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This paper describes the process of pattern selection between rolls and hexagons in Rayleigh-l~nard convection with 
reflectional symmetry in the horizontal midplane. This symmetry is a consequence of the Boussinesq approximation, provided 
the boundary conditions are the same on the top and bottom plates. All possible local bifurcation diagrams (assuming certain 
non-degeneracy conditions) are found using only group theory. The results are therefore applicable to other systems with the 
same symmetries. Rolls, hexagons, or a new solution, regular triangles, can be stable depending on the physical system. Rolls 
are stable in ordinary Rayleigh-B~nard convection. The results are compared to those of Buzano and Golubitsky [1] without 
the midplane reflection symmetry. The bifurcation behavior of the two cases is quite different, and a connection between them 
is established by considering the effects of breaking the reflectional symmetry. Finally, the relevant experimental results are 
described. 

1. Introduction 

Rayleigh-B~nard convection provides perhaps 
the best studied example of nonlinear pattern 
selection. In the simplest version of the problem a 
layer of fluid confined between infinite, stress-free, 
horizontal boundaries is heated uniformly from 
below. For small temperature differences, mea- 
sured by the Rayleigh number R, energy is trans- 
ported by molecular conduction. As R is increased, 
the conduction state loses stability. At R = / ~ ,  the 
point of neutral stability, the linear stability prob- 
lem admits several qualitatively different plan- 
forms: rolls, squares, hexagons, and in fact any 
linear combination of rolls with the critical wave- 
length. For supercritical values of R the amplitude 
of each planform grows exponentially until the 
nonlinear effects become important. The non- 
linear terms are responsible for selecting one of the 
patterns admitted by the linearized problem. In the 
laboratory, this process will be affected by random 

initial conditions and imperfections in the appara- 
tus, as well as by the presence of sidewalls, all of 
which will have an effect on pattern selection. 

Much theoretical work on convection assumes 
the Boussinesq approximation, in which all mate- 
rial properties are independent of temperature, 
with the exception of the density entering in the 
driving buoyancy term. If, in addition, the bound- 
ary conditions are the same on the top and bottom 
plates, and the mean temperature in the layer is 
time-independent [2], then the resulting problem is 
symmetric under a reflection in the horizontal 
midplane, together with a temperature reversal. 
Under such conditions it has been predicted (Sch- 
liiter et al. [3]) that in a large aspect ratio container 
rolls will be observed at the onset of convection. 
On the other hand, in systems lacking the 
reflectional symmetry, i.e., non-Boussinesq fluids, 
or systems with asymmetrical boundary conditions 
or time-dependent heating, hexagons are usually 
observed. This tendency has been explained for a 
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number of specific systems (see, for example, the 
review by Busse [4]). On the other hand, it is 
evident that it is the basic symmetry differences 
that are responsible for the observed results. In this 
paper we present a method that takes full advan- 
tage of the symmetries of the problem, and are able 
to give a complete classification of all possible 
steady state bifurcations near onset that are consis- 
tent with the imposed symmetries and certain 
nondegeneracy conditions. In particular, we clarify 
the nature of the transition between hexagons and 
rolls as the Rayleigh number is increased, and 
between rolls and hexagons as the reflectional 
symmetry is broken. 

The convection problem has traditionally been 
treated using perturbation expansions. The 
method has yielded many interesting and valuable 
results that are summarized by Busse [4]. Standard 
perturbation expansions suffer from two disadvan- 
tages, however; first, they do not take full advan- 
tage of the various symmetries of the problem. 
Consequently, it is often unclear which aspects of 
the solutions are a consequence of the symmetries, 
and hence, which class of problems will exhibit the 
same dynamics. Second, perturbation expansions 
are carried out to some order, and the higher order 
terms are neglected without adequate justification. 
For example, existing calculations [4] are restricted 
to third order in the amplitude of the instability. 
The basic issue here is: to what order must an 
expansion be taken if the addition of higher order 
terms is not to change any qualitative aspects of 
the dynamics. Results of this kind are called struc- 
tural stability results. 

The proof of structural stability for vector fields 
in dimensions I> 3 is, however, almost impossible 
[5]. In the present paper we therefore restrict 
attention to stationary solutions whose bifurcation 
structure can be studied rigorously by means of 
either singularity theory or group theory. For the 
present problem, the latter is easier to apply. 
Moreover, it highlights the rple played by the 
symmetries in determining both the possible bifur- 
cating solution branches and their stability proper- 
ties. For example, we are able to classify the 

bifurcating solutions by their symmetries. The 
group of symmetries of a given solution is called 
the i so t ropy  subgroup .  It is a subgroup of the group 
of symmetries of the problem. We find that the 
solutions that bifurcate off the trivial conduction 
soilution are those whose symmetry is described by 
m a x i m a l  isotropy subgroups of the group of sym- 
mettles of the trivial solution, i.e., the next most 
symmetric solutions. 

The equations describing Rayleigh-B6nard con- 
vection in the Boussinesq approximation are 

-fi - ~  + (u " V)u = - Vp + O~ + V2u, (1.1a) 

t~O 
~ t  + u " VO = R w  + V20 , (1.1b) 

V "u = 0 ,  (l.lc) 

where u = (u, v, w) in the velocity relative to 
(x~, x2, y) directions, and 0 denotes the departure 
from a linear temperature profile. The dimen- 
sionless numbers R and P are, respectively, the 
Rayleigh and Prandtl numbers, For the analysis 
that follows, it is important to understand the 
symmetry properties of these equations and the 
behavior of the linear eigenfunctions under the 
symmetries. Also of importance is the fact that 
there is a critical wavenumber kc which first goes 
unstable as the Rayleigh number is increased. The 
explicit equations (1.1) will not be required, how- 
e v e r .  

The equations of motion must be supplemented 
with appropriate boundary conditions. We are 
interested in studying the role played by the 
boundary conditions on the upper and lower 
plates, but will assume that the lateral boundaries 
are sufficiently far away that the fluid layer can be 
considered infinite in both horizontal directions. 
The convection equations are then equivariant 
with respect to rigid motion in the plane. The onset 
of convection is an example of a symmetry break- 
ing bifurcation. The crucial simplifying assumption 
we make is that the resulting pattern is doubly 
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periodic in the horizontal plane, i.e., that there are 
two translation vectors a~, ua in the horizontal 
plane such that the functionsf(x) in the plane that 
we will allow satisfy 

f (x )  =f (x  + nlal + n2a2) (1.2a) 

for all integers n~, n2. The Fourier transform of 
such a doubly periodic function is discrete: 

f ( x ) =  ~ Zm,,~2e i(ml*'+m2*z~, 
m l ,  m2 

Z _  m l  ' _ m2 ~ Z m l , m  2 , 

(1.2b) 

where the reciprocal space vectors k~(fl = 1, 2) are 
related to the spatial translations a,(0t = 1, 2) by 

a~" k# = 2ndi~#. (1.2c) 

In the following we shall assume that the vectors 
k~ have a length equal to the critical wavenumber 
kc at the onset of instability. The resulting k-space 
lattice is either square, rhombic, or hexagonal. 
Sattinger [6] has studied these cases but without 
considering the effects of the midplane reflectional 
symmetry; this symmetry has, however, important 
consequences for the hexagonal lattice. Moreover, 
the most frequently observed convection patterns, 
rolls and hexagons, are both doubly periodic with 
respect to the hexagonal lattice, although squares 
are sometimes seen. The observed patterns are, 
however, rarely stationary and defect free (see, for 
example Koschmieder [7]). 

For these reasons we restrict our attention to 
patterns which are doubly periodic with respect to 
the hexagonal lattice. Fig. la shows the translation 
vectors a~, a2 and three copies of the hexagonal unit 
cell. The pattern in each cell is repeated so as to tile 
the whole plane. Fig. lb shows the longest wave- 
length rolls that have the required double period- 
icity. Fig. lc shows the 6 points of the k-space 
lattice which are assumed to have the critical 
wavenumber. Note that it is possible that 12 (or 
more) points of the k-space lattice intersect the 
circle of critical wavenumbers, as in fig. ld where 

k2-x= 0 

k 2 ~ k  ~ 

( c )  = -  - 

(b) kl"x= 0 kl"x= 27T (d) 
Fig. 1. Doubly-periodic functions in the plane and the hexago- 
nal lattice: (a) unit cells and translation vectors, (b) rolls on the 
hexagon lattice, and (c, d) the circle of critical waveveetors 
intersecting 6 or 12 modes on the reciprocal lattice. 

3k~ + ks is a critical mode. In this case the imposed 
spatial periodicity is larger than the wavelength of 
the instability. 

Apart from the assumed symmetry with respect 
to translations on a hexagonal lattice, the equa- 
tions are invariant under reflection in the midplane 
y = 0 ,  

x '  = x,  (u ' ,  v ' )  = (u, v ) ,  

y '  = - y ' ,  w' = - w, '= - 0 .  
(1.3) 

If the boundary conditions at the two horizontal 
plates y = + ½ are time-independent and identical, 
then the system has reflectional symmetry about 
y = 0. For stress-free, perfectly conducting bound- 
aries, the eigengunctions of the linearized con- 
vection equations are 

(u I 0 (k,n) 

(x,y) = 

A 1 sin nny \ 
A 2 sin nny | 
iA 3 cos nny ] 
iA4 cos nny/ 

e u''x , (1.4) 

where the At are real constants, and k is the 
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wavevector in the horizontal (x) plane. The critical 
modes have n = 1 and It, l:--kc=2 n/2. Under the 
reflection (1.3) the eigenfunctions transform as 

U'k,.(x',y') =(- -  1)"U~,.(X, y ) ,  

O'k,.(X', y ' )  = ( -- 1)"Ok,,,(X, y ) .  
(1.5) 

The eigenfunctions of  (1.1) always have this sym- 
metry if the boundary conditions are symmetric. 

The real (or imaginary) parts of the critical 
modes are called rolls (fig. 2a). The effect of the 
reflectional symmetry on a roll is to reverse the 
direction of the flow. Likewise, the symmetry 
transforms hexagons with the flow up in the middle 
(H +) (fig. 2b) to hexagons with the flow down in 
the middle ( H - )  (fig. 2d). With the reflectional 
symmetry, both types of hexagons are on an equal 
footing; if hexagons are stable, then either H ÷ or 
H -  is the realized planform, depending on initial 
conditions. Moreover, in this case two new solu- 
tions, which we call regular triangles (fig. 2c) and 

(a) 

H + j 

(b) ~C 

(d) 

Fig. 2. Regular convection patterns: (a) rolls (R), (b) hexagons 
with flow up in the center and down along the sides (H +), (c) 
regular triangles (RT), and (d) hexagons with flow down in the 
center and up along the sides (H-). The patterns H :~ and RT 
differ only in the phase ~: ~=o(H+), ~=n/2  (RT), 

= n(H-). Fig. 4 shows details of the transition between the 
hexagons and triangles. 

• the patchwork quilt (fig. 4a) exist near the in- 
stability. On the other hand, in problems without 
the reflectional symmetry these solutions do not 
occur near instability, and one type of hexagons or 
the other is preferred. 

It is important to note that if the critical modes 
had been even rather than odd (e.g., n is even in eqs. 
(1.5)) then the symmetry would be "trivial". By 
this we mean that only even modes are generated 
by the nonlinear coupling of the critical modes, 
and the symmetry is preserved by the finite ampli- 
tude solutions. In this case the results without the 
reflectional symmetry would be valid. The im- 
portant, i.e., non-trivial, symmetries are those that 
are broken by the bifurcating solutions. 

