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We investigate Cooperrider’s complex bogie, a mathematical model of a railway bogie running
on an ideal straight track. The speed of the bogie v is the control parameter. Taking symmetry
into account, we find that the generic bifurcations from a symmetric periodic solution of the
model are Hopf bifurcations for maps (or Neimark bifurcations), saddle-node bifurcations, and
pitchfork bifurcations. The last ones are symmetry-breaking bifurcations. By variation of an
additional parameter, bifurcations of higher degeneracy are possible. In particular, we consider
mode interactions near a degenerate bifurcation. The bifurcation analysis and path-finding are
done numerically.

1. Introduction

In this article we investigate some dynamical fea-
tures of the Cooperrider bogie [Cooperrider, 1972].
A modern railway passenger car has a car body sup-
ported at each end by a carriage or bogie with a rela-
tively short wheel base. See Fig. 1. The suspension
systems are placed in the bogies and between the
bogies and the car body. Since the guiding forces
from the rails act on the wheelsets in the bogies,
the bogies play an important role in the dynamics
of the vehicle motion.

The mathematical model is presented at the
end of this section. The model has been treated
in several articles. In the survey article by True

[1993] a bifurcation diagram shows the most impor-
tant features of the system. However this diagram
is incomplete and refined investigations by Jensen
[1994] complete the bifurcation diagram. Jensen
and True [1997] treat the appearance of quasiperi-
odic and chaotic motions in a small speed interval.
Galvanetto et al. [1997] find an optimal wheel base
by varying another parameter in the system.

In Sec. 2 we outline the mathematical theory
related to our investigations of this model and we
use the symmetry of the model to deduce the form
that generic bifurcations from symmetric periodic
solutions will have. In contrast to systems with-
out symmetry, period-doubling bifurcations are not

∗Author for correspondence.
E-mail: cnj@es-consult.dk
†E-mail: mg@uh.edu
‡E-mail: ht@imm.dtu.dk

1321



1322 C. N. Jensen et al.

Fig. 1. Danish passenger coach on two bogies.

generic, but symmetry breaking pitchfork bifurca-
tions are. This remark was noted previously by
Swift and Wiesenfeld [1984] and by Fiedler [1988].
If two critical eigenvalues are close in the control
parameter space, different types of secondary bifur-
cations may occur. This type of degeneracy is called
mode interaction. In our model equations we find
a mode interaction between a saddle-node and a
pitchfork bifurcation. This mode interaction stud-
ied by Dangelmayr and Armbruster [1983], has been
reported in [Golubitsky et al., 1988], and explains
a number of features in the bifurcation diagram of
the Cooperrider model.

The results of our numerical investigations,
showing various kinds of generic bifurcations as
well as mode interactions, are presented in Sec. 3.
The mathematical theory verifies the numerical re-
sults. The stringent mathematical theory suggested
a generic interpretation of the numerical results and
led to the discovery of the correct splitting and the
correct sequence of the bifurcations of the periodic
attractor. It also helped the authors to look for and
find a solution that had not been found before due
to its instability and/or small basin of attraction.

Section 4 contains the conclusions.

1.1. Dynamical Model

The Cooperrider model [Cooperrider, 1972] was de-
veloped as a model for a conventional passenger car
bogie with two axles. We assume that all parts ex-
cept the suspension elements are rigid and that the
suspension elements all have linear characteristics.
Furthermore, we assume that the vertical displace-
ments are so small that the equations for the verti-
cal and horizontal motions are uncoupled. We are
only interested in the lateral motion.

The model of the conventional bogie is a multi-
body system. The bogie frame can rotate without

friction in a bearing in the floor of the car body.
It is supported on two wheelsets, through springs
and dampers as shown in Fig. 2. The bogie model
has seven degrees of freedom: lateral and yaw mo-
tion for each wheelset and the bogie frame, and roll
motion of the bogie frame. In a coordinate system
moving with constant speed v along the track center
line, the variables are denoted q1, . . . , q7, see Fig. 2.
The speed v is chosen as the control parameter, and
all other parameter values are kept constant in these
investigations.

