
Recent advances in symmetric and network dynamics
Martin Golubitsky and Ian Stewart 
 
Citation: Chaos 25, 097612 (2015); doi: 10.1063/1.4918595 
View online: http://dx.doi.org/10.1063/1.4918595 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/25/9?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Nonlinear network dynamics under perturbations of the underlying graph 
Chaos 25, 013116 (2015); 10.1063/1.4906213 
 
The dynamics of network coupled phase oscillators: An ensemble approach 
Chaos 21, 025103 (2011); 10.1063/1.3596711 
 
Complex dynamics in simple Hopfield neural networks 
Chaos 16, 033114 (2006); 10.1063/1.2220476 
 
Itinerant memory dynamics and global bifurcations in chaotic neural networks 
Chaos 13, 1122 (2003); 10.1063/1.1601912 
 
Symbolic dynamics and computation in model gene networks 
Chaos 11, 160 (2001); 10.1063/1.1336498 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  140.254.87.149 On: Thu, 04 Aug

2016 22:51:03

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/35059443/x01/AIP-PT/Chaos_ArticleDL_2016/AIP-2740_Chaos_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Martin+Golubitsky&option1=author
http://scitation.aip.org/search?value1=Ian+Stewart&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4918595
http://scitation.aip.org/content/aip/journal/chaos/25/9?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/25/1/10.1063/1.4906213?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/2/10.1063/1.3596711?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/16/3/10.1063/1.2220476?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/13/3/10.1063/1.1601912?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/11/1/10.1063/1.1336498?ver=pdfcov


Recent advances in symmetric and network dynamics

Martin Golubitsky1 and Ian Stewart2
1Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio 43210, USA
2Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

(Received 18 December 2014; accepted 16 March 2015; published online 20 April 2015)

We summarize some of the main results discovered over the past three decades concerning

symmetric dynamical systems and networks of dynamical systems, with a focus on pattern

formation. In both of these contexts, extra constraints on the dynamical system are imposed, and

the generic phenomena can change. The main areas discussed are time-periodic states, mode inter-

actions, and non-compact symmetry groups such as the Euclidean group. We consider both dy-

namics and bifurcations. We summarize applications of these ideas to pattern formation in a

variety of physical and biological systems, and explain how the methods were motivated by trans-

ferring to new contexts Ren�e Thom’s general viewpoint, one version of which became known as

“catastrophe theory.” We emphasize the role of symmetry-breaking in the creation of patterns.

Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifur-

cate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise

symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which

organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact

symmetry groups, where new technical issues arise. We transfer many of the ideas to the context

of networks of coupled dynamical systems, and interpret synchrony and phase relations in network

dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time

remains continuous. We also describe a variety of applications including animal locomotion,

Couette–Taylor flow, flames, the Belousov–Zhabotinskii reaction, binocular rivalry, and a

nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a

feed-forward network. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918595]

Symmetry is a feature of many systems of interest in

applied science. Mathematically, a symmetry is a trans-

formation that preserves structure; for example, a square

looks unchanged if it is rotated through any multiple of a

right angle, or reflected in a diagonal or a line joining the

midpoints of oppose edges. These symmetries also appear

in mathematical models of real-world systems, and their

effect is often extensive. The last thirty to forty years has

seen considerable advances in the mathematical under-

standing of the effects of symmetry on dynamical sys-

tems—systems of ordinary differential equations. In

general, symmetry leads to pattern formation, via a

mechanism called symmetry-breaking. For example, if a

system with circular symmetry has a time-periodic state,

repeating the same behavior indefinitely, then typically

this state is either a standing wave or a rotating wave.

This observation applies to the movement of a flexible

hosepipe as water passes through it: in the standing

wave, the hosepipe moves to and fro like a pendulum; in

the rotating wave, it goes round and round with its end

describing a circle. This observation also applies to how

flame fronts move on a circular burner. We survey some

basic mathematical ideas that have been developed to an-

alyze effects of symmetry in dynamical systems, along

with an extension of these techniques to networks of

coupled dynamical systems. The underlying viewpoint

goes back to ideas of Ren�e Thom on catastrophe theory

which require models to be structurally stable; that is,

predictions should not change significantly if the model is

changed by a small amount, within an appropriate

context. Applications include the movements of animals,

such as the walk/trot/gallop of a horse; pattern formation

in fluid flow; the Belousov–Zhabotinskii chemical reac-

tion, in which expanding circular patterns or rotating spi-

ral patterns occur; and rivalry in human visual

perception, in which different images are shown to each

eye—and what is perceived may be neither of them.

I. INTRODUCTION

A well-explored theme in nonlinear dynamics, over the

past thirty years or so, has been symmetry. How does the

symmetry of a system of differential equations affect generic

dynamics and bifurcations? These questions have been stud-

ied for states ranging from equilibria to chaos.64,70,106 The

answers are central to questions about pattern formation,

which arises via the mechanism of symmetry-breaking.

Here, we focus on three main areas where significant pro-

gress has been made: time-periodic states, mode interactions,

and non-compact symmetry groups. We also include brief

discussions of equilibria when these illuminate more com-

plex dynamics.

Limitations of space preclude descriptions of many

other areas of symmetric dynamics where major advances

have been made: examples include heteroclinic cycles,

Hamiltonian systems, and time-reversal symmetries. We also

make no attempt to survey the wide range of applications;
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those discussed here are a representative sample, relevant to

the topics selected.

Time-periodic states are classified by their spatio-

temporal symmetries, which combine the symmetries of the

equations and phase shifts on periodic states.41,61,70,104

These symmetries provide some information about the pat-

terns formed by these states. More detail comes from the lin-

earized eigenfunctions.

Mode interactions occur in multiparameter bifurcations,

where adjustment of an auxiliary parameter causes two

generically distinct bifurcation points to coincide. Nonlinear

interactions between primary bifurcations can produce addi-

tional secondary states. The mode interaction acts as an

“organizing center,” which combines all of these states into

a single coherent picture.

Many of the techniques developed in recent decades are

based on group representation theory, and are often limited to

compact Lie groups of symmetries. However, applications of-

ten involve non-compact groups. For example, spirals and tar-

get patterns in the Belousov–Zhabotinsky chemical reaction

are typically modelled using a partial differential equation

(PDE) whose domain is the plane, and the symmetry group is

the Euclidean group Eð2Þ. Because this includes all transla-

tions, it is non-compact. Moreover, the relevant representa-

tions may be affine rather than linear. New techniques have

been introduced to understand bifurcations in this context.

Over the past decade, analogous issues to those arising

in the time-periodic case have also been investigated for net-

works of coupled dynamical systems.65,71,115 Here, there is

no assumption about the existence of a global group of sym-

metries. Instead, the network architecture (topology) plays a

role analogous to symmetry. Moreover, the notion of sym-

metry can be generalized: as well as global symmetries, net-

works can possess “partial” symmetries, defined on subsets

of nodes, in which different nodes have equivalent inputs.

We summarize some of the main ideas involved.

One common theme is to understand how the constraints

on the differential equation—symmetry or network architec-

ture—affect the possible periodic states and their behavior.

Another is the role that symmetry-breaking plays in pattern

formation. The results we describe can be broadly catego-

rized as classification, existence, and bifurcation of possible

dynamical states with implications for pattern formation.

The main contents of the paper are as follows. Section II

is a subjective survey of some key developments in nonlinear

dynamics from about 1960 onwards, to put the paper in con-

text. Section III introduces basic concepts of equivariant

dynamics and discusses symmetries in space and symmetry-

breaking. Section IV describes periodic solutions with spatio-

temporal symmetries in applications. The first part of this

section (Sec. IV A) discusses rotating and standing waves in

laminar flames on a circular burner, flow through a flexible

hosepipe, and Couette–Taylor flow. The second part of the

section (Sec. IV B) discusses an example of three coupled

FitzHugh–Nagumo systems, which motivates the phenom-

enon of a discrete rotating wave and exemplifies rigidity in

phase relations. The basic existence results for periodic solu-

tions with prescribed spatiotemporal symmetries (that is;

Hopf bifurcation and the H/K theorem) are described in

Sec. V. The H/K Theorem characterizes the possible spatio-

temporal symmetries of periodic states of an equivalent ODE,

whether produced by Hopf bifurcation or not. Applications to

animal locomotion are described in Sec. V B 1. Section VI is

about mode interactions, when two generically distinct bifur-

cations occur at the same parameter values, with an applica-

tion to Couette–Taylor flow. Section VII uses meandering of

the spiral tip in the Belousov–Zhabotinskii chemical reaction

to motivate the analysis of systems whose symmetry group is

not compact; in particular, the Euclidean group in the plane.

Section VIII transfers some of the general ideas of equivar-

iant dynamics and bifurcation theory to a different context:

coupled cell networks, which model coupled systems of ordi-

nary differential equations (ODEs). An application to binocu-

lar rivalry is described in Sec. VIII B 1 and an H/K Theorem

for rigid phase-shift synchrony in periodic solutions is given

in Sec. VIII C. Section IX discusses the remarkable phenom-

enon of anomalous growth rates for Hopf bifurcation on a

three-cell feed-forward network. The subjects of equivariant

dynamics, network dynamics, and their applications are rich

and extensive. It follows that any review must be limited, as

indeed this one is. The last section (Sec. X) mentions a few

areas that are not discussed in this review.

II. HISTORICAL CONTEXT

One theme of the special issue in which this paper

appears is the historical development of nonlinear dynamics

over the past few decades. The technical aspects of equivar-

iant dynamics, described below, tend to obscure the broader

historical development. The influences that motivated new

questions and guided their solutions emerged from the real-

ization, in the 1960s, that a systematic theory of nonlinear

dynamics might be feasible. The account that follows is nec-

essarily subjective, and references are mostly omitted to

keep the list within bounds.