In studying the pattern selection problem on a 
hexagonal lattice with the midplane reflection, we 
complement the recent work of Buzano and Golu- 
bitsky [1] on the problem without the reflectional 
symmetry. In the following, we reinterpret the 
results of Buzano and Golubitsky and show that 
the bifurcation diagrams for the symmetric case are 
quite different. The group theory methods we use 
are explained in sections 2 and 3. In section 2 we 
present the classification of bifurcating solutions 
by their isotropy subgroups; the bifurcation dia- 
grams are computed in section 3. In section 4, the 
results are compared with those of Buzano and 
Golubitsky on the nonsymmetric problem, and the 
breaking of the reflectional symmetry is discussed. 
The results are summarized in section 5 where a 
brief overview of the relevant experimental obser- 
vations is provided. 

2. Classification of the solutions 

2.1. The amplitude equations 

The assumption of  double periodicity reduces 
the partial differential equations (1.1) to a set of 
coupled ordinary differential equations for the 
Fourier amplitudes of each field (cf. eq. (1.2b)). 
Thus, there is only a finite number of critical modes 
at the onset of  instability (R = Re), and the Center 
Manifold Theorem [8] justifies a description of the 
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dynamics near R = R¢ in terms of  a finite number 
of amplitudes. 

For a hexagonal lattice with 6 wavevectors on 
the circle of critical wavenumbers, we may write 
the temperature perturbation as 

O(x, y, t) = Re z~(t) e ~. .Xf(y , 
1 

(2.1) 

where z~(~t = 1, 2, 3) are complex amplitudes of the 
bifurcating modes, and f ( y )  is the appropriate 
vertical eigenfunction. The k~ are three of the 
critical wavevectors, each of magnitude ko and 
each oriented at 120 ° to the other two, so that 
/£1 "~-/£2 "3t-/£3 ~--" 0 (cf. fig. (lc)). 

We are assuming that each of the 6 modes goes 
unstable via a single eigenvalue passing through 
zero, and do not consider the Hopf  bifurcations 
that can arise in some convection systems [9]. 

With these assumptions, the partial differential 
equations near the bifurcation reduce to three 
compex amplitude equations for the critical modes, 
of the form 

~,=g,(zl,  z2, z3, 2), ~ = 1 ,  2, 3, (2.2) 

where 2 is the bifurcation parameter, proportional 
to R - R~. The amplitude equations are symmetric 
(equivariant) with respect to the symmetry group 
F,, the largest subgroup of the Euclidean group in 
the plane that preserves doubly periodic functions 
on a fixed hexagonal lattice, or the groups 
Fs = F. + Z2 when the midplane reflectional sym- 
metry is included. We use the subscripts n and s on 
F to denote the nonsymmetric and symmetric 
cases, respectively. Let 

Z = (Z1, Z2, Z3) , g = ( g l '  g2 '  g 3 ) "  

The symmetry then implies 

g(vz, 2 ) =  vg(z, 2), for all V in Fo or Fs. (2.3) 

of a hexagon. The translations are identified with 
the torus T 2 by the double periodicity. Thus 
F. = D6 + T 2, a semidirect product of D6 and T 2, 
implying that F.  consists of all 12 elements of D6 
composed with all translations. 

The form of the amplitude equations is restricted 
by the requirement (2.3). To use (2.3) we first have 
to understand the ac t ion  of  F.  on 
z - - ( z ,  z2, z3)~C 3. From eq. (2.1) translations 
x ~-.x + dare  described by the action T 2 x C3---,C3: 

(8, t ) "  Z = (eisgl,  e - i ( s + 0 z 2 ,  eitz3) , (2.4a) 

where s = k~- d and t = k 3 • d. The twelve rotations 
and reflections of D6 are generated by D 3, the 
symmetry group in the plane of an equilateral 
triangle, and inversion through the origin 
(x ~ - x) which induces the complex conjugation 
mapping 

c: z ~,  ~ (2.4b) 

on C 3. Moreover, D 3 is generated by rotation 
through 120 ° and reflection in a vertical plane: 

r120o: (z1, g2, g3) ~ (-72, g3, gl) ,  

~v: ( z .  z2, z3) ~ (z., z3, z2). (2.4c) 

Finally, the rnidplane reflection (if it holds) 
changes the sign of the temperature variation and 
operates on C 3 by 

o-h: Z ~--} -- Z. (2.4d) 

The group F, leaves unchanged the polynomials 

0"1 = Ul -~- U2 "}- U3,  

0" 2 ~ UIU 2 -I- U2U 3 -~- U3U 1 , 

0-3 ~--- UlU2U3 

(2.5) 

q ~ ZlZ2Z 3 "~- ZIZ2Z 3 , 

The allowed rotations and reflections form the 
group D6, the dihedral group of planar symmetries 

where u~ = z~£~. It follows that any real-valued 
function h = h(0-~, 0"2, 0"3, q) is invariant under Fo. 
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As shown in Buzano and Golubitsky [1], all 
smooth functions invariant under Fn have this 
form. Moreover, it is also shown there that the 
equivariance condition (2.3) for F~ implies that the 
amplitude equations for the critical modes must 
have the form 

ZI ~ -  Zl(h~ + ulh3 + u~hs) + Zfi3(p2 + ulP4 + u2p6), 
(2.6) 

where hi, pj are 2-dependent invariant functions; 
that is, these functions depend on the 5 variables 
a~, a2, a3, q, 2. Equations for z2, z3 are obtained by 
cyclic permutation of z~, z2, z3. Note that Yfi3 
transforms the same way as z~ and that terms of the 
form z~u~, etc., are not required since 

u~ = a3 - a2u~ + ~u~.  

(The notation here is based on the choice of critical 
k-vectors k~ + k s + k 3 = 0 and differs slightly from 
the notation in Buzano and Golubitsky where the 
critical k vectors were chosen to satisfy 

k 1 - k 2 + k 3 = 0 . )  

If the midplane reflection (2.4d) holds, only odd 
powers of z are allowed in the amplitude equations 
and the form of (2.6) is further restricted to 

Zl = z~(ll + uJ3 + u215) + -~2z3q(m5 + ulm7 + ul2m9), 
(2.7) 

where /j, rn i are now functions of try, a2, a3, q2, 

and 2. 

2.2. Classification of  the steady-state solutions 

The solutions z(2) to the steady state equations 
g(z, 2 ) = 0  can be classified according to their 
symmetry. Since g(Tz, 2) = yg(z, 2), if z is a solu- 
tion to g(z, 2) = 0, then so is the orbit of z, defined 
by 

rz  = { :  17 r = r .  o r  r, .  (2.8) 

We consider all solution on an orbit to be equiv- 
alent. If an orbit is stable, then the actual solution 

observed will depend on the initial conditions, 
since the equations treat all solutions on the orbit 
equivalently. 

We classify the symmetry of  a solution z by the 
isotropy group ~,~, subgroup of  F leaving z invari- 
ant, 

(2.9) 

The other elements of  the orbit Fz have isotropy 
groups related by conjugation. Thus, the symmetry 
of a solution ~z is given by the conjugate subgroup 
~ZzY- ~ and one need only distinguish the conju- 
gacy classes of isotropy subgroups when de- 
scribing solutions. 

In fig. 3 we list part of the lattices of isotropy 
subgroups for the representations of the groups Fn 
and Fs described by eqn. (2.4). 

The most symmetric solution (the trivial or 
conduction solution) has isotropy subgroup £,  or 

r n = T 2 + D 6 (0) 

/ \ 
S 1 + ~'22(R) D6(H +, H-) 

t . J / t  
E2 (RA) D 3 (T) 

t t 
(a) 

F s=T 2+D 6+7- 2(0) 

S 1 +Z3(R) E3(PQ) D6(H) D 3 + E2(RT) 

E2IB) g2IRA) E2 (IRA) D3(T) 

(b) 
Fig. 3. Lattice of isotropy subgroups for the group (a) F, (the 
nonsymmetric case) and (b) F, (the symmetric ease). Inclusion 
is indicated by arrow. 
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Fs. In the former case the next most symmetric 
solutions have the (maximal) isotropy subgroups 
S ~ + Z 2 and Dr, the former being the symmetry of  
rolls, the latter the symmetry of the hexagons (H ÷ 
or H- ) .  In the figure inclusion is indicated by 
arrows. Observe that a single isotropy subgroup 
(e.g,, Dr) may be the symmetry group for several 
different types of solutions (H ÷, H - ) .  For the 
12-dimensional representation corresponding to 
fig. ld the lattices of isotropy subgroups are 
different. This is because the amplitude equations 
are now on C 6 rather than C 3 and the action of  the 
group F, is different. In fig. 3 we have also 
indicated the type of solution that is associated 
with each isotropy subgroup (cf. Tables I and II). 

In describing the various solutions we use the 

notation z~ = x~ + iy~. We list in table IA one 
representative of each orbit of the action of F, on 
C 3. In this way we enumerate all possible time- 
independent solutions to the amplitude equation 
(2.6) and (2.7). Which solutions actually occur 
depends on the specific invariant functions present 
in eqs. (2.6) and (2.7); these have to be computed 
from the Boussinesq equations (11). We also give 
the isotropy subgroups and the nomenclature, 
where relevant, for these solutions. 

An important observation concerns the fixed 
point set F~ of the isotropy subgroup of a given 
point z. Let Z~ be an isotropy subgroup and let 

F~ = {w ~ C3[yw = w for all y ~ E~}. (2.10) 

Observe that if g(z, 2) satisfies (2.3) then 

Table  IA  
The  n o n - s y m m e t r i c  case (F  = F~) 

N o m e n c l a t u r e  Orb i t  represen ta t ive  I so t ropy  s u b g r o u p  

I. Tr iv ia l  so lu t ion  (O) z = 0 Fn 

(pure  conduc t ion )  

II.  Rol l s  (R)  x I > 0, Yl = z2 = z3 = 0 S l + {0 s, c} 

III .  H e x a g o n s  (H) Xl = x2 = x3 ~ 0 D 3 + {c} 

Yl = Y2 = Y3 = 0 
/ -hexagons  (H +) x I > 0 

g - h e x a g o n s  ( H - )  x I < 0 

IV. Rec tang les  (RA)  x I ~ x 2 = x 3 :/: 0 Z~ = {try, c} 

A = xJIx21 YJ = Y2 = Y3 = 0 
R A + ( A  > 0 )  x I > 0  

R A - ( A  < 0 )  xt < 0  
P a t c h w o r k  qui l t  (PQ)(A = 0) x I = 0 

V. Triangles (T) z, = z2 = z3 = [zl exp(i~/3) D3 
Im(z  0 :~ 0 (i.e., • ~ 0, n )  

Regu la r  t r iangles  (RT)  Re (z0  = 0 ( ~  = n/2, 3n/2)  

VI. x2 = x3 Z2 = {~rv} 

ul ~ u2 
Yl > 0, Y2 = Y3 = 0 

VII.  Yl = Y2 = Y3 = 0 Z 2 = {c} 

u 2 < u! < u 3 

VIII .  Y, = Y3 = 0 {1} 
U 2 < U I < U a ,  y2 > 0  

where S':  z ~ (zl, e-i/z2, eitz3) 
D3: p e r m u t a t i o n  g r o u p  of  z~, z2, z 3 

o'v: z ~ (Zl, z3, Z2) 
c: z ~--~;? 
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Table 1B 
The non-symmetr ic  case (F = Fn) 