The bogie runs on a straight, horizontal, perfect
track; it is assumed that the wheels and the rails re-
main in contact. The profile of the rail surface is an
arc of a circle, and the wheels have a conical profile,
with inner flange. The nonlinearities in the system
stem from the creep–creep force relation at the ideal
contact point between each wheel and the rail and
from the flange force.

The Vermeulen–Johnson creep force law relates
the resulting creep force FR(ξR) to the resulting
creep

ξR =

√(
ξx
Ψ1

)2

+

(
ξy
Φ

)2

,

where

ξxf =
q̇1

v
− q2 and ξxr =

q̇3

v
− q4

are the front and rear lateral creepages, and

ξyf =
aq̇2

v
+
δq1

r0
and ξyr =

aq̇4

v
+
δq3

r0

are the front and rear longitudinal creepages. In
this model a = 0.716 m is half the track gauge,
δ = 0.05 is the contact angle, and r0 = 0.4572 m is
the centered rolling radius of the wheel. Hertz the-
ory is used to calculate the contact area between
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Fig. 2. Conventional bogie model.
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a wheel and the rail with the coefficient of adhe-
sion µ = 0.15 and the normal force N given by
µN = 10 kN. The constant G is the shear modulus
and with ae and be as the semiaxes of the contact
ellipse, Gπaebe = 6.563 MN. Setting

u =
Gπaebe
µN

ξR

it follows that

FR
µN

=

u−
1

3
u|u|+ 1

27
u3 u < 3

1 u ≥ 3

which defines FR. Vermeulen and Johnson [1964]
show that the lateral and longitudinal creep forces
are

Fx =
ξx
Ψ1

FR
ξR

and Fy =
ξy
Φ

FR
ξR

,

where the weight factors Φ = 0.60252 and Ψ1 =
0.54219 are also found in [Vermeulen & Johnson,
1964].

The flange force FT is modeled as a stiff non-
linear spring given by

FT (u) =


k0(u− η) η < u

0 −η ≤ u ≤ η
k0(u+ η) −η > u

where we have used k0 = 14.60 MN, and η =
0.0091 m.

The equations of motion for the system give
seven coupled nonlinear second-order differential
equations:

mw q̈1 +A1 +2Fxf +FT (q1) = 0

Iwyq̈2 +A3 +2aFyf + = 0

mw q̈3 +A2 +2Fxr +FT (q3) = 0

Iwyq̈4 +A4 +2aFyr + = 0

mf q̈5 −A1 −A2 +A5 = 0

Ify q̈6 −bA1 +A2 −A3 −A4 +A6 = 0

Ifr q̈7 −h1A1 −h1A2 +h2A5 +A7 = 0

where

A1 = 2k1(q1 − q5 − bq6 − h1q7)

A2 = 2k1(q3 − q5 − bq6 − h1q7)

A3 = 2k2d
2
1(q2 − q6)

A4 = 2k2d
2
1(q4 − q6)

A5 = 2D2(q̇5 − h2q̇7) + 2k4(q5 − h2q7)

A6 = k6q6

A7 = 2D1d
2
2q̇7 + 2k5d

2
2q7 + 4k3d

2
1q7

The front and rear, lateral and longitudinal creep
forces resulting from the creepage between rails and
wheels are Fxf ,Fyf and Fxr,Fyr. The mass and
moment of inertia of the axles are mw = 1022 kg
and Iwy = 678 kgm−2. The mass and moment
of inertia (yaw direction) of the bogie frame are
mf = 2918 kg and Ify = 6780 kgm−2 while the
moment of inertia in the roll direction is Ifr =
6780 kgm−2. Other spring and damper parame-
ters are k1 = 1.823 MN/m, k2 = 3.646 MN/m,
k3 = 3.646 MN/m, k4 = 0.1823 MN/m, k5 =
0.3333 MN/m, k6 = 2.710 MN/m, D1 =

20.0 kNs/m and D2 = 29.2 kNs/m (see Fig. 2). The
remaining constants b = 1.074 m, h1 = 0.0762 m,
h2 = 0.6584 m, d1 = 0.620 m and d2 = 0.680 m are
geometrical quantities (see Fig. 2).

