrm{I}) & =\left\{ \pm z_{i} \mid i=1,2,3,4\right\} \\
(\mathrm{II}) & =\left\{ \pm z_{i} \pm z_{j} \mid 1 \leqq i, j \leqq 4\right\} \\
(\mathrm{III}) & =\left\{\frac{1}{2}\left(\pm z_{1} \pm z_{2} \pm z_{3} \pm z_{4}\right)\right\}
\end{aligned}
$$

As in the case of the E_{s}, we denote the roots of type III by the corresponding sequence of + and - signs, the roots of type $I I$ by the corresponding $i-j$, and the roots of type I merely by the corresponding $\pm j$. Thus $1 / 2\left(z_{1}+z_{2}+z_{3}-z_{4}\right)$ is denoted $(+++-)$, $z_{3}-z_{2}$ is denoted $3-2, z_{4}$ is denoted 4 , and so on. Also, we use $(I) \cup(I I)$, $(I I)$, etc. to denote the subalgebras determined by these
roots, when no confusion results.
We note that the roots have two lengths. Roots in (I) and (III) have length 1 , and roots in (II) have length $\sqrt{2}$. The Weyl group W of F_{4} acts transitively on the roots of each length.

As in the case of E_{s} above, using Theorem 1.4 we see that if p. is a maximal rank, reductive, primitive subalgebra, and if $p=$ $X_{1}^{k_{1}} \oplus \cdots \oplus X_{r}^{k_{r}}$, then either

$$
\left(X_{1}^{k_{1}}\right)^{\perp}=X_{2}^{k_{2}} \oplus \cdots \oplus X_{r}^{k_{r}}, \quad \text { or } \quad\left(X_{1}^{k_{1}} \oplus\left(X_{1}^{k_{1}}\right)^{\perp}\right)+h
$$

generates (as a subalgebra) F_{4}
Case 1. $X_{1}=A_{1}$.
(a) $k_{1}=1$.

By transitivity of the Weyl group on roots of each length, we may assume that $K_{A_{1}}=\{ \pm 1\}$ or $K_{A_{1}}=\{ \pm(1-2)\}$. In the first case $K_{A_{1}}^{\perp}=\{ \pm 1,(i \pm j) \mid 2 \leqq i, j \leqq 4\}$. Thus $A_{1}^{\perp}=B_{3}$. But $K_{A_{1}} \cup K_{B_{3}}$ generates $(I) \cup(I I)$, which is not $K_{A_{1}} \cup K_{B_{3}}$ nor $K_{F_{4}}$. Thus $A_{1} \oplus Z$ can't be primitive, by Theorem 1.4. In the second case,

$$
\begin{aligned}
K_{A_{1}}^{\perp}= & \{ \pm(1+2), \pm 3, \pm 4, \pm 3 \pm 4, \pm(++++), \\
& \pm(+++-), \pm(++-+), \pm(++--)\} .
\end{aligned}
$$

Then $A_{1}^{\perp}=C_{3}$, and $A_{1} \oplus C_{3}$ is maximal, and hence primitive.
(b) $k_{1}=2$.

First we observe that if $K_{A_{1}}=\{ \pm \alpha\}$ and the other $K_{A_{1}}=\{ \pm \beta\}$, then not both α and β can be shorter roots, or else $\left[A_{1}, A_{1}\right] \neq 0$ contradicting fact that the two copies of A_{1} were ideals in p. Thus it is sufficient to consider only three cases for α, β (up to conjugacy):
(1) $1,2-3$
(2) $1+2,1-2$
(3) $1-2,3-4$.

In the first case, $K_{A_{1}^{2}}^{\perp_{2}}=\{ \pm 4\}$, and the Lie algebra generated by $A_{1}^{2} \oplus\left(A_{1}^{2}\right)^{\perp}=A_{1}^{2} \oplus A_{1}$ is more than $A_{1}^{2} \oplus A_{1}$ (e.g., $1+4$), but not all of F_{4} (e.g., $\left.(++++)\right)$. Thus $A_{1}^{2} \oplus Z$ can't be primitive.