2:~ F~ dimF~ g J F ~ x R = 0  

II .  S i "[- {0"v, C} R{(1, 0, 0)} 1 

Ill. D 3+  {c} g{( l ,  1, 1)} 1 

IV. {av, C } R{(1,0,0),(0, 1, 1)} 2 

V. D 3 C{( | ,  1, 1)} 2 

VI. Z 2 R{(0, 1, 1), (1, 0, 0),(i, 0, 0)} 3 

VII. {c} R{(1, 0, 0)(0, 1, 0), (0, 0, 1)} 3 

VIII. {1} C 3 6 

h I + x~h 3 + x~h~ = 0 
a I = x ~ , a 2 f t r 3  = q  = 0 

hi + x~h3 + x~h5 
+ xiq,~ + x ~ ,  + x~6)  = o 

oi = 3x 2, a2 = 3x~, a 3 = x~, a 4 = 2x~ 

hi + x]h3 + xlh~ 
+ xlq,2 + x~, ,  + y ~ 6 )  = o 

Xl[h 3 "[- (X~ + x g h  5 .Jr- xix.2p6] = P 2  
q = 2x,x 2 

h I + uih 3 + u2h5 = 0 
p2 "k UlP4 -F u21pr = O 

h I + u2h 3 + u~h 5 = 0 
P2 + 142174 + U~P6 = 0 
h 3 + (u I + u2)h 5 = 0 
P4 + (Ui at" U2)P6 = 0 

xj(h i "~- U~ll3 "l- uyh5) 
+ x,x#fr2 + u~p4 + u]pD = o 

j=I,2,3. 
:,, fl = indices not equal to j 

h I = h 3 = h 5 = 0 

P2 =P4 =P6 = 0 

Table IIA 
The symmetric case (F = F~) 

Nomenclature  Orbit representative Isotropy subgroup 

I. Trivial solution (0) z = 0 Fs 
(pure conduction) 

II. Rolls (R) xl  >O, y l = O ,  z 2 = z 3  = 0  S l + {or, c, F3} 

IlL Hexagons (H) xl = x2 = x3 > 0 D3 + {c} 
Yl = Y 2 = Y 3 = 0  

IV. Patchwork quilt (PQ) x2 = x3 > 0 {¢r v, c, FI} 
zl ---Y2 =Y3 = 0  

V. Regular triangles (RT) Yl --- )'2 = Y3 > 0 D3 + {fib} 
X i ~---X2= X 3 = 0 

VI. Triangles (T) xt = x2 = x~ > 0 D3 
Yl = Y2 = Y3 > 0 

VII. Rectangles (RA) 0 # xl ~ x2 = x3 > 0 Z~ = {tr,, c} 
Yl = Y2 = Y3 = 0 

VIII. Imaginary rectangles (IRA) x, = x2 = x3 = 0 Z 2 = {try, do} 
0 # Y l  #Y2 =Y3 > 0  

IX. Bimodal (B) xi > x2 > x3 = 0 Z 2 = {F3, C} 

Yl =Y2 =x3  = 0 

where S ~, D3, .~ and c are given in table I and  

Fl: Z ~ ( - -  zi ,  z2, z3) 
F3: z ~ (zl, z2, -- z3) 
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Table l iB 
The symmetric case (F = F,) 

~:= F= dimF~ glF, x R=0 

II. S t + { a , , c ,  F3} R{(1,0,0)} 1 

lII.  D 3 + {c} R{(1, 1, 1)} 1 

IV. {0"v, c, FI} R{(O, 1, 1)} 1 

V. D a + {5h} R{(i, i, i)} 1 

VI. 0 3 C{(l,  1, 1)} 2 

VII. {(~,, c} ~{(I ,0 ,  0), (0, I, I)} 2 

VIII. {0",, 5~} R{(i, 0, 0), (0, i, i)} 2 

IX. {e, F3} R{(1, 0, 0), (0, 1, 0)} 2 

l, + x~l~ + x~l~ = o 
0.1 = X12, 0.2 ~ 0.3 = q = 0  

l, + x~t~ + x~l~ 
+ 2x~(m5 + x~m7 + x~rng) = 0 

~, = 3 ~ ,  ~ = 3x'~, , ~  = x', ,  q = 2x~  

l, + xY3 + xY5 = o 
tr I =2x2 ,  a2 =x~ ,  a3= q = 0  

Ii + y~la + y~ls = O 
a I = 3 y  2, 0 2 = 3 y  ~, 0.3=y~, q = 0  

l~ + utl3 + u~15 = 0 
ms + ulmT + u~mg = O 

at = 3ut, 0"2 = 3u~ 
0"3 =u~, q 4~0 

t, + x~t3 + x~l~ 
+ x~t,n~ + x~,,n~ + x',r,,O = o 

l, + x y~ + xll~ 
+ x~x~(rn~ + x ~  + x~mO = o 

2 2 4 0"1=x~+2x~, 0"2 2xlx2+x~ 
0"3 = x~x~, q = 2x l x  2 

I t + y ~ l  3 + y ~ l  5 = 0  

a I = y ~ + 2 y ~ , a 2 = 2 y ~ y ~ + y  4 
0"3 = y2ty 4, q = 0  

Ii + x~l~ + x~ls = 0 
13 + h(x~ + x~) = O 
~l = X2 "[" X2' 0"2 = X2X2' a3 = q =0 
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g : F ~ x R - - , F ~ .  For if ~ w = w  then g(w, 2 ) =  
g(~,w, it) = ~g(w, 2). Thus, g(w ,  2)eF~ if w ~ F , .  It 
follows that if one looks for solutions with a given 
isotropy subgroup Z, one need only solve 
g [ Fz x R = 0 to find such solutions. For example, 
for rolls one sees that F~= R{1,0, 0} is one- 
dimensional and glF~ × R = ( l ,x  + 13x 3 + lsx ~, O, O) 
where lj = / j  (Xl 2, 0, 0, 0, it). One then sees that non- 
trivial roll solutions are defined by 
1~ + 13 x2 + 15 x4 = 0. In ,table IB we list each of the 
solution types along with the fixed point sets Fz and 
the explicit equations of  glFz x R = 0. Note that 
each of the maximal isotropy subgroups have 
one-dimensional fixed point sets. 

Both the triangles and the rectangles have two- 
dimensional fixed point sets. This means that the 

amplitude alone does not determine the solution. 
The triangles are equal amplitude solutions: 

u~ = u2 = u3. They are conveniently parametrized 
by the amplitude and the sum of the phases, ~. 
That is, let z~ = x//~ d*~ and let 

= ~b, + 42 + 4)3 (mod 21t). (2.11) 

In this notation /-hexagons (H +) have • =0 ,  
g-hexagons (H -)  have • = rr, and regular triangles 
have 4~ = 7r/2 or 31r/2. A translation of  the origin 
x - - , x  + d, in eq. (2.1) changes z~z~e ik , '~ ;  there- 
fore • is an invariant of translations. Complex 
conjugation, however, changes the sign of O; 
c(~)  = - ~P and the horizontal reflection changes 

as follows: 
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ah(~b~) = r c -  qb~ and trh(¢)--- ~ - ¢ .  A=O ~ ~  A=O 
IPoi IPol 

We can therefore choose ¢ in the interval ~ ~  

Ce[0,  z] for F , ,  
A=114 @ A=1/2 

['] C e 0, ~ , for Fs 

In addition, of course, • is only defined if all of  the 
amplitudes are nonzero. 

The rectangles have two equal amplitudes, and 
one different. In addition, they are real solutions, 
i.e., ¢ = O ( R A + ) ,  or n (RA-) .  They are con- 
veniently parametrized by the ratio of  the two 
amplitudes, A (cf. table IA). 

The triangle and rectangle solutions have a rich 
structure• They are visualized here in two ways, 
both looking from above. In figs. 4 and 5 we shade 
the "hot"  regions, where O(x, y) > 0 (of. eq. (2•1)). 
Note that this is also where the vertical velocity w 
is upwards. These figures also indicate the unit 
hexagonal cell. In figs. 4a and 4b we draw the 
horizontal velocity field (u, v) in a horizontal plane 
y = y 0 >  0. Note that this is proportional to 
V,O(x, Yo). For free-free boundaries this is the form 
of the streamlines at the upper plate. In the stream- 
line pictures the unit cell is chosen in such a way 
that the boundary is a streamline. In each case, the 
plane can be tiled with the unit cell shown. 

For the rectangles the two visualizations empha- 
size different singular solutions. For [A I < 2 the hot 
regions are disconnected (these are the false hexa- 
gons of Buzano and Golubitsky). For  IAI > 2 the 
hot regions in neighboring hexagons become con- 
nected (these are the wavy rolls). Fig. 4b emphasizes 
this transition by showing the cases A = 3/2, 2, 5/2. 
As A--*~ the rectangles approach the rolls. 

Fig. 4a shows that a fixed point of the flow 
undergoes a pitchfork bifurcation to three fixed 
points at A = 1/2. This is illustrated by showing 
the horizontal flow lines for A = 1/4, 1/2, 3/4. Note 
finally that the rectangle with A = __+ 1 is a hexa- 
gon H ±, and the triangle with ¢ = 0 or 7r is also 
a hexagon H+. 

A=1/2 ~ _  A = 1 
[H+I 

\ 
(\ /> 

A=I /L~_~, ` / . ,  A ~2 ' 
IH+J 

/ 

A=2 

a b 
Fig. 4. Rectangles (RA) for different values of the amplitude 
ratio A. The solutions are visualized using the temperature 
variation on a horizontal plane O(x)=A cos k ] ' x  +cos  
k2" x + cos k3" x: (a) streamlines of the horizontal velocity field 
(u, v ) =  17,0; (b) hot rising regions 0 > 0 (shaded), cold des- 
cending regions 0 < 0 (unshaded). At A = ½ the local minimum 
of 0 at x = (0, 21t/~v/3) changes to a saddle point via a pitchfork 
bifurcation (fig. a). Fig. (b) shows the transition (at IAI= 2) 
from "false hexagons" with disconnected rising regions to 
"wavy rolls" in which the rising regions are connected. 

For both triangles and rectangles there is a single 
exceptional solution that has an additional mid- 
plane reflection symmetry: the patchwork quilt 
(A = 0) and the regular triangle (# = n/2). Both 
solutions have a symmetry between hot and cold, 
as seen in figs. 4 and 5. These solutions are of interest 
for the problem with the F, symmetry. The isotropy 
group of regular triangles in Fs includes the mid- 
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~---0 
H + 

RT 

( I )=  2'rr/3 

H- 

(a) Co) 

Fig. 5. Triangles (T) for different values of the sum of the 
phases, 4~. The visualization is the same as in fig. 4, but with 
O(x) = cos(k, • x + O/3) + cos(k2 • x + 0/3) + cos(k3 • x + 0/3). 

plane reflection, which interchanges hot and cold, 
coupled with a 180 ° rotation (i.e., ah: Z ~ -- £). The 
isotropy group of  the patchwork quilt in F, in- 
cludes the midplane reflection coupled with a 
translation (i.e., F~: z ~ - (z~, e-i~z2, ei~z3)). More- 
over, the isotropy subgroups of  the patchwork 
quilt and regular triangles are maximal isotropy 
subgroups of Fs (cf. fig. 3). Note, finally, that the 
roll also has an additional symmetry in the group 
F s • 

We present in table IIA orbit representatives for 
each of  the maximal isotropy subgroups of  F~. In 
table l ib  we give the fixed point sets, Fz, and 

g I Fz x R, where g is assumed to have the form 
given in eq. (2.7). Note that H + and H - hexagons 
are identified by the midplane reflection. 