A. Nonlinearity and topological dynamics

By the early 20th century linear differential equations

were relatively well understood. They had innumerable

applications, but they also had their Dark Side. Often the

application arose from a nonlinear model that was shoe-

horned into the linear framework by ad hoc methods.

Genuinely nonlinear equations were something of a mystery,

with some honorable exceptions, mainly in Hamiltonian dy-

namics. Their study consisted of numerous specialized tricks,

and the results did not reflect the true richness of the nonlin-

ear world.

Three main factors drew new attention to nonlinear sys-

tems: the increasing demands of applied science, in which

the limitations of linear models were becoming increasingly

apparent; the development of computers rapid enough to

integrate nonlinear equations numerically, making many

strange phenomena obvious; and the appearance of new

techniques, derived from areas of pure mathematics, that

helped to explain those phenomena.

Paramount among these new approaches was the intro-

duction of topological methods by Smale,111 Arnold,2 and

others. This viewpoint had been pioneered in the 1880s by
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Poincar�e with his “qualitative” theory of differential equa-

tions, culminating in his discovery around 1890 of chaotic

dynamics in the restricted three-body problem. Initially, this

approach was mainly limited to ODEs in the plane, but

Birkhoff began to understand how higher-dimensional topol-

ogy can illuminate three-body chaos. This led Smale to dis-

cover his famous “horseshoe.” The remarkable consequence

was that a key example of deterministic dynamics was rigor-

ously proved to be equivalent, in a technical sense, to a sto-
chastic system. This was strong evidence for what we now

call “chaos.”

Previous isolated results on irregular dynamic behav-

ior—such as the wartime work of Cartwright and Littlewood

on nonlinear oscillators, Sharkovskii’s theorem on periodic

points of maps, and numerical examples such as the Rikitake

dynamo and the Lorenz attractor—now took their place as

part of a bigger picture. The viewpoints introduced by Smale

and Arnold led to an ambitious program to classify generic

dynamics in any nonlinear system. Eventually, this objective

proved too ambitious, because these systems become very

complicated in higher dimensions, but it guided a long series

of deep insights into the nature of nonlinear dynamical sys-

tems and their bifurcations.

B. Catastrophe theory

A second major thread of nonlinear dynamics developed

from the ideas of Thom,120 which became known as

“catastrophe theory.” Thom’s writing was rather obscure,

but in one context, it motivated the seminal work of Mather

on singularities of smooth mappings. The best known exam-

ple is the classification of the “elementary catastrophes,” that

is, singularities of real-valued functions. The techniques in

this area, now known as “singularity theory,” were algebraic,

highly abstract, and technically deep. A key idea was to

reduce a singularity to a finite segment of its Taylor series by

a smooth coordinate change, leading rigorously to a polyno-

mial “normal form.”

Expositions of catastrophe theory aimed at a popular au-

dience emphasized the elementary catastrophes because

these were relatively accessible to non-specialists—much as

popular accounts of fractals emphasize similarity dimension

of self-similar fractals and avoid talking about Hausdorff-

Bescovitch dimension. However, this emphasis had the side-

effect of suggesting that Thom’s ideas were limited to the el-

ementary catastrophes. Scientists attempting to apply these

to their own research usually found that they were not appro-

priate, for reasons discussed below. In another direction,

many of the early applications of elementary catastrophe

theory surveyed in Zeeman128 were not so much applications

as hints at areas where elementary catastrophe theory might

be useful. Together, this led to a widespread belief that

“catastrophe theory” was a failure. This was never entirely

true, even for the elementary catastrophes, as the surveys by

Poston and Stewart101 and Golubitsky50 made clear at the

time. Moreover, it has taken some time for the value of some

of the less well-developed applications to be seen.

Here, we cite just one example. Cooke and Zeeman30

applied the cusp catastrophe to the early development of the

spinal column in an embryo—the formation of a series of

segments along its back, known as somites. They proposed

that somites arise through a wave of chemical changes, coor-

dinated by a molecular clock, calling this a “clock and wave-

front” model.

Until recently, biologists preferred a different approach to

the growth and form of the embryo: “positional information.”

Here, an animal’s body was thought of as a map, with its

DNA acting as an instruction book telling cells what to do at a

given place and time. Coordinates on the map were believed

to be supplied by chemical gradients. But in 2013, Lauschke

et al.88 used new molecular techniques to study the formation

of segments in the spinal region of a mouse. Their main result

was that the number and size of segments are controlled by a

clock-and-wavefront process of the type proposed by Cooke

and Zeeman.

In any case, the subtitle of Thom’s book made it clear

that he had something much broader in mind. It was (in

English translation) “an outline of a general theory of mod-

els.” He was not developing a theory: he was outlining a

meta-theory. His key principle was that a meaningful model

should remain valid if its equations are perturbed slightly, a

property close to the concept of structural stability introduced

by Andronov and Pontryagin in the 1930s and emphasised by

Smale in the 1960s. However, Thom realized that a structur-

ally unstable model can often be rendered structurally stable

by embedding it in a parametrized family. For singularities,

this family is the “universal unfolding.” It organizes the pos-

sible perturbations of a degenerate type of behavior by

“unfolding” the degeneracy. The degenerate model then acts

as an “organizing center” for the global structure of the

unfolding. The number of parameters required to render a

phenomenon generic is its “codimension.”

A simple example is Hopf bifurcation,78 in which a sta-

ble equilibrium loses stability and throws off a periodic

cycle. The dynamics at the Hopf bifurcation point is a degen-

erate equilibrium. Adding a single bifurcation parameter k
unfolds it into a 1-parameter family which (in the supercriti-

cal case) has a stable equilibrium for k< 0, a limit cycle and

an unstable equilibrium for k> 0, and the degenerate behav-

ior for k¼ 0. So, Hopf bifurcation is a codimension-1

phenomenon.

One problem with Thom’s principle, as stated, is that it

appears to imply that a Hamiltonian system is not an accept-

able model. Perturb by adding a small amount of friction,

and energy-conservation, not to mention the entire

Hamiltonian structure, is lost. However, Hamiltonian dy-

namics is a marvelous model in areas where friction is not

relevant, such as celestial mechanics. What was not clear at

the time, and emerged only after later work, is that such

examples do not destroy Thom’s approach. They merely

imply that it has to be used within an appropriate context.
The number of potential contexts is huge, and the formal

implications of the Thomist philosophy have to be under-

stood in whichever of these (if any) is relevant to a given

problem.

When Golubitsky and Schaeffer tried to apply catastro-

phe theory to physical examples, it rapidly became clear that

one such context is symmetry. Science is full of problems
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about rectangles, cylinders, cubes, and spheres—all of which

are symmetric. The elementary catastrophes do not take

account of symmetry, so they do not apply to these systems.

But, the sensible reaction is not to dismiss the Thomist

approach: it is to work out its implications in the symmetric

context. Another type of context also emerged from this

class of problems. Bifurcation theory is about changes in the

state of a system as a parameter is varied. An appropriate

context must recognize the distinguished role of this parame-

ter. The resulting theory61 follows Mather’s singularity-

theoretic ideas, and uses many of his methods, but the

detailed outcome is different. The same approach remains

effective when symmetries are taken into account.70 Indeed,

the theorems needed for unfoldings and normal forms of

most variants of singularity theory were proved in a general

theorem of Damon.32

C. Hopf bifurcation as an elementary catastrophe

In 1976, when reviewing Zeeman’s collected papers128

about catastrophe theory, Smale112 pointed out what seemed

to be a wide gulf between the behavior accessible using sin-

gularity theory, and more general (indeed, more dynamic)

dynamics:

Catastrophe theorists often speak as if CT (or Thom’s

work) was the first important or systematic…study of

discontinuous phenomena via calculus mathematics. My

view is quite the contrary and in fact I feel the Hopf

bifurcation (1942) for example, lies deeper than CT.

A lot here depends on what counts as discontinuous and

what counts as being systematic, but we can ask whether the

specific point about Hopf bifurcation is valid. The answer,

surprisingly, is “no.” One standard way to prove the Hopf

bifurcation theorem, Hale,77 is to reinterpret it as a nonlinear

operator equation on an infinite-dimensional Banach space:

“loop space,” the space of all maps from the circle into the

phase space of the associated ODE. The Implicit Function

Theorem then reduces this equation to a finite-dimensional

one (the method is well known as Liapunov–Schmidt reduc-

tion). The result is a 1-variable singularity. This would be an

elementary catastrophe, except that the operator equation

has circle group symmetry (phase shift on loops). Part of

this symmetry remains in the reduced equation, which has to

be an odd function of the variable. Using singularity theory,

it can be proved that the reduced equation in the Hopf con-

text is a pitchfork x3 6 kx¼ 0. This is the symmetric section

of the universal unfolding of the best-known elementary ca-

tastrophe of them all: the canonical cusp x3þ axþ b¼ 0.

The parameter b must be set to zero to make the equation

odd in x.

The Implicit Function Theorem can hardly be consid-

ered “deep,” so the Hopf theorem is not deeper than elemen-

tary catastrophe theory. In fact, somewhat ironically, it is a

simple consequence of elementary catastrophe theory. This

method also generalizes to classify certain degenerate Hopf

bifurcations and their unfoldings.52 The link with Hopf bifur-

cation also shows that singularity theory is not restricted to

the obvious case of steady-state “dynamics.” It applies to

any dynamic behavior that can be reduced to finding the

zero-set of a smooth mapping.

Examples like this support the view that, contrary to

common perceptions, “catastrophe theory won.” That is,

Thom’s program, taken seriously and formalized in an

appropriate context, has led to significant advances that have

completely changed bifurcation theory.

The same philosophy has motivated most of the work

reported in this survey, and we sketch the main develop-

ments in this area in historical order. Details and references

are given in later sections.

D. Symmetry

By the late 1970s, the beginnings of equivariant dynam-

ics (that is, dynamics in systems with symmetry) was very

much “in the air.”106,107 The need for such a theory was

motivated by at least two distinct sources of symmetry.