For n = 1, . . . , 7 we define

x2n−1 = qn and x2n = q̇n

and obtain an autonomous system of 14 coupled
first-order differential equations with the speed v as
control parameter. Abstractly, this system is:

ẋ = F (x, v) , (1)

where x ∈ R14, v ∈ R+ and F : R14 × R+ → R14.
A 14×14 matrix γ is a symmetry of this system

of differential equations if

F (γx, v) = γF (x, v)

for all x ∈ R14 and v ∈ R+. The set of all symme-
tries of F is a group that we denote by Γ.

Let I14 be the 14 × 14 identity matrix. It is
then true that −I14 is a symmetry of F , since all
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the terms in F are odd in x. It follows that

Γ = {I14, −I14} ∼= Z2

is a symmetry group for F . It is also true that Γ is
the only nontrivial symmetry group of F , and F is
said to be Z2-symmetric [Golubitsky et al., 1988].

2. Theory

In this section we present the mathematical back-
ground for the numerical results discussed in the
next section. In Sec. 2.1 we deduce the generic bi-
furcations of a system that is slightly more general
than (1), and in Sec. 2.2 we discuss mode interac-
tions in our system.

2.1. Generic bifurcations of
symmetric periodic solutions

We consider a k-parameter family of n-dimensional
systems of first-order differential equations

ẋ = F (x, µ) (2)

where x ∈ Rn, µ ∈ Rk and F : Rn×Rk → Rn has the
symmetry group Γ = Z2 = {±In}. For convenience
we set γ = −In.

We study the generic bifurcations of symmet-
ric periodic solutions of (2). These ideas have been
discussed previously in [Swift & Wiesenfeld, 1984;
Fieldler, 1988]. Let c(t) be a periodic solution of F
with period T , that is,

c(t+ T ) = c(t) .

The periodic solution c is symmetric with respect
to γ when

c

(
t+

T

2

)
= γc(t) . (3)

Let Σ1 be a transverse section to the periodic orbit
c, and let P : Σ1 → Σ1 be the Poincaré map. See
Fig. 3. We now discuss the restrictions placed on P
by the symmetry γ.

Let Σ2 be the section given by Σ2 = γΣ1, and
define the mappings given by the flow: Θ : Σ1 → Σ2

and Ψ : Σ2 → Σ1. See Fig. 4. Let z be a point in
the section Σ2. From the symmetry we have

Ψ(z) = γΘ(γz) , (4)

which for a given point x in the section Σ1 yields
the relation (5):

P (x) = Ψ ◦Θ(x) = Ψ(Θ(x))

= γΘ(γΘ(x)) = (γΘ)2(x) . (5)

Fig. 3. Poincaré section of the flow.

Fig. 4. Definition of the mappings, Θ and Ψ.

We define the map Q : Σ1 → Σ1 by

Q = γΘ (6)

and obtain
P = (γΘ)2 = Q2 . (7)
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Let x0 be the intersection of the symmetric peri-
odic solution c with the section Σ1 and let V be an
(n − 1)-dimensional subspace of Rn that is trans-
verse to ċ(t0) where c(t0) = x0. Write

Q : (x0 + V )× Rk → (x0 + V ) ,

and change coordinates to obtain the map Q :
V × Rk → V .

By considering generic bifurcations of the map
Q we deduce the generic bifurcations of the Poincaré
map P and thereby the generic bifurcations from
the symmetric periodic solution c.

Note that symmetric periodic solutions of F
correspond to fixed points of Q. Suppose that z
is the intersection of a symmetric periodic solution
of F and the section Σ1. Symmetry implies that

Q(z) = γΘ(z) = z . (8)

Thus, a symmetric periodic solution of F corre-
sponds to a fixed point of Q. Next let y be the
intersection of an asymmetric periodic solution of
F and the section Σ1. Since the periodic solution is
asymmetric we have

Q(y) = γΘ(y) 6= y

but because of the periodicity

Q2(y) = P (y) = y . (9)

Thus an asymmetric periodic solution of F corre-
sponds to a period two point of the map Q.