3. The bifurcation diagrams for the symmetric case 

In this section we describe the computation of 
the possible bifurcation diagrams describing the 
onset of convection in a system with midplane 
reflection symmetry. The calculation proceeds in 
three stages. First, the possible steady state solu- 
tions of the amplitude equations (2.7) are deter- 
mined. Then, their linearized (orbital) stability is 
calculated, followed by the construction of the 
bifurcation diagrams. The bifurcation diagrams 
describe the variation in the number and stability 
of the steady solutions as the bifurcation parame- 
ter it is varied. The results of  this section follow 
from the assumption that g(z, it) commutes with 
the symmetry group F s, i.e., that it has the form 
(2.7). The corresponding results for the non- 
symmetric case are given by Buzano and Golu- 
bitsky [1]. 

3.1. The solution branches 

The number and nature of  the steady state 
solutions of g(z, it) = 0 is described by the follow- 
ing result: 

Theorem 1. Assume that ~ = g(z, it) is of  the form 
(2.7) with 

/l(O ) = O, ll,).(O ) # O, ll#.l(O ) "Jr- /3(0 ) # O, 

24.~,(0) + 13(0) # O, 

311,~,(0) +/3(0)  # 0, /3(0) # 0, ms(0) # 0 .  (3.1) 

Then there are precisely four non-trivial branches 
of solutions to g(z, it) = 0 in the neighborhood of 
(z, i t )=  0 corresponding one each to rolls, hexa- 
gons, regular triangles, and the patchwork quilt. 
These branches are supercritical if: 

Rolls 
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(/1.,,(0) + 13(0))ll a(0) < 0 ,  Patchwork quilt: 

Hexagons 
Regular triangles 

2 = _ 2/,.~,(0) +/3(0) al 
ll:(0) 2 

+ . . . .  

(3/1,al(O) +/3(0))11:(0) < O, 

Patchwork quilt 

(2ll,,q(0) + 13(0))/1,~(0) < 0.  

If  any of  these inequalities are reversed, the corre- 
sponding branch is subcritical. 

Remark. The equality ll(0) = 0 is called a defining 
condition; it is the statement that z = 0, 2 = 0 is a 
bifurcation point. The inequalities are called non- 
degeneracy conditions, since they are satisfied 
generically. We are therefore describing the least 
degenerate bifurcation consistent with the Fs sym- 
metry. 

These results show that for each of  the above 
solution types the amplitude is specified uniquely 
for each 2. 

To show that there are no solutions near the 
origin other than the four listed in theorem 1, 
consider the 3 cases: 

(1) U l # 0 ,  U2=U3=0;  
(2) U l # 0  , u2~0 ,  u 3 = 0 ;  
(3) u l # 0 ,  u2#0 ,  u s # 0 .  

There is only one type of  solution in case (1), the 
rolls. For case (2), first note that q = 0. Therefore 

-71 = Zl(ll + Uff3 + U215) = O, 
~42 = z2(l t -1- U213 + U2~15) = O, 
Z3 = O. 

Proof. The proof  of  the existence of  these four 
branches is straightforward. Consider, in table IIB, 
the calculation of  g = g [ Fz x R and write out the 
lowest order terms in the Taylor expansion ofg .  If  
these lowest order terms are nonzero, then one 
proves the existence of  the branches using the 
implicit function theorem. The calculations yield 

Rolls: 

2 = 11,~,(0) + /3(0)  
/id(O ) 0"1 -}-.. . ,  

Hexagons: 

2 = - -  311'¢'(0) + 13(0) °'---[1 
11,~.(0) 3 

+ . . . ,  

Regular triangles: 

2 =  --311'°'(0)+~(0)a--2 
~,~(0) 3 

~- . . . ,  

Since zl # O, z2 # 0 we know 

ll + u,13 + u~15 = 11 + u213 + u2,15 = O . 

Therefore 

(ut -u2)[~+(ul+ugls]=O. 

So either 

u l = u z  or / 3 + ~ ( z 2 ) = 0 .  

Since 13(0) # 0 the only solution near the origin is 
Ul = u2 (the patchwork quilt). 

For case (3), we will first show that the 3 
amplitudes must be equal, then we will show that 
only hexagons and regular triangles are found near 
the origin. Observe that 

0 = z # ~  - z ~ 2  = z : 2 ( u ~  - u2) 

x [13 + (u' + u2)ls-- z'3q ms + O(z4) (3.2) 
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By assumption ztz2 v~ 0, and/3(0) ~ 0 so the only 
small amplitude solutions have ut = u2. Similarly, 
we find that u~ = u2 = u3. 

Since all amplitudes are nonzero, the phases ~b, 
are all defined, and we can write 

2iut 

= - 2u2u3 cos • sin q~(m5 + ulm7 + u~mg) = O. 
(3.3) 

Since ms(0) ~ 0, we must have cos • sin • = 0, 
or • = nn/2.  These are the hexagons and regular 
triangles. 

Note that if the amplitude equations are trun- 
cated at third order, then Triangles of all phases 
are solutions in the symmetric case. Therefore, one 
must consider the 5th order term ms(0) when 
classifying these solutions. This term has been 
neglected in the past because the rolls are stable in 
the symmetric Rayleigh-Brnard convection. It 
seems likely, however, that other physical systems 
with the Fs symmetry, in convection or elsewhere, 
may have stable hexagons or triangles. 

It is appropriate to remark here that it is gener- 
ally true that there exist solution branches corre- 
sponding to isotropy subgroups Z~ whose fixed 
point set F~ is one-dimensional. Such isotropy 
subgroups have to be maximal in the lattice of 
isotropy subgroups. This observation follows from 
a result of L. Michel. (See Golubitsky [10]). Thus, 
in our case, the existence of  at least four solution 
branches is guaranteed by general considerations. 

3.2. Linearized orbital stability 

As we noted in section 1, when a mapping g 
commutes with a group F, if g vanishes at a point, 
then it does so on its entire orbit. I f  the dimension 
of the orbit is a positive integer s then the Jacobian 
of g, dg, is forced to have s eigenvalues equal to 
zero. The null eigenvectors correspond to spatial 
translations of  the pattern. It is impossible for such 
solutions to be linearly stable. What  is possible is 
that every eigenvalue of  (dg),.a which is not con- 

strained by the group action to be zero lies in the 
correct half plane for stability. A solution z, 2 
satisfying this last condition is called linearly or- 
bitally stable-this is analogous to Poincarrs notion 
of relative stability for periodic orbits in Celestial 
mechanics that arise from a symmetry. Such solu- 
tions satisfy the following form of asymptotic 
stability. All ~ sufficiently close to z tend ex- 
ponentially in time to some point on the orbit F • z 
near z. Note that the four solution branches dis- 
cussed above have orbits of positive dimension: 1 
for rolls and 2 for hexagons, regular triangles and 
patchwork quilt. It follows that dg has one zero 
eigenvalue along the roll solutions and two zero 
eigenvalues along the other nontrivial branches of  
solutions. 

The fact that g(yz,  2 ) = y g ( z ,  2) for all ~ F  
gives another restriction on the Jacobian dg. In 
particular, the chain rule implies 

(dg)~z.~r = ~,(dg)~.~. 

Thus, if 7 is in the isotropy subgroup Z,, 

(dg)~.ay = 7 (dg)~a. (3.4) 

For solutions with maximal isotropy subgroups in 
Fs the commutativity restriction (3.4) allows one to 
compute directly the eigenvalues of the 6 x 6 ma- 
trix (dg)z.~. These results are summarized in table 
IIIA. We assume that g commutes with Fs and has 
the form (2.7). We choose the ordering of  the real 
coordinates on R 6 to be (xt, x2, x3, yt, Y2, Y3), first 
the real parts of z~, z2, z3 and then the imaginary 
parts. In coordinates, g has the form 

g(z ,  ,~) = (g,(z, ;~), g2(z, ,~ ) . . . . .  g~(z, ,q)  , 

where 

g,(z, ~ ) = (6 + u,l~ + u~-l~)x, 
q- (m~ -t- u~m 7 + u~ql9)q Re(3p3~), (3.5a) 

g,  + ,(z, ~) = (6 + u,l, + u~.l,)y, 
+ (ms + u,m7 + u2gn9)q Im(£#~?~), (3.5b) 
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Table IIIA 
The eigenvalues 

I. (O) 11(0, 0, 0, 0, 2) (six times) 

II. (R) .4, D(four times), 0 
d 

x ,13 - x ,15. where A = x I ~ x  1 (l I + x213 + xii4) and D = - 2 4 

III. (H) A -B(twice), A + 2B, 3~, 0(twice) 

dg, dg] ~g4 where A = ~x~' B = 7x2' and ~ = ~y~ = - 2x~(m5 + x~m7 + x~mg). 

IV. (PQ) .4 - B ,  A + B, E, E, 0 (twice) 

~g2 ~g2 ~gl where .4 = - - ,  B = and E = l, 
tgx: ~x3' E = t~-~x~ ' " 

V. (RT) 3A, C - D (twice), C + 2D, 0(twice) 

w h e r e A = ~ x  l=2y(m 5 + y m  7+ym9), C = ~ , a n d D  ~Y2 

All eigenvalues in this table are real. 

Table IIIB 
The signs of the eigenvalues of (dg)z.a 

I. (0) sgn(l,.a(0)2) (six times) 

II. (R) sgn(ll.al(0)+/3(0)) , -sgn(13(0)) (four times), 0 

III. (H) sgn(13(0)) (twice), sgn(31L,,(0 ) + 13(0)), -- sgn(ms(0)), 0 (twice) 

IV. (PQ) - sgn(13(0)) (twice), sgn(13(0)), sgn(211.,,(0) + 13(0)), 0 (twice) 

V. (RT) sgn(ms(0)), sgn(13(0)) (twice), sgn(3tl.,,(0)+ 13(0)), 0 (twice) 

and ~ = 1, 2, 3; fl, ~ are the integers in { 1, 2, 3} not  

equal to ~. 
The entries in table I l i a  are obtained using 

elementary calculations based on these two re- 

strictions. We shall describe here the calculations 
for the regular triangle solutions. The calculations 

for the other solution types are (mostly) given in 

Buzano and Golubi tsky [1], theorem 5.5. 

Let L = (dg)~  where z = y ( i , i , i )  is a typical 
regular triangle with isotropy subgroup D 3 + {ah}. 
Let L have the block diagonal  form 

/ ,  Q 

where P, Q, R and S are 3 x 3 matrices. Observe 

that, 0h has the matrix form 

where 13 is the 3 x 3 identity matrix. Restriction 

(3.4) states that  L and Q~ commute  which implies 
that  Q = R = 0. We also know that  L must  com- 

mute with D3. Since D3 is just  the permuta t ion  
group on Zl, z2, z3, this means that  bo th  P and S 

must  commute  with 

Q2 = o and Q 3 =  0 • 

0 0 

Thus  

p = 
A B B C D 

A a n d  S = C • 

B D 
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To find the eigenvectors of L with zero eigen- 
value which are forced by the group action, con- 
sider the curve 

s ~--~y(e~i, e-~i, i), y # 0.  (3.6) 

This curve is obtained by the action of S 1 = (s, 0) 
inside the torus acting on z = y ( i , i , i ) .  
Differentiating (3.6) with respect to s and evalu- 
ating at s = 0  yields the desired eigenvector 
of L. One obtains y ( - 1 , 1 , 0 )  in C 3 or 
y ( -  1, 1, 0, 0, 0, 0) in the real coordiantes on R 6. It 
follows that A = B in P. 