The first was straightforward. Potential applications

with physical symmetries were commonplace, such as the

buckling of an elastic cube or spherical shell, and the flow of

a fluid along a circular pipe or inside a rotating cylinder.

The second was subtler. The internal demands of dy-

namical systems theory also made symmetries unavoidable.

In Hopf bifurcation, for example, phase shifts on periodic

states lead to an action of the circle group S
1, whose influ-

ence has a significant effect on the structure of the bifurca-

tion. Even when the original system has no symmetry, the

bifurcation has S
1

symmetry. So consideration of symme-

tries becomes unavoidable.

Symmetry introduces many technical obstacles. In the

world of “general” systems, symmetric ones are by definition

non-generic. Once again, Thom’s philosophy comes to the

rescue: work in a context in which they are generic, namely:

the world of systems with a given symmetry group.

Allowable perturbations to the model are those that preserve

the symmetry of the equations. However, the type of behav-

ior that is now generic can change.

For example, in the presence of symmetry, critical eigen-

values are generically multiple (except for trivial or cyclic Zm

symmetry groups), so the hypotheses of the standard Hopf

bifurcation theorem do not apply. However, it is possible to

prove an analogous theorem for dynamical systems with sym-

metry, and for convenience, we also refer to the corresponding

context as Hopf bifurcation (see Sec. V) Many examples of

Hopf bifurcation for various physical systems with symmetry

group Oð2Þ independently found two types of oscillation:

standing waves and rotating waves, Ruelle.104 Building on

this result, we obtained61 a general existence theorem for

Hopf bifurcation with any compact Lie group C of symme-

tries. The main criterion was that the spatio-temporal symme-

try group of the bifurcating solution branch should have a 2-

dimensional fixed point space. This condition was generalized

by Fiedler41 using topological arguments to include fixed

point spaces of maximal isotropy subgroups.

The proof again used the loop space formulation of

Hale,77 which introduced an additional symmetry group S
1

of phase shifts. Spatio-temporal symmetries are defined by
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subgroups of C� S
1. They specify how the overall C� S

1

symmetry of the model equations breaks to a smaller group

of symmetries after bifurcation. This viewpoint contributed

to a growing recognition that pattern formation can often be

explained using symmetry-breaking. The theorem found a

variety of applications in different areas of science. Among

them were Couette–Taylor flow in a fluid and the dynamics

of flames on a circular burner.

Experiments revealed the existence of other types of pat-

tern in such systems, not present in generic Hopf bifurcation.

Many of these additional patterns were traced to the occur-

rence of “mode interactions”—essentially, points in parame-

ter space at which two distinct types of bifurcation

coincided. The Thomist approach suggested treating a mode

interaction as a degeneracy and unfolding it with additional

parameters. This proved successful in many applications.

Among these was a network model of a plausible central

pattern generator (CPG) for quadruped locomotion. States

arising from mode interactions break symmetry in new

ways, compared to generic Hopf bifurcation, which

prompted a more general question. What is the catalog of

all possible spatio-temporal symmetries of a periodic state of

an ODE with given phase space? The answer, known as the

H/K Theorem,17 depends on the dimension of the phase

space and the geometry of the group action, Sec. V B. Here,

K refers to the pointwise “spatial” symmetries of the periodic

orbit, and H describes the setwise symmetries, in which the

orbit is invariant as a set but some symmetries induce phase

shifts. The factor group H/K is always cyclic, and the peri-

odic states are all discrete rotating waves, in which a spatial

symmetry induces a corresponding phase shift. Crucially,

these phase shifts are not arbitrary. They are specific frac-

tions of the period, and they are rigid: the fraction concerned

remains invariant under small symmetric perturbations of the

model.

The methods developed at that time were restricted to

compact Lie groups of symmetries, for technical reasons

related to the representations of the group. However, many

interesting problems have non-compact symmetry groups,

whose representations behave differently. This, in particular,

is the case for PDEs posed on unbounded domains such as

R2 or R3, with symmetry groups such as the Euclidean

groups Eð2Þ;Eð3Þ, Sec. VII. A key example is the

Belousov–Zhabotinskii reaction, an oscillating chemical

reaction that forms two basic patterns of chemical waves:

expanding “target patterns” and rotating “spirals.”

Understanding this system, and more complex states in

which the tip of the rotating spiral meanders, led to effective

techniques for analyzing systems with these non-compact

symmetry groups.

E. Networks

By the turn of the century, most of these ideas were well

established, although unsolved problems remained (and still

do). Many other aspects of equivariant dynamics fell into

place as well. But the theory was about to branch out in a

new and unexpected direction: networks, Sec. VIII. The vital

role of networks in applied science, particularly in the bio

and life sciences, was becoming increasingly apparent: food

webs in ecosystems, gene regulatory networks, cell signaling

networks, neuronal networks, and so on. The equivariant

theory applied without much modification to symmetric net-

works; in fact, examples of such systems (as “coupled oscil-

lators”) had been widely studied. More general networks

seemed out of reach, and if anything inappropriate for the

point of view developed in equivariant dynamics.

That belief changed around 2002 with the discovery by

Pivato of a 16-cell network which could be proved to have a

periodic state in which the nodes were partitioned into four

subsets, each containing four nodes. Within each subset, all

nodes were in synchrony. Nodes in distinct subsets had iden-

tical dynamics except for a phase shift, which was a multiple

of one quarter of the period. This was clearly a rotating wave

related to Z4 symmetry—except that the network did not
have Z4 symmetry. Further study led to two ideas. First: net-

works (with or without symmetry) may possess “balanced

colorings” in which identically colored nodes have identi-

cally colored inputs. If so, there exists an invariant subspace

of phase space, on which nodes with the same color have

synchronous dynamics. Second: it is then possible to identify

nodes with the same color to obtain a smaller “quotient” net-

work. If the quotient has a cyclic group of symmetries, rotat-

ing wave states can then exist. So, the observed state is

related to symmetry—but not of the original network.

Very recently, we have proved that (with suitable tech-

nical conditions) the only way to obtain rigid synchrony in

network dynamics is via a balanced coloring and the only

way to obtain rigid phase relations is via a cyclic symmetry

group of the corresponding quotient network. In short, some

features of network architecture can rigorously be inferred

from features of the dynamics.

This initial insight has since been developed into a gen-

eral formalism for network dynamics. The theory of these

networks has been guided by analogies with equivariant dy-

namics, which suggests sensible questions such as “What

does Hopf bifurcation look like in the world of network-

preserving perturbations?” Equivariant dynamics seldom

provides answers, but it is a very useful guide. Research in

this formalism over the past decade has followed a Thomist

program, working out what behavior is generic in the net-

work context, and what conditions imply that it will occur.

The possibility that research into equivariant dynamics

would lead to discoveries about the dynamics of asymmetric

networks was not envisioned back in the 1980s. But with

hindsight, this development was entirely natural. As with ca-

tastrophe theory, the way forward was not to try to apply

existing methods “off the shelf,” but to develop new meth-

ods, appropriate to the new context. This was motivated by

applying Thom’s general philosophy, which acted as a

framework to organize the questions and concepts.

III. SYMMETRIES IN SPACE

The symmetries of a mathematical system form a group

consisting of transformations that preserve specific aspects

of the structure of the system. Symmetries can take many

physical forms—in particular, spatial symmetries, which
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affect the geometry of states, and temporal symmetries (time

translation or reversal) which occur in particular, for periodic

states.

Many important PDEs in the plane are invariant under

the Euclidean group Eð2Þ of all rigid motions of the plane,

and PDEs on a circular domain are often invariant under the

group Oð2Þ of all rotations and reflections of the domain.

These groups are Lie groups, Adams,1 Br€ocker and tom

Dieck,14 Sattinger and Weaver.108 Technically, finite (and

some discrete) groups are Lie groups, but aside from these,

every Lie group contains continuous families of transforma-

tions. For example, Oð2Þ contains the rotation group SOð2Þ,
parametrized by an angle h, which is a continuous variable.

At the other extreme are finite groups, such as the sym-

metry group of a square or an icosahedron. Permutation

groups, which permute the members of some finite set, are

an important class of finite groups. Both finite and continu-

ous symmetry groups are important in applied science, but

their implications often differ. Continuous groups often play

a role in pattern formation on domains in the plane or space;

patterns are formed when the symmetry “breaks,” so that

individual states have less symmetry than the system itself.

The Navier–Stokes equation describing motion of a fluid in a

planar domain has an equilibrium of constant depth, which is

symmetric under Eð2Þ and all time-translations. Parallel

traveling waves break some of the translational symmetries,

reducing these to a discrete subgroup, and also break tempo-

ral symmetry. However, they retain some symmetries, such

as translations parallel to the waves and time translation

through one period. More subtly, traveling waves have con-

tinuous spatio-temporal symmetry: translations perpendicu-

lar to the waves combined with suitable time translations.

Symmetry-breaking for finite groups also causes a form

of pattern formation, but the interpretation of the “patterns”

may not be geometric. We expand on this point in Sec. IV B;

it is especially relevant to the dynamics of networks of

coupled systems.

A. Equivariant dynamics

Equivariant dynamics examines how the symmetries of

a differential equation affect the behavior of its solutions—

especially their symmetries. To describe the main results, we

require some basic concepts. We focus on ODEs, although

many ideas carry over to PDEs.

For simplicity, we assume that the phase space of the

system is X ¼ Rn, and consider an ODE

dx

dt
¼ f xð Þ x 2 X; (3.1)

where f: X ! X is a smooth map (vector field). Symmetries

enter the picture when a group of linear transformations C acts

on X. We require all elements of C to map solutions of the

ODE to solutions. This is equivalent to f being C-equivariant;
that is

f ðcxÞ ¼ cf ðxÞ (3.2)

for all c � C, x � X, and we call (3.1) a C-equivariant ODE.