There are three generic bifurcations of maps
from fixed points: saddle-node bifurcations, Hopf
bifurcations for maps (or Neimark bifurcations),
and period-doubling bifurcations. These bifurca-
tions correspond to critical eigenvalues of the lin-
earization of the Poincaré map crossing the unit
circle at +1, crossing as a complex conjugate pair,
or crossing at −1. Generically, the bifurcations of
Q and their effect on P are:

• A saddle-node bifurcation of the map Q leads to
a saddle-node for the Poincaré map P = Q2 and,
therefore, also a saddle-node bifurcation of the
periodic solution of (2).
• A Hopf bifurcation of the map Q corresponds

(generically) to a Hopf bifurcation of the periodic
solution of F leading to either stable or unstable
quasiperiodic motion in the vicinity.
• A period-doubling bifurcation of the map Q leads

to a pitchfork bifurcation of the Poincaré map
P = Q2 and, thereby, a pitchfork bifurcation of
the flow or a symmetry breaking bifurcation.

Fig. 5. Left: Saddle-node bifurcation. Upper right: Critical
eigenvalue of the linearization of the Poincaré map P . Lower
right: Critical eigenvalue of the linearization of the map Q.

Fig. 6. Left: Hopf bifurcation. Upper right: Critical eigen-
values of the linearization of the Poincaré map P . Lower
right: Critical eigenvalues of the linearization of the map Q.

Fig. 7. Left: Pitchfork bifurcation. Upper right: Critical
eigenvalue of the linearization of the Poincaré map P . Lower
right: Critical eigenvalue of the linearization of the map Q.

Note that period-doubling bifurcations of symmet-
ric periodic solutions are not generic.

The generic bifurcations of symmetric periodic
solutions of (2) are listed in Figs. 5–7. Note that
the two bifurcating asymmetric periodic solutions
in Fig. 7 coincide in our choice of illustration.

2.2. Mode interaction

The eigenspaces associated with the Jacobian ma-
trix are often called modes. Generically, in one-
parameter systems, we expect to have only one crit-
ical mode at a time (a critical mode corresponds
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to a critical eigenvalue). By varying another pa-
rameter, multiple critical modes are possible. Near
parameter values at which there are multiple criti-
cal modes different types of secondary bifurcations
may occur. These secondary solutions are created
by nonlinear interactions of the two modes and are
called mode interactions.

Suppose that a saddle-node point and a period-
doubling point for the map Q occur simultaneously
at the origin (by varying two parameters at a time).
Define the mapping R : V ×V ×Rk → V ×V given
by

R(σ, ρ, µ) = (Q(σ, µ)− ρ, Q(ρ, µ)− σ) (10)

for all σ, ρ ∈ V and µ ∈ Rk.
Note that zeroes of R correspond to either fixed

points or period two points of Q. Thus, it is pos-
sible to study the bifurcations of fixed points and
period two points of Q by studying the bifurcation
of zeroes of R, and the bifurcation of zeroes has
been well studied, see e.g. [Golubitsky & Schaeffer,
1985].

To look for bifurcation of zeroes of R, we need
to find zero eigenvalues of the linearization L of the
map R evaluated at the origin. The map L is

L = dR|0 =


∂Q

∂σ
(0) −I

−I ∂Q

∂ρ
(0)

 . (11)

Assume that v is an eigenvector of the lineariza-
tion of Q corresponding to the critical eigenvalue
+1 (the saddle-node) and that w is an eigenvector
of the linearization of Q corresponding to the criti-
cal eigenvalue −1 (the period-doubling). We find

L

(
v

v

)
=


∂Q

∂σ
(0) −I

−I ∂Q

∂ρ
(0)


(
v

v

)

=

(
v − v
−v + v

)
= 0 ,

and

L

(
w

−w

)
=


∂Q

∂σ
(0) −I

−I ∂Q

∂ρ
(0)


(

w

−w

)

=

(
−w − (−w)
−w − (−w)

)
= 0 .