The eigenvalues of  L are just the eigenvalues of 
P and S. P is a rank one matrix with trace 3A; its 
eigenvalues are 3A and 0 (twice). The eigenvalues 
of S are C + 2D and C - D (twice). To prove this, 
observe (1, 1, 1), (1, - 1, 0) and (0, 1, - 1) are 
eigenvectors of  S. 

Now observe from the positions of A, C and D 
in L that A =agl/0xl,  C=ag4/ f ly l  and 
D = Og4/Oy 2. Write 

g, = Lxl  + M q  Re(~2~3), 

where 

L = 11 + ull3 + u~ls and M = m5 + ulm7 + u~m9. 

(3.7) 

Recall from table liB that xl = 0, L = 0 and q = 0 
for regular triangles. It follows that for such solu- 
tions 

0 d 
~Z-.. g, = MST?-.. q Re(~2z3) = 2y4(m5 + y2m7 + y4m9) 
t , .~  1 

Proof. To prove this theorem one simply com- 
putes the first non-zero term in the Taylor expan- 
sion of each eigenvalue given in table IliA. Since the 
calculations are all similar, we give only those for 
the regular triangle solutions. 

The sign of A in table I l i a  (RT) is easily seen to 
be sgn(ms(0)) as long as ms(0)# 0, which is as- 
sumed in (3.1). Using the notation of (3.7) observe 
that 

g4 = Lyl + M q  Im(£2£3). 

Since L, q and Im(-~2z3) vanish at points y(i,  i, i) it 
follows that 

~Yl 0 0 0 C =  g4 = Y -~yl L and D = -~y2 g4 = y -~y2 L 

at z = y(i,  i, i). Computing modulo terms of order 
y3 one finds 

C = 2(11.o,(0) + 13(0))y 2 + . . . ,  

D = 211.ot(0)y 2 + . . . .  

Note that we showed in theorem 1 that 

2 = 311m(0) +/3(0) y2 
- l l , a ( 0 )  + . . . .  

so that terms involving 2's are higher order terms. 
It follows that 

sgn(C - D) = sgn/3(0) 

and 

sgn(C + 2D) = sgn(311.o,(0) + 13(0)) 

assuming that z = y(i,  i, i). 
We can now state the main result of  the section. 

assuming that /3(0) # 0 and 3/1.,,(0) +/3(0) # 0. 
This calculation verifies tables IIIB, V. 

Theorem 2. Assume that g(z ,  2)  commutes with Fs 
and satisfies the non-degeneracy conditions (3.1). 
Then the signs of the eigenvalues of  (dg)~,~ are 
given in table IIIB. 

3.3. The bifurcation diagrams 

The description of  the bifurcation diagrams as- 
sociated with the F, symmetry can be simplified by 
an appropriate scaling of  the equations. Assume, 
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as in theorem 1, that /3(0)# 0, ll,,t(0)# 0 and 
m5(0 ) # 0. Then we can make the following change 
of variables: 

z ~--~otz, t ~ t/Is, 2 ~ ),4, (3.8) 

where 

i t 3 (O) lms (o ) l ,  Is = I t 3 ( O ) l m s ( o ) l t 3 ( o ) ,  

)' = _ I/3(O)lm (o)lt3(O)lt,. (o ) . 
(3.9) 

In terms of the new variables the amplitude equa- 
tions (2.7) are 

21 = Z I ( -  2 "JI- air1 + ul) + cq;?2z3) + ~(z 5, 22z, 2z2), 
(3.10) 

where 

a = l l , f f l ( O ) / 1 3 ( O ) ,  c = sgn(m5(O)13(O)). (3.11) 

Note that the nondegeneracy conditions (3.1) 
imply that 

a # - l ,  a # - ½ ,  c = _ + l .  (3.12) 

The additional nondegeneracy conditions are im- 
plicit in the form (3.10) of  the amplitude equations. 

In applications, it is important to notice that our 
scaling of  the equations involves a time reversal if 
sgn(13(0)) = - 1. This has the effect of  reversing the 
stability assignments. Therefore, in our analysis of  
eq. (3.10), positive eigenvalues imply stability if 
sgn(13(0)) = -  1. Similarly, the direction of  in- 
creasing 2 depends on sgn(ll,~(0)13(0)). If this quan- 

tity is negative, the bifurcation diagrams (figs. 
6-11) should be read with 2 increasing from right 
to left. 

The results of  theorems 1 and 2 are summarized 
for the scaled equation in table IV. Note that we 
have omitted the zero eigenvalues forced by the 
symmetry of  the pattern both in this table and in 
the bifurcation diagram. The bifurcation diagrams 
are amplitude-Rayleigh number diagrams. The 
amplitude is conveniently measured by at since the 
convective heat transport across the fluid layer is 
proportional to al + d~(z4). Thus, the bifurcation 
diagrams shown in figs. 6-11 are drawn in a form 
that can easily be compared to experiment. 

The diagrams shown in fig. 6 are drawn as if the 
fifth order terms Zla21, z lalul  and zlu 2 in eq. (3.10) 
are zero. These terms do not affect the relative 
amplitudes of  the branches or their stability prop- 
erties. One such term does, however, enter in the 
singularity theory analysis of  the problem (see 
section 4). In the diagrams the number of  positive 
and negative eigenvalues is indicated on each 
branch. Note that the fifth order term c determines 
the sign of the eigenvalue associated with the phase 

of the hexagons and regular triangles, since 
= - ca#in • cos • (cf. eq. (3.3)), as well as their 

relative amplitudes. 
For a < - 1 and 13(0)> 0, the rolls are super- 

critical and stable, as illustrated in fig. 6; note that 
R - R c  is proportional to - 4 .  For ordinary 
Rayleigh-B6nard convection in a Boussinesq fluid 
with free-free or rigid-rigid perfectly conducting 
boundaries, Schlfiter, Lortz and Busse [3] have 
shown that a < - 1 for all Prandtl numbers. In 

Table IV 
Normalized bifurcation data 

Solution branch Eigenvalue (to lowest nontrivial order) 

L (0) z = 0 

II. (R))l.  = (a + 1)0.1 + . . .  

III. (H) 2=(a+~)0",+... 

IV. (PQ) 2 = (a + ~)0., + . . .  

V. (RT) g =(a +~)¢r, + . . .  

- 2(6 times) 

- ~1(4 times), 2(a + 1)a l 

2at(twice), ~3a + 1)a,, -~ca~ 

l 1 (2a + 1)e l 0"1' - -  2 a l '  - -  20.D 

~t ( twice ) ,  ~ 3 a  + 1)o" 1, ~c0.2 2, 
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a 

0" 1 <x Nusselt No. - 1 

. ~o:-+IR-R¢] 

R i5-) b R is-> C 
PQ (1+3-) ~ PQ (1+3-) ~ 

R T i ~  i6-) H i i ~  (6-) 

a < - I  a < - I  

PQ R PQ R 

-1  < a < - l / 2  -1  <a<-1/2 
H H 

RT PQ PQ 

-1/2 <a<-l/3 -112 <8<-1/3 
RT (4+7 H (4+7 

/ H i3+1-) i2+2-) / RT(3+I-) 

~ p o  P~ (2+2-) 

~ / ~ ~ R  (1+4-) ~ / j / / J ~ R  (1+4-) 

(6+) ~ (6-) (6+7 .~-----t~ (6-) 
-1/3< a -1/3< 8 

Fig. 6. The bifurcation diagrams in figs. 6--11 show the variation of the convective heat transport (0"1) with the Rayleigh number (+ ~.), 
(fig. 6a). The bifurcation diagrams for the problem with midplane reflection symmetry as computed from eq. (3.10) arc drawn for 
c = 1 (fig. 6b), and c = - 1 (fig. 60. The number of positive and negative dgvnvalues is indicated, with zero ¢igcnvalues omitted. 
Eigcnvalues not shown arc obtained from continuity. As the parameter a is incrcased, a single dgvnvalue changes sign when a 
subcritical branch becomes supercritical. The ¢igenvalues of rolls (R) and the patchwork quilt (PQ) arc the same for c = + 1. Possible 
stable solutions are indicated by heavy lines. Either positive or negative ¢igenvalues can be considered stable, depending on the 
direction of time. 

these cases rolls occur near the onset of  instability. 
For  a > - ~ and/3(0) > 0, the hexagons are stable 
if ms(0)< ~) and the regular triangles are stable if 
ms(0) > 0. This possibility is of  considerable inter- 
est, and we shall return to it in section 5. From a 
physical point of  view the two diagrams in the 
r e#on  - 1 < a < - ~ are incomplete, since there is 
no stable solution near the origin. Of  course, we 
expect some branch to turn over and become stable 
at large amplitude via a saddle-node bifurcation. 

This, however, is not accessible to  a small ampli- 
tude theory unless one studies a more degenerate 
bifurcation with, say, a = - 1. The universal un- 

folding of  such a degenerate bifurcation captures 
the secondary bifurcations. Such studies, however, 
require the full machinery o f  singularity theory, 
and we do not pursue them here. Note finally that 
if a stable solution exists, it is the one with the 
maximum heat transport. 

This is often, but not always, the case (cf. fig. 9). 
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4. Comparison with the non-symmetric problem 

The bifurcations off the conductive solution in 
the convection problem without midplane 
reflectional symmetry are described in detail by 
Buzano and Golubitsky (1). These results are quite 
different from those obtained in section 3 for the 
case with the reflectional symmetry. In this section 
we describe Buzano and Golubitsky's results and 
provide a connection with the results of section 3. 
It is important to establish such a connection in 
order to understand how the bifurcation diagrams 
presented in section 3 deform into those of Buzano 
and Golubitsky when the midplane reflectional 
symmetry is broken. The symmetry can be broken 
by making the linearized problem nonselfadjoint, 
or it can be broken at higher order in a problem 
that remains selfadjoint. We shall show that for 
those symmetric problems in which hexagons or 
regular triangles are stable, there are observable 
differences between the two possibilities. 

The results of Buzano and Golubitsky are ob- 
tained by the.methods of singularity theory. The 
methods of the present paper cannot provide an 
acceptable description of the bifurcation behavior 
in the non-symmetric problem because none of the 
bifurcation branches is stable at small amplitude. 
In order to capture aspects of large amplitude, it 
is necessary to consider a degenerate bifurcation 
for which the coefficient of the quadratic term in 
eq. (2.6) vanishes. By examining the bifurcation 
diagrams for small values of this coefficient, sec- 
ondary bifurcations that enable some of the bifur- 
cating solution branches to gain stability are 
brought to small amplitudes and appear in the 
local bifurcation diagrams. The analysis of degen- 
erate bifurcations (i.e., bifurcations in which some 
of the nondegeneracy conditions are violated) re- 
quires the more sophisticated methods of singu- 
larity theory. In order to relate the results of the 
problem with the midplane reflection symmetry to 
those without, we must first restate our results in 
the context of singularity theory. 