Condition (3.2) captures the structure of ODEs that arise

when modeling a symmetric real-world system. It states that

the vector field inherits the symmetries, in the sense that

symmetrically related points in phase space have symmetri-

cally related vectors.

B. Isotropy subgroups and fixed-point subspaces

Suppose that an equilibrium x0 is unique. Then cx0¼ x0

for all c � C, so the solution is symmetric under C. In con-

trast, equilibria of a C-equivariant ODE need not be symmet-

ric under the whole of C. This phenomenon, called

(spontaneous) symmetry-breaking, is a general mechanism

for pattern formation. For example, the equations for an elas-

tic rod in the plane under a compressive load are symmetric

under reflection in the rod. So is the rod when the load is

low, but for higher loads the rod buckles—either upwards or

downwards. Neither buckled state is symmetric under the

reflection, but each is the reflection of the other.

To formalize “symmetry of a solution,” we introduce a

key concept:

Definition 3.1. If x � X, the isotropy subgroup of x is

Rx ¼ fr 2 C : rx ¼ xg:

This group consists of all r that fix x. There is a “dual”

notion. If R � C is a subgroup of C, its fixed-point subspace
is

FixðRÞ ¼ fx 2 X : rx ¼ x 8r 2 Rg:

Clearly, Fix(R) comprises all points x � X whose iso-

tropy subgroup contains R. Fixed-point spaces provide a nat-

ural class of subspaces that are invariant for any C-

equivariant map f:
Proposition 3.2. Let f: X ! X be a C-equivariant map,

and let R be any subgroup of C. Then Fix(R) is an invariant
subspace for f, and hence for the dynamics of (3.1).

The proof is trivial, but the proposition is very useful.

We can interpret Fix(R) as the space of all states that have

symmetry (at least) R. Then the restriction,

f jFixðRÞ;

determines the dynamics of all such states. In particular, we

can find states with a given isotropy subgroup R by consider-

ing the (generally) lower-dimensional system given by

f jFixðRÞ.
If x � X and c � C, the isotropy subgroup of cx is conju-

gate to that of x

Rcx ¼ cRxc
�1:

Therefore, isotropy subgroups occur in conjugacy classes.

For many purposes we can consider isotropy subgroups only

up to conjugacy. The conjugacy classes of isotropy sub-

groups are ordered by inclusion (up to conjugacy). The

resulting partially ordered set is called the lattice of isotropy

subgroups,70 although technically it need not be a lattice.
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C. Symmetry-breaking

Equilibria provide a useful starting-point, and there are

useful analogies between equilibria and periodic states. We

start with bifurcations.

Consider a 1-parameter family of maps f : Rn �R!
Rn satisfying the equivariance condition

f ðcx; kÞ ¼ cf ðx; kÞ; (3.3)

for all x 2 Rn; k 2 R. There is a corresponding family of

ODEs

dx

dt
¼ f x; kð Þ: (3.4)

Suppose that (x(k), k) is a branch of equilibria parametrized

continuously by k.

A necessary condition for the occurrence of local bifur-

cation from a branch of equilibria at (x0, k0) is that the

Jacobian J ¼ Dxf jðx0;k0Þ should have eigenvalues on the

imaginary axis (including 0). A zero eigenvalue usually

corresponds to steady-state bifurcation: typically, the num-

ber of equilibria changes near (x0, k0), and branches of

equilibria may appear, disappear, merge, or split. The possi-

bilities here can be organized, recognized, and classified

using singularity theory.61 A nonzero imaginary eigenvalue

usually corresponds to Hopf bifurcation, Hassard et al.78

Under suitable genericity conditions, this leads to time-

periodic solutions whose amplitude (near the bifurcation

point) is small. In either case, the corresponding eigenspace

is said to be critical.
The basic general existence theorem for bifurcating

symmetry-breaking equilibria is the Equivariant Branching

Lemma. Its statement requires the concept of an axial sub-

group of C. This is an isotropy subgroup R for which

dimFixðRÞ ¼ 1:

The Equivariant Branching Lemma of Cicogna27 and

Vanderbauwhede122 states that generically (that is, subject to

technical conditions that typically are valid64,70) at a local

steady-state bifurcation, for each axial subgroup R � C,

there exists a branch of equilibria lying in Fix(R). This result

guarantees the existence of bifurcating branches of solutions

with symmetry at least R. Other branches may also occur:

the axial condition is sufficient but not necessary for a branch

to exist.

There are representation-theoretic conditions on the crit-

ical eigenspace, which affects the catalogue of bifurca-

tions.70 In steady-state bifurcation, it is generically an

absolutely irreducible representation of C.

D. Continuous symmetries and patterns

Steady-state bifurcation in systems with symmetry is a

common mechanism for the formation of equilibrium patterns,

with many applications. Equivariant PDEs have been used to

understand a wide range of pattern-forming experiments.

These bifurcations build on the fundamental observations of

Turing121 in reaction-diffusion equations and include B�enard

convection,20,70,84 the Belousov–Zhabotinskii reaction,51 liq-

uid crystals,21 buckling plates,61 cubes,61 and hemispheres,46

and the Faraday experiment.31,109,110 They also include appli-

cations to biology in contexts as varied as the markings on big

cats, giraffes, and zebras96 to patterns of geometric visual hal-

lucinations,13,40 and central place theory in the formation of

cities.80,95 However, we shall not describe these applications

here. Other applications that we will mention include flames

and fluid flows—but, we will do this in the context of periodic

solutions rather than steady-state solutions.

IV. SPATIOTEMPORAL SYMMETRIES

In this section, we discuss spatiotemporal symmetries

of periodic solutions in two contexts: circular Oð2Þ sym-

metry occurring in several fluid dynamics experiments

(Sec. IV A) and permutation S3 symmetry in networks

(Sec. IV B).

A. Experiments featuring rotating and standing waves

It is now well known that Hopf bifurcation in systems

with circular symmetry can produce two distinct types of

periodic solutions, as we know explain. We describe experi-

ments with flames on a circular burner, oscillations of a cir-

cular hosepipe, and flow patterns in a fluid between two

differentially rotating cylinders.

1. Laminar premixed flames

During the 1990s, Gorman and co-workers performed a

series of beautiful experiments on pattern formation in lami-

nar premixed flames.72–75,99 These experiments were per-

formed on a circular burner and provided an excellent

example of pattern formation obtained from steady-state and

Hopf bifurcation in the world of circular Oð2Þ symmetry.

The pattern in the flame front, as shown in the figures, is

seen by looking down on the flame from a point directly

above the center of the burner.

Specifically, generically, Oð2Þ steady-state bifurcation

from a circularly symmetric state (Figure 1 (left)) leads to a

state with k-fold symmetry (Figure 1 (center)). This kind of

solution can be found in models using a simple application

of the equivariant branching lemma. As we discuss in the

next section, equivariant Hopf bifurcation leads to periodic

solutions with certain spatiotemporal symmetries. In the case

of Oð2Þ symmetry, these bifurcations lead to two types of

time-periodic solutions: rotating waves (solutions where

time evolution is the same as spatial rotation) and standing
waves (solutions that have k-fold symmetry for all points in

time). This theorem has been proved dozens of times in the

applied mathematics literature in the context of specific

examples, but it is helpful to realize that it is a special case

of a Hopf bifurcation version of the equivariant branching

lemma (see Ref. 61). One instant of time in a rotating wave

solution is shown in Figure 1 (right).
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2. Flow through a hosepipe

A second experiment where rotating and standing waves

are important is in flow induced oscillations in a hose. In the

experiment, a circularly symmetric hose is hung vertically

and water is sent through the hose at a constant speed v.

When v is small the hose does not move, but when v is large,

the hose itself oscillates. Bajaj and Sethna7 show (both in

experiments and in theory) that there is a critical value v0

when the oscillation commences. In models, v0 is a point of

Hopf bifurcation. As noted, the Oð2Þ symmetry of the model

(and the experiments) forces two types of oscillation: in the

rotating wave, the end of the hose moves in a circle; in the

standing wave the hose oscillates back and forth in a plane.

The general theory shows that generically only one of these

two types of solutions is stable (near bifurcation)—which

one depends on mechanical properties of the hose. This point

might be important for firemen since a rotating fire hose

would not move much when on the ground, whereas a stand-

ing wave oscillating fire hose might do a lot of damage while

oscillating back and forth on the ground.

3. Flow between counterrotating coaxial circular
cylinders

The Couette–Taylor experiment is one of the classic

fluid dynamics pattern forming experiments. In this experi-

ment, the flow of a fluid between two counterrotating

cylinders is tracked as the speed of the cylinders is varied. If

the speed of the rotating cylinders are small, then the fluid

flow is simple—fluid particles move in circles centered on

the cylinder axis; such flow is called Couette Flow and is cir-

cularly SOð2Þ symmetric.

Rather surprisingly, the principal symmetry that drives

pattern formation in the Couette–Taylor experiment is the

symmetry of translation along the cylinder axis. Models (the

Navier–Stokes equations for fluid flow coupled with appro-

priate boundary conditions) often assume periodic boundary

conditions on the top and bottom of the cylinders. These

boundary conditions lead to an additional Oð2Þ symmetry

generated by axial translation and up-down reflection.

In one of the standard Couette–Taylor experiments, the

system begins with the outer cylinder rotating with a con-

stant small speed and then continues by slowly ramping up

the rotation speed of the inner cylinder in the direction oppo-

site to that of the outer cylinder. The primary steady-state

bifurcation from Couette Flow (Figure 2 (left)) leads to

Taylor Vortices (Figure 2 (center)). Note that the azimuthal

SOð2Þ symmetry is not broken in this bifurcation and Taylor
Vortices are invariant under that symmetry.