Thus

ker L = span

((
v

v

)
,

(
w

−w

))
(12)

and a Lyapunov–Schmidt reduction leads to a dy-
namical system in a two-dimensional space that
is tangential to ker L at the origin [Golubitsky &
Schaeffer, 1985, Chap. VII]. Now we determine the
characteristics of such a system.

Let κ act on V 2 by

κ(σ, ρ) = (ρ, σ)

for all σ, ρ ∈ V . Note that κ is a symmetry of R
since

κR(σ, ρ, µ) = κ(Q(σ, µ)− ρ, Q(ρ, µ)− σ)

= (Q(ρ, µ)− σ, Q(σ, µ)− ρ)

= R(ρ, σ, µ)

= Rκ(σ, ρ, µ) .

Observe that κ acts on (v, v) and (w, −w) by

κ(v, v) = (v, v)

κ(w, −w) = (−w, w) = −(w, −w) .

Thus we can determine the action of κ on ker L.
We write the vectors in ker L as

x(v, v) + y(w, −w) ;

we can then identify ker L ∼= R2 using the coordi-
nates (x, y) ∈ R2. Since

κ(x(v, v) + y(w, −w)) = x(v, v)− y(w, −w) ,

the action of κ on R2 ∼= ker L is given by

κ(x, y) = (x, −y) .

Since the Lyapunov–Schmidt reduction re-
spects symmetry, we find that the zeroes of R are
parametrized by the zeroes of a map T : R2×Rk →
R2 that satisfies

T (κ(x, y), µ) = κT (x, y, µ) .

Thus we have a system in two state variables with
Z2-symmetry, (x, y) → (x, −y). The bifurca-
tions in this case have been studied by Dangelmayr
and Armbruster [1983] and they are described in
[Golubitsky et al., 1988, Chap. XIX, §§2–3]. In the
next section, we present an example of such a mode
interaction that is also found in our bogie model.
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3. Results

In this section we discuss those results from our nu-
merical investigations of the mathematical model
of the railway bogie presented in Sec. 1 that can
be analyzed by the mathematical tools presented in
Sec. 2. Other interesting features of the mathemat-
ical model have been presented elsewhere [Jensen &
True, 1997; True, 1993].

The main numerical tool for the analysis of
this model is the continuation routine PATH [Kaas-
Petersen, 1989] developed by Kaas-Petersen. It is
our experience that numerical tools such as PATH
are most efficient away from critical parameter val-
ues. Near the critical parameter values one often
must inspect carefully whether the numerical tool
does what you ask and expect it to do, with respect
to the mathematical theory.

We first fix all parameters but the control pa-
rameter (the speed) v and we study the solutions
of the dynamical system. It is easily seen that the
fixed point x1 = · · · = x14 = 0 is an equilibrium
solution for all values of v. For low speeds the solu-
tion is asymptotically stable, but at v = 65.2 m/s
the solution loses stability in a Hopf bifurcation.
The bifurcating periodic solution is symmetric with
respect to the symmetry group presented in Sec. 1
and bifurcates subcritically and it is unstable. At
v = 63.64 m/s the solution turns around and sta-
bilizes in a saddle-node bifurcation. We have man-
aged to follow the symmetric periodic solution as
it undergoes five saddle-node bifurcations, three
pitchfork bifurcations and one Hopf bifurcation.
The details are summarized in Table 1. The data
from Table 1 are depicted in Figs. 8 and 9. Note

Table 1. Bifurcations along symmetric
periodic solution bifurcating from station-
ary solution at A.

Name Speed Bifurcation Type

A 65.20 m/s Hopf

S1 63.64 m/s Saddle-node

S2 113.64 m/s Saddle-node

S3 113.57 m/s Saddle-node

S4 114.61 m/s Saddle-node

P1 109.70 m/s Pitchfork

S5 109.58 m/s Saddle-node

P2 147.59 m/s Pitchfork

H1 181.73 m/s Hopf

P3 200.87 m/s Pitchfork
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Fig. 8. The symmetric periodic solutions with its
bifurcations.
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Fig. 9. Blow up of Fig. 8.

that stable periodic solutions are depicted by solid
lines and unstable periodic solutions are depicted
by dotted lines.