4.1. Singularity theory and normal forms 

Both methods start with the amplitude equa- 
tions (2.6) or (2.7). In the present paper, we were 
able to show that if certain nondegeneracy condi- 
tions hold then the bifurcation behavior near the 
origin (z, 2 ) =  0 is described completely by the 
leading terms in the Taylor expansion of the 
invariant functions li, mi in the amplitude equations 
(2.7). In a sense to be explained the addition of the 
higher order terms to (3.10) does not effect the 
nature of the steady state solutions: the bifurcation 
diagrams are structurally stable. 

Singularity theory studies solutions of the steady 
state equations 

g(x, 2) = 0, g: R" x R ~ R " ,  (4.1) 

in the neighborhood of a singularity defined by 

g (0, 0) = dx g (0, 0) = 0. (4.2) 

These conditions define a bifurcation problem. 
Singularity theory seeks to simplify the form of g 
near the singularity (0, 0), while preserving its zero 
set and symmetry properties, by means of indepen- 
dent coordinate changes in the range and domain: 

h(x, 2) = S(x, 2)g(X(x, 2), A(2)), (4.3a) 

where 

A(0)=0 ,  A ' (0)=cl ,  X(0 ,0 )=0 ,  

dxX(0, 0) = c2/, S(0, 0) = c3I, 

C 1 ¢ 0  , C 2 ~ 0  , C 3 ~ 0  , (4.3b) 

and X and S commute with all elements ? of the 
symmetry group F of g. We shall call h and g 
related by (4.3) F-equivalent, and write g ~ h. The 
freedom in the transformation (4.3) enables one to 
transform away most of the terms in the Taylor 
expansion of g(x, 2) about the singularity (0, 0), 
but at the price of not automatically preserving the 
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stability properties of the zeros o fg  (i.e., the steady 
state solutions) even when c~, c2, c3 are all chosen 
to be positive. All the terms that can be trans- 
formed away will be called removable terms; those 
remaining constitute the normal form n(x, 2) of 
g(x, 2) near the singularity (0,0). Thus, the normal 
form n satisfies 

g(x, 2) ~ n(x, 2) ,~ n(x, 2) +p(x,  2),  (4.4) 
F 

where p(x, 2) is any removable tenn. In addition, 
one can find a universal unfolding of this singu- 
larity, n(x, 2, ~), where ~ e R  k are unfolding pa- 
rameters, such that 

n(x, 2, O) = n(x, 2),  

and 

n(x, 2) + q(x, 2) ,~ n(x, 2, ~), (4.5) 
F 

where q(x, 2) is any F-symmetric perturbation. 
Physically, this states that perturbations of a sys- 
tem that respects the symmetry group F are sub- 
sumed in the normal form by the addition of extra 
terms whose coefficients (the unfolding parame- 
ters) vanish in the unperturbed system. The theory 
described above is discussed in detail by Golu- 
bitsky and Schaeffer [11]. 

For the problem with the midplane reflection 
symmetry Swift [12] finds that, after an appropriate 
rescaling, 

nl(z, 2) = z l ( -  2 +atr  I + ul + da 2) +_ qz2~?3, (4.6) 

provided 

a + l # 0 ,  2 a + l # 0 ,  3 a + l # 0 .  (4.7) 

It is also assumed that the coefficients of 2z~, u~zx 
and q3fi3 do not vanish. The signs of the first two 
can be fixed by an appropriate choice of c~ and Ca 
in the transformation (4.3). Observe that the nor- 

mal form (4.6) is the right side of (3.10) with one 
extra term, and that the nondegeneracy conditions 
are those listed in theorem 1. The universal un- 
folding of this form is 

r~l(z, 2) = z l ( -  2 + tial -I- ul + ~trl 2) __- qz2z3, (4.8) 

where ti, a ~ are close to a, d. The coefficients a, d are 
called modal parameters. Although the bifurcation 
diagrams obtained from (4.8) are Fs-inequivalent 
for different choices of (a, d), they are topologically 
equivalent within a range of parameter values (of. 
section 3). The stability assignments for the four 
bifurcating branches can be shown to be invariants 
of Fs-equivalence, and are described in section 3. In 
this case therefore, both methods provide identical 
and complete descriptions of the bifurcation prob- 
lem. 

The normal form the problem without the mid- 
plane reflection symmetry is quite different. If we 
write 

gl(z, 2) = zl(hl.~(0)2 + hl.,,(0)al + ha(0)ul + . . .  ) 
+ p2(0):72~3 + . . .  (4.9) 

In eq. (2.6), then the scaled normal form becomes 

n~(z, ,~ ) = z ~ ( -  ,~ + uO + e2e3, (4.10) 

with the nondegeneracy conditions 

h,,,~(0) -T(: 0, hl,,y,(0)--I-h3(0):fi0 , P 2 ( 0 ) ¢ 0 .  (4.11) 

Note that in contrast to (4.6) all the signs can be 
fixed by choosing cl, c2, c3 in eq. (4.3). However, 
changing the sign of c2 changes H ÷ to H - .  This 
result may be obtained by the methods of section 
3 (together with a near identity coordinate change 
in the amplitude equation (2.6)) or by singularity 
theory methods. The only solutions near the origin 
(z = 0, 2 = 0) are rolls and hexagons. This follows 
from the fact that the only two maximal isotropy 
subgroups of Fn are those corresponding to rolls 
and hexagons (fig. 3), and the fact that the dimen- 
sion of the fixed point set Fz for these solutions is 
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one (see section 2). This guarantees the existence of  
two branches, one of  rolls and the other of  hexa- 
gons, bifurcating off the trivial solution at 2 - 0. 
Moreover, it is easy to show that there are no other 
solutions near the origin. The normal form (4.10) 
admits the two solutions 

Rolls: 2 = a ~ ,  
Hexagons: 2 = x + x 2 , 

where we have parametrized the hexagons by 

x = xl = x2 = x3 ~ 0, with x > 0 for H + and x < 0 
for H - .  Since al = 3x 2 along hexagons, 

space at which the bifurcation is degenerate 
(P2(0) = 0, in the present example) with the prop- 
erty that the universal unfolding of  the normal form 
for this degenerate bifurcation captures "all"  the 
steady state bifurcation behavior of  the problem. 

In the present case, the quadratic term vanishes 
whenever the linear stability problem is selfadjoint. 
The normal form for this degenerate bifurcation is 

n] = zz(-- 2 + act I + ul + da~) 

+ ~2~3(bo, + U I "Jff cq),  (4.13) 

2 = + ~ v / ~ + a , / 3 ,  for H ± . (4.12) 

The appropriate bifurcation diagrams and stability 
assignments are shown in fig. 7 (cf. [1]). 

Note that in this case there are no stable non- 
trivial solutions near the onset of  convection. This 
unsatisfactory feature of  the normal form (4.10) 
can be removed by choosing parameters that make 
the quadratic term in the normal form small. In 
this case, the bifurcation analysis will be able to 
capture the turning over of  the unstable branch of  
the H + hexagons. At the turninhg point, stable 
solutions appear via a saddle-node bifurcation. In 
the language of  singularity theory we seek an 
organizing center. This is a point in parameter 

a b 
R (3+2-) _ ~ R + H  

H-~3+1-) / H +~1+3-> 

H 
o- 1 

,)t I ,h 

Fig. 7. Bifurcation diagrams for the nondegenerate problem 
without the midplane reflection symmetry computed from eq. 
(4.12) in (a) the ol-2 plane, and Co) in the x-2  plane. There are 
no stable solutions. 

R <5-) RA (1+3-) \ 

H(2+2- 

(6+) ~ (6-) 
a<- I  

RA R <1~4-) 

-1<a<-1/2 
H- RA (2+2-) 

- 1 /3<  a < -  1 /3  

H+(4+) 
H -(3+1-) 

/ /RA(2+2-) 
(6+) ~ ~ ~ < 6  ~ (1+4-) 

- - 1/3< a 

Fig. 8. Bifurcation diagrams for the degenerate problem (~ = 0) 
without the midplane reflection symmetry computed from eq. 
(4.13) for 3b+  1 <0.  The sign of (3b % 1) determines one 
eigenvalue of the hexagon solutions and their relative ampli: 
tudes. For 3b + 1 > 0 the labels "H +" and " H - "  are inter- 
changed. 
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provided that the coefficients of 2zi, zlu~ and 3fi3u~ 
do not vanish, and 

nl  = g l ( - -  2 + riO" l + U I + ~0 r2) 

+ Z2Z3( - -  E --[-~'O' 1 .J I- U l "31- c a )  , (4.15) 

a + l ~ 0 ,  2 a + l ~ 0 ,  3 a + l ~ 0 ,  c ~ 0 ,  
3b + 1 :~0. (4.14) 

Observe that (4.13) differs from the normal form 
(3.10) for the symmetric bifurcation in having 
nonzero quartic terms. The appropriate universal 
unfolding (i.e., the normal form for a vector field 
that is close to the above) is found to be 

where the unfolding parameter E is small, and ~, G, 
E, a v are close to the values a, b, c, d computed at 
the degenerate bifurcation (E = 0). As long as the 
nondegeneracy conditions (4.14) are met then the 
slight perturbation of a to 8, etc., does not result 
in topologically different bifurcation diagrams. 

The bifurcation diagrams for E = 0 are shown in 
fig. 8. The diagrams are drawn accurately for the 

R 

+3-) 

(2+2-) ~ 
H+ / (4-) 

a < - I  

RA 

H- 1+3-) / 
• / ( 1 + 4 - )  

~6÷) ~ / j <6-> 

- l<a<-S/8 

H- RA 

- % < a < - %  

H- I ~  

-2/3< a <-1/= 

+ (2 RA 

H (3+1-)\ /2+2-) 

(6+) ~ (6-) 

- 1/2< a < -1 /3  

H + 

H- RA 

(.2+2-) 

( 3 + 1 - ) /  (2÷2-) 

(1+3-) ~ .(1+4-) R 

- 1 / 3  < a 

Fig. 9. Unfolding of  the degenerate bifurcation diagrams of  fig. 8 obtained by adding a small quadratic term (~ # 0) to eq. (4.13). 
The diagrams are drawn for E > 0, 3b + l < 0 and d = 0. See fig. l0  for other  cases. The signs of  the eigenvalues are shown for each 
arc of  the solution branch between secondary bifurcations, indicated by dots. Additional crossings of  the solutions branches are 
artifacts of the projection of  the three complex amplitudes onto  the ¢:axis .  The ordering in ). of  the secondary bifurcations for 
- l < a < - ½ can differ as illustrated, but  the eigenvalues are unchanged. 
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case  d = 0 ;  the  effect  o f  d # 0  b e c o m e s  

ins ign i f ican t ,  a n d  the  s e p a r a t i o n  b e t w e e n  the  t w o  

h e x a g o n  b r a n c h e s  v a n i s h e s  as  one  l o o k s  c lose r  a n d  

c lose r  to  the  o r ig in .  