In the second case $K_{A_{1}^{2}}^{\perp}=\{ \pm 3, \pm 4, \pm 3 \pm 4\}$, and $\left(A_{1}^{2}\right)^{\perp}=B_{2}$. In the third case, $K_{A_{1}^{2}}^{1_{2}}=\{ \pm(1+2), \pm(3+4), \pm(++++), \pm(++--)\}$, and again $\left(A_{1}^{2}\right)^{\perp}=B_{2}$. Since the Weyl group is transitive on the shorter roots, there is some element w such that $w(++++)=1$. Then $w(++--)$ is a shorter root orthogonal to 1 , and hence, using a signed permutation if necessary, we may assume $w(++--)=2$. Then since $w(1+2)$ and $w(3+4)$ are orthogonal to neither 1 nor 2 , and they are orthogonal to each other, we must have $w(\{ \pm(3+4)$, $\pm(1+2)\})=\{ \pm 1 \pm 2\}$. Hence w takes the B_{2} from case (3) into the B_{2} of case (2). Thus w takes B_{2}^{\perp} into B_{2}^{\perp}, which is just A_{1}^{2} in each
case. Hence cases (2) and (3) are conjugate, and we only need to consider case (2).

In this case we claim $A_{1}^{2} \bigoplus B_{2}$ is not primitive. In particular $A_{1}^{2} \oplus B_{2}$ is a subalgebra of the algebra (I) $\cup(I I)$, and $W_{A_{1}^{2} \oplus B_{2}} \subset$ $W_{(I) \cup(I I)}$. For let $w \in W_{A_{1}^{2} \oplus B 2}$. Then w must preserve each summand, and within each summand it must preserve the roots of each length. Hence w takes $\{ \pm 3, \pm 4\}$ onto itself. Also w preserves $\{ \pm 1 \pm 2\}$.

If $w(1) \in(I I I)$ (and thus $w(2) \in(I I I)$, as $w(1)$ and $w(2)$ are orthogonal), then we may assume $w(1)=(++++), w(2)=(++--)$, or $w(2)=(+--+)$. If $w(2)=(++--)$, then $w(1-2)=3+4$, contradicting the fact that w fixes $\{ \pm 3, \pm 4\}$. If $w(2)=(+--+)$, then $w(1-2)=2+3$, which is not orthogonal to $w(3-4) \in\{ \pm 3 \pm 4\}$. Thus neither case can occur, and $w(1)$ and $w(2)$ are of type I. Hence w is a signed permutation, therefore fixing $(I) \cup(I I)$ as well. Thus $w_{A_{1}^{2} \oplus B_{2}} \subset W_{(I) \cup(I I)}$, and $A_{1}^{2} \oplus B_{2}$ is not primitive.
(c) $k_{1}=3$.

Let the three copies of $K_{A_{1}}$ be $\{ \pm \alpha\},\{ \pm \beta\},\{ \pm \gamma\}$. Then at most one of α, β, γ can be a shorter root, or else two copies of A_{1} would have $\left[A_{1}, A_{1}\right] \neq 0$, as above in the $k_{1}=2$ case. Thus there are two cases to consider (up to conjugacy) for α, β, γ :
(1) $1,2-3,2+3$
(2) $1-2,1+2,3-4$,

In the first case, $K_{A_{1}^{3}}^{\iota_{1}}=\{ \pm 4\}$. Then $\left(A_{1}^{3}\right)^{\perp}=A_{1}$, and $A_{1}^{3} \oplus A_{1}$ generates as a Lie algebra $B_{2} \oplus A_{2}$. Thus there is no primitive subalgebra in this case.