If the experiment begins by rotating the outer cylinder at

a larger speed, then the initial bifurcation is a Hopf bifurca-

tion where the axial Oð2Þ symmetry is broken. The new state

that is usually observed in the rotating wave is called Spiral
Vortices (see Figure 2 (right)). However, Demay and Iooss33

FIG. 1. Flames on a circular burner

(schematic). (Left) Circularly symmet-

ric flame. (Center) Steady flame with

D5 symmetry. (Right) Rotating two-cell

flame (Images courtesy of M. Gorman).

FIG. 2. Couette-Taylor experiment.

(Left) Couette Flow. (Center) Taylor
Vortices. (Right) Spiral Vortices
(Images courtesy of H. L. Swinney).
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computed the bifurcation from the Navier–Stokes equation

and showed the unexpected result that the associated stand-

ing wave, which they called Ribbons, would be the stable

state in a certain range of parameters. The prediction of

Ribbons was confirmed in experiments of Tagg et al.118

Other states of the Couette–Taylor system are discussed in

Sec. VI on mode interactions.

B. Symmetries of periodic states in networks

To discuss analogs of the above for periodic solutions in

systems with a finite symmetry group, we begin with a sim-

ple example: three coupled Fitzhugh–Nagumo equa-

tions.48,98 The Fitzhugh–Nagumo equation is widely used as

a phenomenological model of a neuron.

1. A unidirectional ring of three coupled cells

The cells are coupled unidirectionally in a ring as in

Figure 3 (left). Let vi denote the membrane potential of cell

i, let wi be a surrogate for an ionic current, and suppose that

a, b, c are parameters with 0< a< 1, b> 0, c> 0. We model

the coupling by adding a voltage term to each cell equation

_v1 ¼ v1ða� v1Þðv1 � 1Þ � w1 � cv2;

_v2 ¼ v2ða� v2Þðv2 � 1Þ � w2 � cv3;

_v3 ¼ v3ða� v3Þðv3 � 1Þ � w3 � cv1;

_w1 ¼ bv1 � cw1;

_w2 ¼ bv2 � cw2;

_w3 ¼ bv3 � cw3:

(4.1)

The symmetry group is Z3 generated by the 3-cycle (123)

acting on pairs (vj, wj).

When a¼ b¼ c¼ 0.5 and c¼ 0.8, the origin is a stable

equilibrium for the full six-dimensional system. In this state,

the cells are synchronous; that is, their time-series are identi-

cal. When a¼ b¼ c¼ 0.5 and c¼ 2, the system has a stable

periodic state in which successive cells are one third of a pe-

riod out of phase. See Figure 3 (right), which shows the pat-

tern for the vj; the same pattern occurs for the wj. This is an

instance of “rosette phase locking,” Hoppensteadt.79 Another

term is discrete rotating wave and a third is phase-shift
synchrony.

A discrete rotating wave occurs here because of the net-

work’s Z3 symmetry. Such a periodic state x(t)¼ (v(t), w(t))
has spatio-temporal symmetry: it satisfies the phase

relationships

x2ðtÞ ¼ x1ðt� T=3Þ x3ðtÞ ¼ x1ðt� 2T=3Þ:

So the solution x(t) is invariant if we permute the labels

using the 3-cycle q¼ (123) and shift phase by T/3. That

is,

qxðtþ T=3Þ ¼ xðtÞ:

Thus, x(t) is fixed by the element ðq; T=3Þ 2 C� S
1
, where

S
1 is the circle group of phase shifts modulo the period.

The diagonal D¼ {(v1, w1, v2, w2, v3, w3): v1¼ v2¼ v3,

w1¼w2¼w3} is a flow-invariant subspace. This is easy to

verify directly; it also follows from Proposition 3.2 since

D ¼ FixðS3Þ. States in D correspond to all three cells being

synchronous. The invariance of D implies that synchronous

dynamics is common in Z3-symmetric three-cell systems.

The rotating wave breaks the S3 symmetry of the synchro-

nous state.

2. Rigidity of phase shifts

An important feature of symmetry-induced phase shifts

in periodic states is rigidity: if the vector field is slightly per-

turbed, the phase shifts remain unchanged (as a fraction of

the period).64 Rigidity is not typical of phase shifts in general

dynamical systems.

To make this idea precise, we assume that the T-periodic

orbit x(t) is hyperbolic: it has no Floquet exponent on the

imaginary axis. Hyperbolicity implies that after a small per-

turbation of the vector field, there exists a unique ~T -periodic

orbit ~xðtÞ near x(t) in the C1 topology, Katok and

Hasselblatt,83 and ~T is near T. Let the spatiotemporal sym-

metry group of x(t) be the subgroup H � C defined by

H ¼ fc 2 C : cfxðtÞg ¼ fxðtÞgg; (4.2)

that is, H is the subgroup of C that preserves the trajectory of

x(t). By definition, it follows that for each h � H, there is

0� h< 1 such that hx(0)¼ x(hT). Uniqueness of solutions

implies that hx(t)¼ x(tþ hT); that is, the spatial symmetry h

FIG. 3. Left: Ring of Fitzhugh–Nagumo

neurons with unidirectional coupling.

Right: Periodic oscillations of the 3-cell

ring exhibiting a 1
3
-period out of phase

periodic solution. Time series of v1

(thick solid), v2 (thin solid), and v3

(dashed).
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corresponds to a specific phase shift h. Moreover, since

h‘¼ 1 for some ‘ (the order of h), it follows that h¼ k/‘ for

some integer k. Uniqueness of the perturbed solution ~xðtÞ
implies that hf~xðtÞg ¼ f~xðtÞg; hence, by continuity, that the

fractional phase-shift is the same for ~xðtÞ; that is,

h~xðtÞ ¼ ~xðtþ h ~TÞ.
Thus, we see that a natural consequence of symmetry is

a form of phase-locking. For example, suppose that v(t) is a

T-periodic solution to (4.1) and that c is a symmetry. Then,

either cv(t) is a different periodic trajectory from v(t) or it is

the same trajectory. In the latter case, the only difference is a

time-translation; that is, cv(t)¼ v(tþ h) for all t. In the three-

cell system where v¼ (x1, x2, x3), applying the permutation

q¼ (123) three times implies that 3h � 0ðmod TÞ. Hence, ei-

ther h ¼ 0; T
3
; 2T

3
. Therefore, when

• h¼ 0, x3(t)¼ x2(t)¼ x1(t) (synchrony).
• h ¼ T

3
; x2ðtÞ ¼ x1ðtþ T

3
Þ and x3ðtÞ ¼ x1ðtþ 2T

3
Þ (rotating

wave).
• h ¼ 2T

3
; x2ðtÞ ¼ x1ðtþ 2T

3
Þ and x3ðtÞ ¼ x1ðtþ T

3
Þ (rotating

wave in reverse direction).

Figure 4 shows the trajectory (v1(t), v2(t), v3(t)) in R3,

viewed from a point very close to the main diagonal (to

avoid confusing the perspective). The periodic cycle is

shaped like a curved equilateral triangle, corresponding to

the setwise Z3 symmetry.

V. THE HOPF BIFURCATION AND H/K THEOREMS

Two kinds of existence theorem for periodic solutions in

equivariant systems have been developed over the past 30

years. Both are aimed at understanding the kinds of spatio-

temporal symmetries of periodic solutions that can be

expected in such systems.

A. Equivariant Hopf theorem

A fundamental bifurcation process in general dynami-

cal systems is Hopf bifurcation,76,78 in which a stable equi-

librium loses stability and throws off a limit cycle. The

main condition for Hopf bifurcation is that the Jacobian Dxf
has nonzero imaginary eigenvalues at some value k¼ k0,

referred to as critical eigenvalues. Some technical condi-

tions are also needed: the critical eigenvalues must be sim-

ple, there should be no resonances, and the critical

eigenvalues should cross the imaginary axis with nonzero

speed.

These conditions are generic in dynamical systems

without symmetry. Non-resonance (other than 1:1 reso-

nance which arises for multiple eigenvalues) and the

eigenvalue crossing condition are also generic in symmet-

ric systems, but simplicity of the critical eigenvalues is

usually not, so the standard Hopf theorem does not apply.

However, there is a version adapted to symmetric sys-

tems, involving phase shift symmetries. A phase shift can

be viewed as time translation modulo the period T, lead-

ing to an action of R=TZ, isomorphic to the circle group
S

1 ¼ R=Z.

At a non-zero imaginary critical eigenvalue, the critical

eigenspace E supports an action not just of C, but of C� S
1
.

The S
1
-action is related to, but different from, the phase shift

action; it is determined by the exponential of the Jacobian

JjE on E. Specifically, if the imaginary eigenvalues are 6 ix,

then h 2 S
1 acts on E like the matrix expð2ph

x JjEÞ.
The Equivariant Hopf Theorem is analogous to the

Equivariant Branching Lemma, but the symmetry group C is

replaced by C� S
1
. A subgroup R � C� S

1
is C-axial if R

is an isotropy subgroup of the action of C� S
1 on E and

dimFixðRÞ ¼ 2. In Ref. 62 (see also Refs. 64 and 70), we

proved.

Theorem 5.1 (Equivariant Hopf Theorem). If the
Jacobian has purely imaginary eigenvalues, then generically
for any C-axial subgroup R � C� S

1 acting on the critical
eigenspace, there exists a branch of periodic solutions with
spatio-temporal symmetry group R (On solutions, S

1 acts by
phase shifts.).

The proof adapts an idea of Hale,77 which reformulates

Hopf bifurcation in terms of loop space, the space of all

maps S
1 ! X. The group S

1
acts on loop space by time

translation (scaled by the period). Periodic solutions of an

ODE correspond to zeros in loop space of an associated non-

linear operator. The technique of Liapunov–Schmidt reduc-

tion61 converts this problem into finding the zero-set of a

reduced function on the critical eigenspace. If the original

ODE has symmetry group C, the reduced function has sym-

metry group C� S
1
.