W h e n  E is s m a l l  b u t  n o n z e r o  the re  a re  m a n y  

m o r e  cases  to  cons ide r .  T h e  p o s s i b l e  b i f u r c a t i o n  

d i a g r a m s  a re  s h o w n  in figs. 9 a n d  10. F ig .  9 s h o w s  

the  s e c o n d a r y  b i f u r c a t i o n s  i n v o l v i n g  the  r ec t ang l e  

so lu t ions ,  w h i c h  o c c u r  a t  2, o' 1 = ~)(E2). Fig .  10 

s h o w s  t h a t  the  t w o  h e x a g o n  b r a n c h e s  m a y  u n d e r g o  

s e c o n d a r y  b i f u r c a t i o n s  a t  l a rge r  a m p l i t u d e s ,  i.e., 

2 = d?(e). T h e  f igure  s h o w s  o n l y  the  e q u a l  a m p l i -  

t ude  b r a n c h e s ,  h e x a g o n s  a n d  t r i ang les ;  ro l l s  a n d  

r ec t ang le s  need  n o t  be  i n c l u d e d  s ince  fo r  these  

a b 

c.(-3b+1) < 0 eq3b+l)< 0 

H-c 

¢'(3b+1)> 0 c < o  g.(3b+l)> 0 c > o  

H-C 

c.(3b~1)> 0 c > o  c.(3b+1)> 0 c < o  

Fig. 10. Bifurcation diagrams for the unfolded degenerate D3 
normal form (4.16), with a > - ~ (fig. 10a) and a < - ~ (fig. 
10b). The notation H' indicates H + or H -  depending on sgn(Q. 
Heavy lines indicate possible stable solutions, with eigenvalues 
(2 + ) in fig. a and (2 - ) in fig. b. Light lines indicate (1 + ! - ) 
for H ± and T, and (2 - ) or (2 + )) for the trivial solutions in 
fig. a, b, respectively. These diagrams complete fig. 9, showing 
the large amplitude (2 = ~V(E)) behavior of the hexagon and 
triangle solutions. In this context two positive eigenvalues are 
added. 

so lu t i ons  fig. 9 r e m a i n s  q u a l i t a t i v e l y  c o r r e c t  even  a t  

these  l a rge r  a m p l i t u d e s .  

T a b l e s  V a n d  VI  give the  d a t a  n e e d e d  to  d r a w  

the b i f u r c a t i o n  d i a g r a m s .  T h e  r ec t ang l e  b r a n c h  is 

n e a r l y  l i nea r  in the  2al  p lane ;  the  m a i n  effect  o f  

a d d i n g  the  q u a d r a t i c  t e rm  (i.e.,  E # 0), is to  c h a n g e  

the p o i n t  ( t r* , ) .* )  w h e r e  the  b r a n c h  b i fu r ca t e s  o f f  

the  b r a n c h  o f  rol ls ,  b u t  n o t  i ts  s lope.  

T h e  s e c o n d a r y  b i f u r c a t i o n  a t  ( a * ,  2 " )  is a p i t ch -  

fo rk  o f  r e v o l u t i o n ,  i.e., a n o n d e g e n e r a t e  b i fu r -  

Table V 
Data for solution branches 

II. (R) 2 = (a  + 1)tr I + d o  2 

III. (H) 2 = - cx + (3a + 1)x 2 + (3b + 1)x 3 + (9d + 2c)x 4 

where a t =3x2, x > 0  for H +, x < 0  for H - .  

IV. (RA) 2 - - 2 " = ( a + ½ ) ( o l - o ? ) +  . . . .  
where tr* = d + O(E3), 2" = (a + l )d  + tP(E 3). 

=2bx2 + 2cx 3, a t = ( l + A 2 ) x  2, 

where x~ - x = Ax 2 = Ax  3. 

V. (T) ). = (a + ~)~rl + da ~ 

cos • = ~ (3E - (3b + l)ai)a 1-3/2. 
z c  

Table VI 
Summary of secondary bifurcation data 

R/RA 

H/RA 

H 

H+-fr 

bifurcation (pitchfork of revolution) 
ffl = E2 "~- ~)(/~ 3) 
2 = ( a  + I)E2 "+" d)(e 3) 

bifurcation (Transcritical, D 3 symmetry) 
X = --E-Fd)(E2), O" I = 3 X  2 
2 = (3a + 2)E 2 + d~(~ 3) 

bifurcation (saddle-node) 
E 

x - -  + ~(d)  
2(3a + 1 

2 - -  + ~(e3) 
4 (3a + 1) 

bifurcation (Pitchfork) 
(occurs only if E(3b + 1) > 0) 

3 / E \3/2-1 

3 a + l F  [ • \3/21 
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cation with d~(2) symmetry. To understand this, 
note that the rectangle solutions near the bifur- 
cation are of the form z =(a, be-it, beit), where 
I b/al = 1 A -'1 ~ 1. The  parameter t is the "angle" of 
the 0(2) rotation/reflection symmetry, and corre- 
sponds to a translation of the rectangle along the 
roll axis. At the bifurcation two eigenvalues of the 
rolls change sign. 

The secondary bifurcation involving the hexa- 
gons and rectangles is more subtle. Three rectan- 
gles with A ,~ 1 (or A ~ -  1) collide with the 
hexagon branch in a bifurcation with D3 sym- 
metry. Two eigenvalues of the hexagons change 
sign at the bifurcation, while the rectangles have no 
net change in the number of positive and negative 
eigenvalues. An example of transcritical bifur- 
cation with D3 symmetry is given by the flow 
diagram for the triangles near • = n/2 (of. fig. 5), 
where four stagnation points of the flows coalesce 
at • = rr/2. 

The secondary bifurcations involving hexagons 
and triangles (fig. 10) can be studied by restricting 
g to the 2-dimensional fixed point set of the 
triangles, z(1, 1, 1), with z~C.  The normal form 
(4.15) restricted to the equal amplitude solutions is 

nlro3 = z ( -  2 +(3a  + 1)u + 9du 2) 
+ :~2(_ E + (3b + l)u + cq), (4.16) 

where u = u~, z = z~ (~ = I, 2, 3), and q = z 3 + ;/3. 
This equation has the symmetries z~--~:~ and 
z~-*exp(2ni/3)z. These are the symmetries of a 
triangle in the complex plane. In fact, it can be 
shown, though we shall not do so here, that any g 
with the F, symmetry (cf. eq. (2.6)), restricted to 
the equal amplitude solution has D 3 symmetry, i.e., 
h = glFD3 commutes with D3. When E = 0, eq. (4.16) 
is D3-equivalent to the degenerate normal form 
with D3 symmetry computed by Golubitsky and 
Schaeffer [13]. The universal unfolding is given by 
letting E ~ 0. 

If E(3b + 1) < 0, there are no triangle solutions 
at small amplitudes and fig. 9 is complete. If 
E(3b + 1)> 0 there is a branch of triangles con- 
necting the two hexagon branches at 2 = ¢(E), as 

shown in fig. 10. The transition between the two 
hexagon branches can be either gradual or hyster- 
etic depending on the stability of the triangle 
branch. The triangles are created and destroyed via 
pitchfork bifurcations in the ~-direction. 

We are now in a position to describe the relation 
between the results of the calculations with and 
without the midplane reflection symmetry. The 
midplane reflection symmetry is never exactly 
satisfied in convection since the Boussinesq ap- 
proximation is not exact. It is important therefore 
to consider the effect of adding small symmetry 
breaking terms to the Fs amplitude equations. In 
general, we expect all even order terms to appear 
when the symmetry is broken, although typically 
the quadratic term is the most important. The 
bifurcation diagrams that one obtains depend in an 
essential way on the relative magnitude of the 
quadratic and quartic terms. In the remainder of 
this section we describe what happens when the 
coefficients of both terms are small (i.e. perturbed 
away from zero). This situation is expected to 
occur when the symmetry is broken only slightly, 
for example, because of slight differences in the 
thermal conductivity of the top and bottom 
boundaries. In this case certain secondary bifur- 
cations involving hexagons and triangles can occur 
near the origin that are not persent in the analysis 
of Buzano and Golubitsky. This is because Buzano 
and Golubitsky consider, in consequence of their 
nondegeneracy conditions, the case where the 
coefficients of the quartic terms are not small. Then 
the degenerate bifurcation with no quadratic term 
is described by the normal form (4.13) with the 
corresponding bifurcation diagrams in fig. 8, and 
the unfolded bifurcation (with a small quadratic 
term) is described by (4.15) and fig. 9. If we 
compare the results in fig. 8 with those for the 
symmetric case (fig. 6) we see that the addition of 
the quartic terms leaves the rolls virtually un- 
changed, while changing the patchwork quilt to a 
general rectangle (with IA]  1). By contrast, the 
regular triangles present in the Fs problem (fig. 6) 
are eliminated when the fourth order terms are 
added: there are no triangles at all in fig. 8, only 
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hexagons. In order to understand what happens to 
the triangle branch it is necessary to consider the 
case in which the coefficients of the quartic terms 
are also small. This is done below for the equal 
amplitude solutions (H ±, T) for which the effects 
of symmetry breaking are most pronounced. 

For the equal amplitude solutions it is possible 
to give a complete analysis of symmetry breaking 
using the methods of singularity theory. We have 
computed the normal form with the D3 symmetry 
under the assumption that the even order terms are 
zero. The result is 

n = z ( -  2 + (3a + 1)u) + c~2q, (4.17) 

where c = +__ 1 and 3a + 1 can be scaled to be + 1. 
Eq. (4.17) is also the least degenerate normal form 
for the D3 problem with an extra z ~ - z  sym- 
metry, i.e., for D3 + Z2 = Dr. The universal un- 
folding of (4.17) is 

ti = z ( -  2 + (3a + 1)u + Aq) 
+ :72(_ E + 3Bu + cq), (4.18) 

where E, A and B are the unfolding parameters. We 
have thus embedded the symmetric normal form 
(4.17) in a structurally stable family of normal 
forms (4.18) without the symmetry. It is in this 
sense that our description of symmetry breaking 
for the problem with D3 + Z2 symmetry is com- 
plete. The parameter B replaces b + ] in eq. (4.16). 
The term Azq does not appear in (4.16); a non- 
degeneracy condition in the quartic terms enables 
one to transform it away by a F~-equivalence (cf. 
[1]). In the present case we are perturbing a D3 + Z2 
symmetric problem, containing no even terms 
rather than a degenerate (E = 0) nonsymmetric 
problem. The nondegeneracy condition therefore 
fails. 

The bifurcation diagrams for (4.18) can be com- 
puted with the unfolding parameter A set equal to 
zero: A is a topologically trivial parameter. The 
results are shown in fig. 11 as a function of the 
remaining parameters E and B. These diagrams 
replace fig. 10 when the midplane reflection sym- 

metry is slightly broken. In contrast, fig. 9 remains 
virtually unchanged. Fig. 11 shows the various 
possible transitions, as 2 is increased, involving the 
hexagons and triangles for the specific choices 
a > - ~ and C = + 1. All of the secondary bifur- 
cations involving the triangles are pitchforks in the 
phase variable #. The other cases (a < - 1/3) are 
similar. Note that for larger amplitudes the broken 
symmetry diagrams in figs. 9 and 11 have a branch 
of rolls, a branch of rectangles, and two of hexa- 
gons. These, and their stability assignments, are in 
direct correspondence with the solutions of the Fs 
bifurcation diagram (fig. 6). Therefore, if the sym- 
metry breaking is small, and we do not look too 
close to the origin, then the Fs results are a valid 
approximation. We see, as expected, that the qua- 
dratic term usually dominates the symmetry break- 
ing effects as in regions 1 and 3 of fig. 11. However, 
if the fourth order perturbation is much larger than 
the quadratic term, then a different bifurcation 
diagram is appropriate, as in regions 2 anc~ 4 of fig. 
11. This happens when the symmetry breaking 
mechanism almost preserves the self-adjointness of 
the linear problem. On the other hand, self-adjoint 
problems with a large asymmetry in the boundary 
conditions are described by the bifurcation dia- 
grams shown in fig. 8. 