In the second case, $K_{A_{1}}^{\perp_{3}}=\{ \pm(3+4)\}$, and $\left(A_{i}^{3}\right)^{\perp}=A_{1}$. Here we get A_{1}^{4} which is treated below.
(d) $k_{1}=4$.
A_{1}^{4} contains A_{1}^{3} as a summand, and by the $k_{1}=3$ case we can assume $K_{A_{1}^{4}}=\{ \pm 1 \pm 2, \pm 3 \pm 4\}$. But this is not primitive, since $A_{1}^{4} \subseteq(I I)$, and $W_{I I}=W_{F_{4}} \supset W_{A_{1}^{4}}$.

Case 2. $\quad X_{1}=A_{2}$.
If $K_{A_{2}} \subseteq(I) \cup(I I I)$, then we may assume $K_{A_{2}}=\{ \pm 1, \pm(++++)$, $\pm(-+++)\}$. Then $K_{A_{2}}^{\perp}=\{ \pm(2-3), \pm(3-4), \pm(2-4)\}$. Thus we get $A_{2} \oplus A_{2}$. Similarly, if $K_{A_{2}} \subseteq(I I)$, then we may assume $K_{A_{2}}=\{ \pm(2-3), \pm(3-4), \pm(2-4)\}$, and then

$$
K_{A_{2}}^{\perp}=\{ \pm 1, \pm(++++), \pm(-+++)\}
$$

Hence we get in either case $A_{2} \oplus A_{2}$ with one $K_{A_{2}} \subset(I) \cup(I I I)$ and the other $K_{A_{2}} \subset(I I)$. This algebra is maximal and thus primitive.

Case 3. $X_{1}=B_{2}$.
As we observed in Case 1 above, all $B_{2} \subset F_{4}$ are conjugate. Thus
we can assume $K_{B_{2}}=\{ \pm 1, \pm 2, \pm 1 \pm 2\}$. Then $K_{B_{2}}^{\perp}=\{ \pm 3, \pm 4, \pm 3 \pm 4\}$, and we have $B_{2} \oplus B_{2}$. But this generates $(I)+(I I)=B_{4}$. Thus there are no primitive subalgebras in this case.

Case 4. $\quad X_{1}=A_{3}$.
If $K_{A_{3}} \subset(I I)$, then we may assume $K_{A_{3}}=\{ \pm 1 \pm 2, \pm 2 \pm 3$, $\pm 1 \pm 3\}$. Then $K_{A_{3}}^{\perp}=\{ \pm 4\}$, and we have $A_{1} \oplus A_{3}$. This is covered by Case 1. On the other hand, $K_{A_{3}}$ can have at most one root (and its negative) in (I), or else it would also have one in (II), contradicting the fact that all roots of A_{3} have the same length. Thus, if $K_{A_{3}} \subset(I) \cup(I I I)$, then all but at most one root (and its negative) are in (III). This is impossible.

Case 5. $\quad X_{1}=A_{4}$.
This is not contained in F_{4} as a maximal rank subalgebra.
Case 6. $\quad X_{1}=B_{3}$.
Just as in Case 3, there is only one way, up to conjugacy, to have $B_{3} \subset F_{4}$, namely $K_{B_{3}}=\{ \pm i, \pm i \pm j \mid 2 \leqq i, j \leqq 4\}$. Then $K_{B_{3}}^{\perp}=$ $\{ \pm 1\}$. Thus $B_{3}^{\perp}=A_{1} . \quad A_{1}+B_{3}$ generates $(I)+(I I)=B_{4}$. Thus there is no primitive subalgebra in this case.

Case 7. $\quad X_{1}=B_{4}$.
As above, all $B_{4} \subset F_{4}$ are conjugate, and we may assume $K_{B_{4}}=$ $(I) \cup(I I)$. This is maximal, and thus primitive.