Earlier, Golubitsky and Langford52 used the same tech-

nique to reduce the analysis of degenerate Hopf bifurcations

(not satisfying the eigenvalue-crossing condition) to the clas-

sification of Z2-equivariant singularities.

Again, there are representation-theoretic conditions on

the critical eigenspace.70 Generically, it is either non-

absolutely irreducible, or a direct sum of two copies of the

same absolutely irreducible representation.
FIG. 4. Setwise Z3 symmetry of periodic trajectory of three coupled

Fitzhugh–Nagumo neurons.
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1. Poincar�e–Birkhoff normal form

Liapunov–Schmidt reduction does not preserve the sta-

bility conditions for a solution, but a closely related tech-

nique does. This is reduction to Poincar�e–Birkhoff normal

form, described for example, in Broer.15 Write the ODE in

the form

dx

dt
¼ f xð Þ ¼ Lxþ f2 xð Þ þ f3 xð Þ þ � � � ;

where x 2 Rn, the first term Lx is the linearization, and fk(x)

is polynomial of degree k. Successive polynomial changes of

coordinates can be chosen to simplify f2, then f3, and so on.

These changes compose to give a coordinate change x 7! y
and a transformed ODE

dy

dt
¼ Lyþ g2 yð Þ þ g3 yð Þ þ � � � ;

where the gk(y) satisfy extra restrictions.

In particular, there is an important relation to symmetry.

Namely, define the 1-parameter subgroup

S ¼ expðsLTÞ � GLðnÞ;

where the bar indicates closure. Suppose that f is C-

equivariant. By analyzing the normal form reduction proce-

dure, Elphick et al.39 proved that C-equivariant coordinate

changes can be chosen so that each gk(y) is C� S-

equivariant.

That is, the normal form, truncated at any given degree,

acquires additional symmetries S. The “tail” remaining after

truncation is only C-equivariant, but for many purposes, it

can be neglected if k is large enough. In general, S is a torus

group T
m

when L is semisimple, and T
m �R if L has a non-

trivial nilpotent part. So, here we see another example of a

symmetry group induced by the bifurcation.

B. H/K theorem: Motivation and statement

The example in Sec. IV B 2 illustrates a general princi-

ple about periodic states. A periodic trajectory has two natu-

ral symmetry groups. One is the group H of transformations

that fix the periodic orbit as a set, but change its time-

parametrization. The other is the group K of transformations

that fix each point in the periodic orbit, and thus leave its

time-parametrization unchanged. The pairs of subgroups (H,

K) of C that can arise as setwise and pointwise symmetries

of a periodic state of a C-equivariant ODE are characterized

by the H/K Theorem:17,64

Theorem 5.2. If C is a finite group, there exists a C-
equivariant ODE with a periodic state determining a pair of
subgroups (H, K) if and only if:

(1) H/K is cyclic.

(2) K is an isotropy subgroup of C.

(3) dimFixðKÞ 	 2, and if the dimension equals 2 then either
H¼K or H is the normalizer of K.

(4) H fixes a connected component of FixðKÞn [c 62K

FixðcÞ \ FixðKÞ.

Item (4) is a technical condition on the geometry of the

action of C and will not be explained here, except to say,

that it excludes certain obstacles created by the invariance of

fixed-point spaces. The normalizer of a subgroup H of C is

the largest subgroup D such that H is a normal subgroup of

D.

The H/K Theorem shows that the pairs (H, K) associated

with a periodic state are constrained in a precise manner, and

can be classified group-theoretically for any representation

of a finite group C. It does not imply the existence of such

states for any given C-equivariant ODE, but it does provide

an exhaustive catalogue of the possible pairs of pointwise

and setwise symmetries of a periodic orbit. Knowing this, it

becomes possible to carry out a systematic search for peri-

odic states with given spatio-temporal symmetry in any spe-

cific ODE.

We call K the group of spatial symmetries of the peri-

odic state, and H the group of spatio-temporal symmetries.

The cyclic group H/K acts on the state by phase shifts. If its

order is p, these are shifts by integer multiples of T/p where

T is the period. For example, the discrete rotating wave in

Figure 4 (right) has H ¼ Z3;K ¼ 1, so H=K ffi Z3, and the

phase shifts are integer multiples of T/3.

1. Application: Animal gaits

The H/K Theorem was originally motivated by the clas-

sification of gait patterns in a model of quadruped locomo-

tion.17 Gaits are widely thought to be generated by a network

of spinal neurons called a central pattern generator or CPG.

The same network can produce more than one pattern when

parameters (such as connection strengths or inputs from else-

where) vary. Gaits can be characterized (in part) by the

phases of the gait cycle at which a given leg hits the ground.

Figure 5 (upper) shows these patterns for the gaits walk,

bound, pace, and trot. Collins and Stewart28,29 interpreted

FIG. 5. Upper: Phase shifts (as fraction of gait cycle) for four standard quad-

ruped gaits. Lower: Schematic representation of hypothetical 8-cell quadru-

ped CPG showing assignment of cells to legs.
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these phase relations as spatio-temporal symmetries and con-

sidered several CPG architectures.

The aim of Ref. 17 was to “reverse engineer” the sche-

matic CPG architecture using the observed spatio-temporal

symmetries of standard quadruped gaits. All fractions of the

gait period T observed in the gaits in Figure 5 (upper) are in-

teger multiples of T/4. More specifically, front-back phase

shifts (between legs on the same side of the animal) are inte-

ger multiples of T/4, while left-right phase shifts (between

corresponding legs on opposite sides) are integer multiples

of T/2. The natural model for T/4 phase shifts is a cyclic

symmetry group Z4, and the natural model for T/2 phase

shifts is a cyclic symmetry group Z2. This suggests a CPG

architecture with symmetry group Z4 �Z2, because front-

back and left-right symmetries act independently.

The simplest CPG of this kind, Figure 5 (lower), has

eight cells. This figure is highly schematic. Each cell might

represent a “module”: a small network of neurons. Also, not

all potential connections are shown, because including them

would create a complicated and confusing figure. The con-

nections shown indicate the action of the symmetry group,

not the neural connections in a hypothetical CPG. The only

constraint is that if the CPG has a connection between some

pair of cells, then all pairs of cells obtained by applying the

Z4 �Z2 symmetry group must also be connected.

As well as being the simplest CPG with Z4 �Z2 sym-

metry, the 8-cell network is the smallest one that satisfies a

specific set of conditions motivated by observed gaits. In

Refs. 68 and 69, equivariant bifurcation theory was used to

predict the possible occurrence of six distinct gaits (two

occur as time-reversal pairs) arising by Hopf bifurcation.

Five of these gaits (walk, trot, pace, bound, and pronk) are

well known in animals. The sixth, the jump, can be seen in

bucking broncos. It was known to Muybridge,97 and has also

been observed in the Siberian souslik and Norway rat,

Gambaryan.49

The H/K Theorem predicts many other gaits, not arising

by generic Z4 �Z2-symmetric Hopf bifurcation from a

group invariant equilibrium. These include “mixed-mode”

gaits such as the transverse and rotary gallop, which can be

obtained as secondary bifurcations from trot and pace,

Buono.16 It has also been applied to bipeds.100

VI. MODE INTERACTIONS

A mode interaction occurs when two generically distinct

local bifurcations occur in the same location in phase space

and at the same parameter value. This is a codimension-2

phenomenon, whose generic occurrence requires at least two

parameters: often a bifurcation parameter k and an auxiliary

parameter a. Varying a splits the bifurcations apart, so that

they occur for nearby but distinct values of k. In addition,

the nonlinear interaction between the two modes often leads

to new and surprising states. Thus, the mode interaction

point acts as an “organizing center” at which the bifurcation

is degenerate, but can be unfolded into a pair of generic

bifurcations by varying a.

Specifically, consider a parametrized family of C-

equivariant bifurcation problems

dx

dt
¼ f x; k; að Þ x 2 Rn; k; a 2 R:

A point (x0, k0, a0) is a mode interaction if Df jðx0;k0;a0Þ has

two distinct critical eigenspaces. These are “as generic as

possible” subject to symmetry. There are thus three kinds of

mode interaction: steady-state mode interaction (both eigen-

values zero); steady-state/Hopf mode interaction (one zero

and one nonzero pair of imaginary eigenvalues); and Hopf/

Hopf mode interaction (two distinct pairs of nonzero imagi-

nary eigenvalues).

Generically, the real eigenspaces are absolutely irreduci-

ble for C, and the imaginary ones are C-simple. Also generi-

cally, varying a splits the bifurcations into two generic

steady-state or Hopf bifurcations.

The main dynamical implication of a mode interaction

is that “secondary” states may occur generically. These

states branch from the primary branches given by the two

separate bifurcations, and sometimes link them. In Hopf/

Hopf mode interactions, for example, quasiperiodic second-

ary branches sometimes occur.

When C ¼ Oð2Þ, all three types of mode interaction

have been classified using singularity theory in combination

with phase-amplitude decomposition: see the summary in

Ref. 70 and references therein.

A. Couette–Taylor flow

We continue the discussion from Sec. IV A 3. Striking

examples of mode interactions arise experimentally in the

Couette–Taylor experiment, Andereck et al.3 They can also

be found numerically in the Navier–Stokes equations model

of the experiment, DiPrima and Grannick,37 Chossat

et al.,22,26 and Langford et al.87 In this system, a wide variety

of experimentally observed states can be predicted and

understood using a reduction of the problem at parameter

values (rotation speeds of the two cylinders) where mode

interactions occur. See Chossat and Iooss25,26 and Refs. 53,

63, and 64.

For example, the Hopf/steady-state model interaction

leads to eight states: Couette flow, Taylor vortices, ribbons,

spirals, twisted vortices, wavy vortices, plus two unknown

states.63 Golubitsky and Langford53 used a numerical

approach to Liapunov–Schmidt reduction to make quantita-

tive predictions about which of these states occur, and are

stable, for given parameter values near this mode interaction.