From a technical point of view, the situation 
involving the rectangles is rather more involved. 
This is because we do not get a complete descrip- 
tion of symmetry breaking by restricting the ampli- 
tude equations for the symmetric case to the 
rectangle solutions, and unfolding the resulting 
degenerate normal form as we did above for the 
triangles. We are prevented from this by the pres- 
ence of hidden symmetries (of. [14]). If however, we 
consider the difference between the patchwork 
quilt and general rectangles as insignificant, then 
only the quadratic term is important for symmetry 
breaking. It is this term alone that pulls the 
rectangle branch way from the origin in fig. 9. 

In order to have a rigorous theory of symmetry 
breaking from Fs to Fn, we would have to show 
that the normal form (4.6) found by Swift [12] for 
Fs-symmetric problem has a Fn-universal un- 
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-B~-- b+l/3 

0 H + 

E =  = ± 

b 

T S 

_ 

H H* 

C 

c=B=O H + ~ / '  / - + 

H + H H + H 

Fig. I 1. Symmetry breaking of  the equal amplitude solutions H ±, T as de~:Tibed by normal form (4.18) for a > - ~ and A -- 0, with 
c = 1 (fig. l lb) and c = - 1 (fig. 1 lc). The E-B plane (fig. 1 la) divides into four regions; the bifurcation diagrams are drawn for each 
region and the boundaries. The other two cases (a < - ~) are similar. Heavy lines indicate branches with two positive eigenvalues; 
light lines indicate (1 + 1 - ) for H ± or T and (2 - ) for the trivial solutions. The diagrams provide a complete description of  symmetry 
breaking from the group D3 + Z2 to the group D 3. Note  that the large amplitude behavior is consistent with fig. 6, while the small 
amplitude behavior is consistent with fig. 10. 
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folding. Such a computation is theoretically possi- 
ble using the result of Buzano and Golubitsky [1]. 
However, the calculations involved would be 
difficult and we have not attempted them. Our 
computation of the normal form with D3 + Z2 
symmetry (4.17) and its universal unfolding in the 
D 3 symmetry (4.18) does give a lower bound on the 
complexity involved in breaking symmetry from Fs 
to Fn. 

Our results show that the simplest possible way 
to break the symmetry of the normal form (4.8) is 
to use the unfolding 

nl = z l ( -  2 +atr  I + Ul + da 2 + ~q) 

+ z2~73(- E + fltrl + ~ul + cq) ,  (4.19) 

where ~, fl, 7 and E are unfolding parameters. We 
have argued that only E and B = fl + ~/3 (cf. figs. 
9 and 11) are important as far as the bifurcation 
diagrams are concerned. 

5. Discussion 

In this section we discuss our results in a broader 
context and relate them to experimental obser- 
vations. The motivation for the present study was 
provided by our desire to understand clearly under 
what conditions hexagons or rolls should be ex- 
pected near the onset of convection. This problem 
becomes tractable if the fluid layer is assumed to 
be infinite in both horizontal directions and the 
pattern assumed to be equivariant with respect to 
the group that preserves the hexagonal lattice. 
Both rolls and hexagons, as well as other solutions, 
fit on this lattice. We distinguished between two 
cases: the symmetric in which in addition the layer 
possesses a reflectional symmetry about the hori- 
zontal midplane and the nonsymmetric. In con- 
junction with the work of Buzano and Golubitsky, 
we have obtained a complete classification of the 
possible nondegenerate bifurcations of steady state 
solutions off the trivial state z = 0 in both cases. 
Our analysis highlights the extent t o  which the 
symmetry determines the possible bifurcation dia- 

grams. The solutions that occur nearest the trivial 
state are those with maximal isotropy subgroups 
(i.e., the most symmetric nontrivial solutions), 
lending support to the conjecture [10] that this is 
a general result. We have not, however, addressed 
the question of which of  the possible bifurcation 
diagrams applies to a given situation. This depends 
on the signs of certains terms and the values of a 
small number of modal parameters that enter in 
the normal form and that have to be computed for 
each specific problem. In this section we describe 
how symmetry can be used to learn a great deal 
about a physical system. 

In convection problems with the extra 
reflectional symmetry, we have found that either 
rolls, regular triangles or hexagons could be stable 
near the bifurcation. The symmetry applies in 
systems with identical boundary conditions at the 
top and bottom, and constant fluid properties. 
Schliiter, Lortz and Busse [3] show that the modal 
parameter a < - 1 for both free-free and 
rigid-rigid boundaries, and for all values of the 
Prandtl number, and conclude that rolls are the 
stable convection pattern near threshold. This has 
also been shown in a certain limiting case to be true 
for convection in a uniform vertical magnetic field 
with rigid-rigid boundaries [15]. Our analysis 
shows that in other circumstances (e.g. a different 
regime of magnetoconvection or doubly-diffusive 
convection) hexagons or regular triangles rather 
than rolls could be the stable convection pattern 
near threshold, even in the symmetric case. In this 
case, however, there would be no difference be- 
tween H ÷ and H - ;  the realized pattern would 
depend on initial conditions. 

For problems that lack the reflectional sym- 
metry we must distinguish between selfadjoint and 
non-selfadjoint problems. For example, convection 
between one rigid and one free (but undeformable) 
boundary with constant fluid properties [3] or 
convection between undeformable free-free or 
rigid-rigid boundaries with a y-dependent (but not 
temperature-dependent) viscosity [16] both lead to 
self-adjoint problems. It can be shown [3] that for 
such problems the quadratic term in the liormal 
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form vanishes, and the preferred solution is then 
determined by the cubic terms. These self-adjoint 
but non-symmetric cases correspond to the degen- 
erate normal form of Buzano and Golubitsky (eq. 
(4.13) and fig. 8). Small non-selfadjoint per- 
turbations are described by the unfolded normal 
from (eq. (4.15) and figs. 9 and 10). 

Non-selfadjoint problems arise naturally in a 
wide range of circumstances. This is because they 
are the least "special". We list below a number of 
effects that have been discussed in the literature 
and that give rise to non-selfadjoint problems 
(E ~ 0): 

a) the upper surface of the fluid is free to be 
deformed by the convection flow (Davis and Segel 
[17]); 

b) temperature-dependent surface tension 
effects are present (Scanlon and Segel [18]); 

c) the viscosity is temperature-dependent (Palm 
[19]); 

d) the thermal diffusivity is y-dependent (Palm 
[16]); 

e) the isobaric thermal expansion coefficient and 
heat capacity are temperature-dependent (Busse 
[20]; 

f)  the heating is time-dependent (Krishnamurti 
[2], [21]); 

g) the density of the fluid depends quadratically 
on the temperature, as for example, in water near 
4°C. (Veronis [22], Dubois et al. [23]), or liquid 
helium I near 2.178 K (Walden and Ahlers [24]). 

If these non-selfadjoint effects are large, the 
results of eq. (4.10) and fig. 7 are appropriate, and 
the stable nontrivial solutions of the problem are 
inaccessible to perturbation theory. For small de- 
partures from self-adjointness there are two cases 
to consider, either the unperturbed problem is 
symmetric or it is not. For small departures from 
symmetry all of the even order terms are small, and 
figs. 9 and 11 are appropriate. Note that a sym- 
metric problem is always self-adjoint. When 
a > - ~ the observed behavior will typically be that 
located in regions 1 and 3 of figs. 11 a, b, i.e., the 
quadratic term dominates unless the perturbed 
problem remains close to being selfadjoint. In this 

case the problem can exhibit the exotic behavior 
located in the thin wedges 2, 4 in fig. 11. Observe 
that only when a > -  ] are there observable 
differences in the bifurcation diagrams (i.e., in the 
stable branches) between symmetry breaking while 
maintaining self-adjointness (E = 0), and more gen- 
eral symmetry breaking (e # 0). 

For Btnard convection with rigid boundaries, a 
ranges smoothly from - 1 . 0 9 . . .  for P--*0 to 
- 3 .40. . .  for P ~ ~3 [3], so the case a < - 1 is of 
particular interest. Fig. 9 shows subcritical in- 
stabilities to either H ÷ or H - ,  a region of hyster- 
esis where rolls and hexagons can both be stable, 
and a secondary bifurcation by which the hexagons 
lose stability to rolls as the Rayleigh number is 
increased. Note that this completes the picture 
computed by Busse [20]. To a certain extent a 
bifurcation diagram of this type has been verified 
experimentally. Hexagons have been observed near 
threshold in cases (b), (c) and (f) above. Indeed, it 
has long been recognized that the hexagons ob- 
served in Btnard's original experiment were the 
result of surface tension effects [25]. In the problem 
with a temperature-dependent viscosity v it has 
been shown ([19, 26, 27]) that if dv/dT < 0 as in 
liquids then H ÷ hexagons (i.e., /-hexagons) are 
preferred at onset, while if dv/dT > 0 as in gases 
then the H -  hexagons (i.e., g-hexagons) are pre- 
ferred. Thus, E is proportional to dv/dT. In the 
experiments of Hoard et al. [28] on a fluid with a 
highly temperature-dependent viscosity hexagons 
were found near threshold whenever the layer 
depth was sufficiently small, but the hexagons 
persisted until R = 3P~ where the experiment was 
terminated without finding the secondary transi- 
tion to rolls. The experiments of Silveston [29] on 
large aspect ratio convection in silicon oil, do, 
however, provide some visual evidence for such a 
transition (see also Somerscales and Dougherty 
[30]). More recently, much more sophisticated ex- 
periments have been carried out on convection in 
liquid helium. In these experiments the conditions 
of the experiment can be controlled to a much 
greater precision; their only disadvantage is that 
the flow pattern cannot be visualized, and con- 
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vective transitions can be detected only in so far as 
they affect a global quantity like the convective 
heat transport (the Nusselt number). The experi- 
ments of Walden and Ahlers [24] on large aspect 
ratio convection in liquid helium I near 2.178 K, 
the temperature at which the density is maximum 
(case (g) above), are the most complete. These 
experiments reveal a hysteretic transition very near 
the onset of convection which may be identified 
with the subcritical bifurcation to hexagons. A 
second hysteresis loop observed at values of R 
greater than R~ may be identified with the transi- 
tion from hexagons to rolls as R is increased. These 
observations are in qualitative agreement with the 
predictions by Busse [20]. 

We have seen in detail the role played by the 
symmetries of the problem in determining the 
variety of possible bifurcation diagrams. Thus, 
Busse's calculation can be seen from the broader 
perspection of bifurcations in the presence of a 
symmetry group. 

One disadvantage of our treatment is that sta- 
bility is computed only within the hexagonal lat- 
tice. A pattern which is predicted here to be stable 
may be unstable to squares. Indeed, squares are 
observed in the salt finger regime of doubly 
diffusive convection [31]. 

Finally, it should be borne in mind that experi- 
ments are always affected to some extent by the 
presence of sidewalls. This effect, including the role 
of symmetry breaking in the horizontal that can be 
caused by the sidewalls, is beyond the scope of the 
present work. 
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