Case 8. $\quad X=D_{4}$.
$K_{D_{4}}=(I I)$ is the only possibility. This is primitive, since $W_{D_{4}}=$ $W_{F_{4}}$, and $W_{F_{4}}$ is transitive on shorter roots. However D_{4} is not maximal, since $D_{4} \subset B_{4}=(I) \cup(I I)$.

Case 9. $X_{1}=C_{3}$.
All C_{3} are conjugate $K_{C_{3}}^{\perp}=K_{A_{1}}$ as in Case 1 (a).
Case 10. $X_{1}=C_{4}$.
This is not a maximal rank subalgebra of F_{4}.
4. \mathbf{G}_{2}. Let α_{1}, α_{2} be simple roots of G_{2}. Then $K_{G_{2}}=\left\{ \pm \alpha_{1}\right.$, $\left.\pm \alpha_{2}, \pm\left(\alpha_{1}+\alpha_{2}\right), \pm\left(2 \alpha_{1}+\alpha_{2}\right), \pm\left(3 \alpha_{1}+\alpha_{2}\right), \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\}$

Case 1. $p=A_{2}$.
The roots of A_{2} are all of the same length.
The only way to imbed A_{2}, then, is as roots of longer length,
i.e., $\quad K_{A_{2}}=\left\{ \pm \alpha_{2}, \pm\left(3 \alpha_{1}+\alpha_{2}\right) \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\}$. This is maximal and hence primitive.

Case 2. $\quad p=A_{1}$.
There are two possibilities up to conjugacy for $K_{A_{1}}=\{ \pm \beta\}$, namely, $\beta=\alpha_{1}$ and $\beta=\alpha_{2}$, since the Weyl group acts transitively on roots of each length, and there are two lengths of roots in $K_{G_{2}}$, that of α_{1} and that of α_{2}.

If $\beta=\alpha_{2}$, this is not primitive, since $W_{A_{1}} \subseteq W_{A_{2}}=W_{G_{2}}$. If $\beta=\alpha_{1}$, then the only root γ with $\left[\gamma, \alpha_{1}\right]=\left[\gamma,-\alpha_{1}\right]=0$ is $\gamma=$ $\pm\left(3 \alpha_{1}+2 \alpha_{2}\right)$. Thus we have A_{1}^{2} with $K_{A_{1}^{2}}=\left\{ \pm \alpha_{1}, \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\}$.

Further, if $f \in W_{A_{1}}$, i.e., $f\left(\pm \alpha_{1}\right)= \pm \alpha_{1}$, then

$$
\begin{aligned}
0 & =f(0)=f\left[\pm \alpha_{1}, 3 \alpha_{1}+2 \alpha_{2}\right]=\left[f\left(\pm \alpha_{1}\right), f\left(3 \alpha_{1}+2 \alpha_{2}\right)\right] \\
& =\left[\pm \alpha_{1}, f\left(3 \alpha_{1}+2 \alpha_{2}\right)\right]
\end{aligned}
$$

Thus $f\left(\pm\left(3 \alpha_{1}+2 \alpha_{2}\right)= \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right.$. Hence $f \in W_{A_{1}^{2}}$. Thus A_{1} is not primitive.

Case 3. $p=A_{1}^{2}$.
Since $K_{A_{1}^{2}}$ is not contained in the roots of one length, we have, up to conjugacy, $K_{A_{1}^{2}}=\left\{ \pm \alpha_{1}, \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\}$. This is maximal, and thus primitive.

References

1. Bourbaki, Groupes et algebres de Lie, Chapitres 4, 5, and 6, Hermann, 1968, Paris.
2. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N. S. 30 (72) (1952), 349-462 (Russian)=Amer. Math. Soc. Transl. Ser. 2 6, 111-244
3. M. Golubitsky, Primitive actions and maximal subgroups of Lie groups, J. Differential Geometry. To appear, September 1972.

Received April 12, 1971. This paper was partially supported by NSF Grant GP-23482.
University of California, Los Angeles