Their analysis predicted stable wavy vortices, which had not

been reported experimentally for those parameter values.

The prediction was verified by Tagg et al.119 Similarly,

Chossat et al.22 used a numerical approach based on center

manifold reduction of Hopf/Hopf mode interactions to

understand a variety of states including interpenetrating

spirals.

B. Other work on mode interactions

Mode interactions have been used to discuss secondary

states in many classical fluid mechanics problems including

the Faraday surface wave experiment, Crawford et al.;31

B�enard convection between concentric spheres; spatially
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localized states, Burke and Knobloch;19 and patterns in the

heartbeat of the medicinal leech, Buono and Palacios.18 The

number of examples studied during the past two decades is

extensive.

VII. NON-COMPACT EUCLIDEAN SYMMETRY

Spiral waves are a commonly observed phenomenon in

PDEs with planar Euclidean symmetry, such as reaction-

diffusion equations. Such waves have been observed both in

experiments89,126 and in numerical simulations.11,81 In suita-

ble circumstances, the spiral can meander—its tip describes

“epicyclic” paths in the plane, see Figure 6. Classically, such

curves are called epicycloids or hypocycloids, depending on

which way the “petals” point.

In more detail: planar spirals are rotating waves, so the

tip of the spiral traces out a circle in the plane. When the tip

meanders, it exhibits quasiperiodic two-frequency motion,

which can be thought of as an epicyclic motion superim-

posed on the basic spiral wave circle. When the motion on

the epicycle is in the same orientation as the motion on the

circle (either clockwise or counterclockwise), then the petals

of the flowers point in; when the motions have the opposite

orientation, the petals point out. Winfree126 observed both

types of quasiperiodic motion and the possibility that the

direction of the petals can change—we call this a change in

petality—as a system parameter is varied.

However, in Barkley’s numerical simulation8 and in

experiments such as those by Li et al.,89 a resonance phe-

nomenon is observed. As the change in petality is

approached, the amplitude of the second frequency grows

unboundedly large, Figure 7. One of the exciting advances in

equivariant bifurcation theory in the 1990s occurred when

Barkley10 discovered that meandering of the spiral tip and

the resonant motion are both consequences of Hopf bifurca-

tion with Euclidean symmetry and when Fiedler et al.42,127

showed that this observation could be made rigorous for a

class of reaction-diffusion systems. Our exposition follows

Refs. 54 and 64.

A. Heuristic description of unbounded tip motion

We can think of a planar rotating wave as a pattern that

rotates at constant speed x1 about a fixed point. If the pattern

has a distinctive marker, such as a tip, then that marker will

move at constant speed on a circle. Moreover, if that pattern

undergoes a Hopf bifurcation with Hopf frequency x2, then

the epicyclic motion of the spiral tip can be written phenom-

enologically as

QðtÞ ¼ eix1tðz1 þ e�ix2tz2Þ; (7.1)

where z1 2 R and z2 2 C. In the epicyclic motion (7.1), the

Hopf bifurcation point corresponds to the secondary ampli-

tude z2¼ 0. In these coordinates, the change in petality

occurs when x1¼x2. From the standard bifurcation-

theoretic viewpoint, there is nothing significant about Hopf

bifurcation at this critical parameter value.

Barkley10 observed that Euclidean symmetry forces

three critical zero eigenvalues (two for translation and one

for rotation) in addition to the two critical Hopf eigenvalues.

Assuming that some kind of “center manifold” exists, the

time evolution of the meandering spiral tip can be described

by a five-dimensional Euclidean-equivariant system of

ODEs. Three variables represent the Euclidean group—the

translation variable p 2 R2 ffi C and the rotation variable

u 2 S
1
—and the variable q 2 C represents the amplitude of

the eigenfunction of Hopf bifurcation. Along a solution, p(t)
represents the translation of the spiral wave as a function of

time. So, the motion of the spiral tip is unbounded if p(t) is

unbounded. However, symmetry allows us to do this

calculation.

In these variables Barkley10 notes that translational sym-

metry and rotational symmetry act by

FIG. 6. Epicycle motion of spiral tip:

outward and inward petals.

FIG. 7. Growth of flower near change in petality: path of
Ð t

0
QðsÞds, where

Q(t) is as in (7.1) with x1¼ 1, z1¼ 1, z2¼ 0.3, and x2¼ 0.61, 0.85, 1, 1.11.
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Txðp;u; qÞ ¼ ðpþ x;u; qÞ;
Rhðp;u; qÞ ¼ ðeihp;u; qÞ:

Therefore, the ODE vector field is independent of p, and the

ðu; qÞ equations decouple. That is, symmetry implies that the

“center manifold” equations have the form

_p ¼ eiuf ðqÞ;
_u ¼ gðqÞ;
_q ¼ hðqÞ:

(7.2)

Heuristically, in Hopf bifurcation, we can assume the right

hand side of the _p equation is (7.1). So, when x1¼x2, we

can determine how the translation symmetry changes in t
along the solution by just computing

ðt

0

Q sð Þds ¼ 1

ix1

eix1tz1 þ tz2:

In particular, at the point of petality change, the spiral tip

appears to drift off to infinity in a straight line, Figure 7.

Thus, unbounded growth of the second frequency amplitude

is a feature that is connected with change in petality.

B. Reaction-diffusion systems

Barkley9 performed a numerical linear stability analysis

for the basic time-periodic spiral wave solution and showed

that there is a Hopf bifurcation. In particular, a simple pair of

eigenvalues crosses the imaginary axis while three neutral

eigenvalues lie on the imaginary axis and the remainder of

the spectrum is confined to the left half-plane. Starting from

Barkley’s numerical calculation, Wulff127 proved, using

Liapunov–Schmidt reduction, that resonant unbounded

growth occurs in Hopf bifurcation near the codimension-2

point where x1¼x2. Her proof is nontrivial because techni-

cal difficulties, such as small divisors and the nonsmoothness

of the group action, must be overcome. Feidler et al.42,105

(see also Ref. 54) have proved, under certain hypotheses,

that a “center manifold” exists and the heuristic description

is an accurate one.

The analysis of this bifurcation has led to a number of

papers on the expected dynamics in Euclidean invariant sys-

tems. We mention issues surrounding hypermeandering.4–6,43

VIII. NETWORKS

Over the past decade, we and others have introduced a

formal framework for studying networks of coupled ODEs.

They are called coupled cell systems, and the underlying net-

work is a coupled cell network. More precisely, this is a

directed graph whose nodes and edges are classified into

“types.” Nodes “cells” represent the variables of a compo-

nent ODE. Edges “arrows” between cells represent couplings

from the tail cell to the head cell. Nodes of the same type

have the same phase spaces (up to a canonical identification);

edges “arrows” of the same type represent identical

couplings.

Each network diagram (henceforth we omit “coupled

cell”) encodes a space of admissible vector fields f, determin-

ing the admissible ODEs dx/dt¼ f(x). Intuitively, these are

the ODEs that correspond to the couplings specified by the

network, and respect the types of nodes and edges. The pre-

cise formalism is not important here, so instead, we outline

what it involves and give a typical example.

In order for a vector field f¼ (f1, …, fn) to be admissible,

we require:

(1) If i is a cell, the variables appearing in the correspond-

ing component fi of the vector field are those corre-

sponding to cell i itself, and the tail cells of all input

arrows.

(2) If the sets of input arrows to cells i and j are isomorphic

(the same number of arrows of each type), then compo-

nents fi and fj are given by the same function, with an

assignment of variables that respects the isomorphism.

(3) Applying this condition when i¼ j yields a symmetry

condition worth stating in its own right:

(4) If cell i has several input arrows of the same type, fi is

invariant under permutations of the tail cells of those

arrows.

Figure 8 shows a typical example, a network with five

cells. There are two types of cell (square, circle) and three

types of arrow (solid, dotted, wavy). Admissible ODEs have

the form

_x1 ¼ f ðx1; x4Þ;

_x2 ¼ gðx2; x3; x5Þ;
_x3 ¼ f ðx3; x5Þ;

_x4 ¼ hðx4; x1; x2Þ;
_x5 ¼ hðx5; x2; x3Þ;

where the over line indicates that h is symmetric in its sec-

ond and third arguments.

A. Synchrony and phase relations

The main features of a dynamical system considered in

modern nonlinear dynamics are those that are invariant

under coordinate changes. It is natural to adopt the same

philosophy for network dynamics, but it is important to rec-

ognize that coupled cell systems have extra structure,

imposing constraints that restrict the permissible coordinate

FIG. 8. A network with five cells.
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changes. Such coordinate changes are characterized in

Refs. 66 and 67.

These restrictions permit new phenomena that are not

invariant for a general dynamical system. Two basic exam-

ples are:

(1) Synchrony: If x(t)¼ (x1(t),…, xn(t) is a solution of an ad-

missible ODE, i and j are cells, when is xi(t)� xj(t) for

all t 2 R?

(2) Phase Relations: If x(t) is a periodic solution of an ad-

missible ODE, and i and j are cells, when does there exist

a phase shift hij � [0, 1) such that xi(t)� xj(tþ hijT) for

all t 2 R?

Synchrony and phase relations can be viewed as pat-
terns in network dynamics, analogous to spatial and spatio-

temporal patterns in the equivariant dynamics of PDEs.

Here, the network architecture plays the role of space; in

effect, a network is a discrete space, continuous time dy-

namical system. This is literally true for ODEs that are

obtained as a spatial discretization of a PDE. The (global or

partial) symmetries are now permutations of nodes and the

associated arrows, so the technical setting is that of permu-

tation representations. The three-cell FitzHugh–Nagumo

model above is a typical illustration; here, the spatio-

temporal pattern is “cycle the nodes and shift phase by 1
3

of

the period.” Geometrically, the cycle rotates the network

diagram.