The final bifurcation diagram is shown in
Fig. 10. Figures 11 and 12 show the details in the
complex region 109 m/s < v < 115 m/s. It is no-
ticeable that in the region 115 m/s < v < 147 m/s
the only stable periodic solutions are the asymmet-
ric ones bifurcating from the symmetric periodic so-
lution at P1. The asymmetric periodic solutions
bifurcate subcritically, turn around in a saddle-
node, gain stability in a Hopf bifurcation (Neimark
bifurcation) at v = 112.59 m/s and remain sta-
ble up to v = 203.33 m/s where they lose stabil-
ity in another Hopf bifurcation (Neimark bifurca-
tion). The symmetric periodic solution is stable
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Fig. 10. Final bifurcation diagram.
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Fig.11. Blow up of Fig. 10.

Fig. 12. Blow up of Fig. 10. NB! b = 1.074 m.

in the region 147.59 m/s < v < 181.73 m/s but,
as found by Galvanetto et al. [1997], the symmet-
ric periodic solution in this region is a “secondary”
solution with a much smaller basin of attraction
than the asymmetric periodic solutions. Thus, in
the region 115 m/s < v < 200 m/s, the asymmetric
periodic solutions are dominant.

In Fig. 12 we see the details of the final bifur-
cation diagram in the speed interval 109.5 m/s <
v < 110 m/s showing an example of mode interac-
tion. The figure shows the region near the pitch-
fork bifurcation P1 and the saddle-node bifurcation
S5. The dashed curve in Fig. 12 is the symmetric
periodic solution and the dotted curve is the bifur-
cating asymmetric periodic solution. The saddle-
node point and the pitchfork point are very close
in parameter space. This is exactly the situation
we considered in Sec. 2.2. There we found that
the case could be described locally by a system
with two state space variables possessing the sym-
metry (x, y) → (x, −y). Referring to [Golubitsky
et al., 1988, p. 425], we find that Fig. XIX.3.5 in
[Golubitsky et al., 1988, p. 431] is identical to our
Fig. 12. The asterisk along the asymmetric solution
in [Golubitsky et al., 1988, Fig. XIX.3.5, p. 431] in-
dicates that a Hopf bifurcation of this solution is
possible. In fact, that is exactly what we find in
the bogie model; the asymmetric periodic solutions
gain stability in a Hopf bifurcation (Neimark bi-
furcation) at v = 112.59 m/s. Thus, referring to
[Golubitsky et al., 1988, p. 425], we can conclude
that in the vicinity of the mode interaction, the dy-
namics of our system can locally be described by the
two state variable systems with the normal form

(x2 + y4 − βy2 − λ, −(x− α)y) (13)

with α > 0 and β ∈]0, 2α[.
Changing now the parameter b to b = 1.085 m

we obtain the bifurcation diagram in the vicinity of
the mode interaction found in Fig. 13. Referring
to [Golubitsky et al., 1988, p. 425] again, we see
that now the dynamics of the system can locally
be described by the (same) two state variable sys-
tems with the normal form (13) and with α > 0 and
β < 0.

Changing the parameter b further to b =
1.100 m we obtain the bifurcation diagram in the
vicinity of the mode interaction found in Fig. 14.
With this value of the parameter b, the dynamics
of the bogie system can locally be described by the
normal form (13) with α < 0 and β < 0.
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Fig. 13. Bifurcation diagram near mode interaction with
b = 1.085 m.
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Fig. 14. Bifurcation diagram near mode interaction with
b = 1.100 m.

It should be noted that in Figs. 12–14 we have
depicted the unstable parts of the symmetric pe-
riodic solutions by dashed lines, and the unstable
parts of the asymmetric periodic solutions by dot-
ted lines.

From a mathematical point of view it has been
quite pleasing to find numerically the local bifurca-
tion scenarios in Figs. 12–14, which are practically
identical to the bifurcation diagrams predicted by
unfolding the corresponding codimension 2 bifurca-
tion in [Golubitsky et al., 1988, p. 425].

4. Conclusion

We have considered the Cooperrider model of a rail-
way bogie. This model has been investigated by

several authors. The present work analyzes the bi-
furcations using symmetry groups. We find that the
model is Z2-symmetric, so the equations of motion
can be written in the form

ẋ = F (x, v)

where x ∈ R14 and v ∈ R+. This differential equa-
tion has the symmetry property

F (γx, v) = γF (x, v)

for γ = −I14.
We then develop the generic bifurcations of

symmetric periodic solutions of a system on that
form, considering the Poincaré map P and a map
Q with the property P = Q2. The numerical bi-
furcation analysis of our system has revealed many
bifurcations in the system, all of them generic in
the sense described in Sec. 2.

Section 2.2 deals with the theory for the dynam-
ics of the system near the parameter values where
bifurcation points of low codimension coincide. We
consider the form of the mode interaction in such
a situation. The numerical bifurcation analysis of
our system reveals a very complicated region where
a mode interaction as described in Sec. 2.2 and
[Golubitsky et al., 1988, Chap. XIX, §§2–3] takes
place. This mode interaction yields the informa-
tion necessary to complete the bifurcation diagram
of our bogie model. The splitting and the correct
sequence of the bifurcations in the complicated re-
gion was found after studies of the stringent mathe-
matical theory for symmetry and bifurcations. The
theory verified the numerical results and helped the
authors to refine the numerical investigations un-
til only generic bifurcations appeared in the bogie
model. Furthermore, these refined investigations
revealed the continuation of the symmetric peri-
odic solution. This solution is unstable for a large
speed range but gains stability in the speed range
147.59 m/s < v < 181.73 m/s. In this speed range,
however, the asymmetric periodic solution is domi-
nant, and the symmetric periodic solution had not
been found in earlier investigations, due to its small
basin of attraction.

From the mode interaction in the complicated
region, the theory in [Golubitsky et al., 1988,
Chap. XIX, §§2–3] also predicts the Neimark bi-
furcation in the bogie system and the presence of
a quasiperiodic solution bifurcating from the asym-
metric periodic solution. This quasiperiodic attrac-
tor, its development and its symmetry characteris-
tics have been studied in [Jensen & True, 1997].
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Asymmetric wear of railway wheelsets do oc-
cur in real life. We suggest that this lopsided wear
under certain conditions may be related to a sym-
metry breaking pitchfork bifurcation as described
in this paper.

The Cooperrider bogie is a realistic model of a
passenger car bogie, but the model of the wheel/rail
contact is highly simplified. Today real wheel pro-
files have varying curvature. They are not plainly
conical, but as long as the amplitudes of the lateral
oscillations are sufficiently small the curved profile
may be approximated by a conical one. The most
unrealistic assumption in the model is that a linear
spring with a dead band can model the flange con-
tact. The sudden action of the spring has the char-
acter of an elastic impact which in all probability is
alone responsible for the complicated dynamics in
the speed range that is investigated in this article.
Such events are however interesting also in vehicle
systems dynamics, because the dynamical effects of
simple motion delimiters, which are often used in
the constructions, are unknown.

Passenger cars are usually not run at speeds
higher than the nonlinear critical speed. It may
however happen that the critical speed has de-
creased below the operating speed due to heavily
worn wheel profiles, and it is therefore important to
know what can happen at speeds higher than the
critical speed. The fastest trains today have a ser-
vice speed of 300 km/h ∼ 83.3 m/s, but trains with
service speeds up to 350–360 km/h ∼≤ 100 m/s
are under development. Due to aerodynamic ef-
fects and economy a service speed of 350 km/h is
deemed the highest economically and technically
feasible speed of passenger trains today.

Freight car bogies are similar to passenger bo-
gies in design but simpler — and cheaper — in
construction. Freight cars are frequently moved at
speeds greater than their nonlinear critical speed,
which is influenced by motion delimiters and dry
friction dampers. These elements constitute the
main difficulties in an accurate modeling of the dy-
namics of freight cars, but we can still gain valuable
information about what to expect from dynamically
simpler bogie designs like the Cooperrider bogie.
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