There is a related phenomenon in which symmetry can

force resonances among cells. For example, Figure 9

shows a 3-cell system with Z2 symmetry, which inter-

changes cells 1 and 3 while fixing cell 2. This network sup-

ports a periodic state with a spatio-temporal symmetry that

combines this interchange with a half-period phase shift.

Now, cell 2 is “half a period out of phase with itself”; that

is, it oscillates with half the overall period, creating a 1:2

resonance. We call such states multirhythms, and they can

be considerably more complex. Section 3.6 of Ref. 64

gives an example of a 3:4:5 multirhythm in a 12-cell sys-

tem. Filipski and Golubitsky47 analyze multirhythms in the

context of Hopf bifurcation with a finite abelian symmetry

group.

B. Balanced colorings

In Sec. III B, we saw that in symmetric ODEs, there is a

natural class of subspaces that are invariant under any equiv-

ariant map, namely, the fixed-point spaces of subgroups.

These “universal” invariant subspaces impose significant

constraints on dynamics. For networks, there is an analogous

class of invariant subspaces for all admissible maps, but now

these are determined by a combinatorial property known as

“balance.”

Definition 8.1.

(1) A coloring of the cells of a network assigns to each cell i
a color k(i), where k(i) belongs to some specified set K.

Formally, K corresponds to an equivalence relation “�”

on cells, in which i� j if and only if k(i)¼ k(j). The colors

are given by equivalence classes, so the choice of K is unim-

portant: what matters is when k(i)¼ k(j).

(2) The synchrony subspace Dk determined by a coloring k
is the subspace consisting of all points x¼ (x1,…, xn) for

which k(i)¼ k(j)) xi¼ xj.

That is, components of x for cells of the same color are

synchronous (equal).

(3) A coloring K is balanced if any two cells i, j of the same

color have identically colored input sets (in the sense

that corresponding tail cells of input arrows have the

same colors, provided the correspondence is given by an

input isomorphism).

Figure 10 (left) shows a balanced coloring of Figure 8.

Suppose that x(t) is a state of an admissible ODE of a net-

work. The pattern of synchrony of x(t) is the coloring k given by

kðiÞ ¼ kðjÞ () xiðtÞ ¼ xjðtÞ 8t 2 R:

By identifying cells with the same color, and associating

to each such cluster the corresponding set of input arrows,

we define a quotient network. The admissible maps for the

quotient are precisely the admissible maps for the original

network, but restricted to the corresponding synchrony

space. Figure 10 (right) shows the quotient network for the

balanced coloring of Figure 10 (left).

If a network has a global symmetry group of permutations,

the fixed-point subspace of any subgroup R corresponds to a bal-

anced coloring in which the colors correspond to orbits of R. So,

equivariant and network dynamics come together in a consistent

manner when networks have global symmetry groups. However,

there are some subtleties in this context, mainly to do with possi-

ble differences between admissible and equivariant maps.56

We can now state three theorems relating synchrony on

cells to balanced colorings, whose proofs become increas-

ingly more difficult and technical. Say that a network is

path-connected, or transitive, if any two cells are connected

by a directed path of arrows.

Theorem 8.2.

(1) A synchrony space Dk is invariant under all admissible
maps if and only if the coloring k is balanced.

FIG. 9. A Z2-symmetric network supporting a multirhythm.
FIG. 10. Left: A balanced coloring of 5-cell network in Figure 8. Right:
Corresponding quotient network.
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(2) In a path-connected network, an equilibrium state x has
a rigid pattern of synchrony if and only if this pattern is
balanced.

(3) In a path-connected network, a periodic state x has a
rigid pattern of synchrony if and only if this pattern is
balanced.

Proof. (1) is proved in Ref. 115. (2) is proved in Ref. 71.

(3) is proved in Ref. 59. w
The main idea needed to prove (3) is the Rigid

Synchrony Theorem, conjectured by Stewart and Parker.116

This states that in a periodic state of a path-connected net-

work, if two cells are rigidly synchronous, then their input

cells, suitably associated, are also synchronous. A closely

related result, the Full Oscillation Theorem, states that for a

periodic state of a path-connected network, if at least one

cell variable oscillates—that is, it is not in equilibrium—then

after some arbitrarily small perturbation, all cells oscillate.

Both theorems are proved in Ref. 59 by analyzing a specific

class of admissible perturbations.

A generalization of the Rigid Synchrony Theorem, the

Rigid Phase Theorem, states that in a periodic state of a

path-connected network, if two cells are rigidly phase-

related, then their input cells, suitably associated, are also

phase-related, by the same fraction of the period. This theo-

rem was also conjectured by Stewart and Parker,116 and

proved by Golubitsky et al.60 Earlier, assuming this conjec-

ture, Stewart and Parker117 proved a basic structure theorem

for path-connected networks with a rigid phase relation.

Namely:

Theorem 8.3. In a path-connected network, the quotient
network obtained by identifying all rigidly synchronous cells
has a global cyclic group of symmetries Zk for some k, and
the phase difference concerned is an integer multiple of T/k
where T is the period.

Roughly speaking, this result proves that whenever a

phase relation is observed in a periodic state of a path-

connected network, and that relation is preserved by small

perturbations of the model, then it must arise from a global
cyclic symmetry of the quotient network defined by clusters

of synchronous cells. This motivates the use of cyclically

symmetric networks to model systems with this behavior; for

example, animal gait patterns.

Different phase relations may correspond to different

cyclic symmetry groups, as seen in the Z2 �Z4 network

proposed for quadruped gaits.

1. Application: Rivalry

Wilson125 proposes a neural network model for high-

level decision-making in the brain, based on the phenomenon

of binocular rivalry. Here, conflicting images are presented

to the two eyes, and the visual system interprets this combi-

nation in sometimes surprising ways. Diekman et al.36

observed that Wilson networks are useful for understanding

rivalry itself. A Wilson network is trained on a set of signals

or patterns, and its architecture is designed to detect these

patterns and distinguish them from others. This architecture

is achieved by setting up a list of attributes, which are fea-

tures that differ between the patterns, such as color or

orientation. Each attribute can occur among a range of alter-

natives, called levels.

The monkey-text experiment of Kov�acs et al.85 demon-

strated a curious phenomenon in rivalry between the two

images of Figure 11 (left). Subjects reported percepts that

alternate, fairly randomly, between these two “mixed”

images. However, some also reported an alternation between

two “whole” images, neither of which occurred in the train-

ing set; see Figure 11 (right). Diekman et al.34,36 considered

a natural model using the Wilson network in Figure 12. This

has two attributes, each with two levels, corresponding to

which parts of the images appear in the “jigsaw” decomposi-

tion shown.

The behavior of the network is modeled by a system

of admissible ODEs, employing a specific model of the

neurophysiology known as a rate model.35,36 Here, the

state of each node is described by an activity variable and

a fatigue variable. Nodes are coupled through a gain
function.

The 4-cell network has Z2 �Z2 symmetry. Based on

this symmetry, Diekman and Golubitsky34 remark that

equivariant Hopf bifurcation predicts four distinct periodic

states. In two, cells in each column oscillate in synchrony. In

the other two, cells in each column oscillate a half period out

of phase.

The inhibitory connections in the model network sup-

press the states in which the nodes in a column are synchro-

nous. The two remaining states are those with half-period

phase shifts on diagonal pairs (the training set) or on left/

right pairs (the other percepts reported in experiments).

These derived patterns are predicted in many similar rivalry

experiments.

Diekman et al.35 have also applied quotient networks to

a class of Wilson models of rivalry.

C. Network H/K theorems

There are several contexts in which analogs of the H/K
Theorem can be posed for hyperbolic periodic solutions on

networks. First, determine the pairs H � K when the net-

work has symmetry for equivariant vector fields or specifi-

cally for admissible vector fields. Second, for admissible

vector fields, classify the H � K pairs or patterns of rigid

phase shift synchrony. Third, the question can be investi-

gated for several different cell phase spaces, with different

answers.

For a symmetric network, H and K can be defined as the

setwise and pointwise symmetry groups of the periodic state

concerned. Jos�ıc and T€or€ok82 considered the case when the

cell phase spaces are Rn for n	 2, where the result is essen-

tially the same as the H/K Theorem for equivariant dynam-

ics. They also observed that the answers change for cell

phase spaces S
1 (phase oscillators).

For general path-connected networks, the Rigid

Synchrony Theorem of Ref. 59 suggests that for a given peri-

odic state, the role of K should be played by the balanced

coloring determined by synchrony. By Stewart and

Parker,117 the corresponding quotient network (the contrac-

tion corresponding to “mod K”) possesses global cyclic
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group symmetry. This cyclic group plays the role of H, since

it determines both the setwise symmetries of the periodic

state, and the possible rigid phase shifts.

The relation between these various generalizations of

the H/K Theorem are discussed in Ref. 55, but are not yet

fully understood.

IX. ANOMALOUS GROWTH IN NETWORK HOPF
BIFURCATION

Network structure affects generic bifurcations as well as

dynamics. Unexpected singularity-theoretic degeneracies

can occur in steady-state bifurcation for some net-

works.113,114 These lead to non-generic growth rates for

bifurcating branches.

One of the examples of strange network phenomena dis-

cussed in Ref. 56 is Hopf bifurcation in a 3-cell feed-forward

network, Figure 13. In a general dynamical system, generic

Hopf bifurcation creates a bifurcating branch of equilibria

whose amplitude grows like k1=2 where k is the bifurcation

parameter. However, the growth rate is different for generic

Hopf bifurcation in this 3-cell network.

The feed-forward architecture implies that the Jacobian

has a nontrivial nilpotent part at Hopf bifurcation, and a non-

rigorous analysis in Ref. 56 suggests the occurrence of an

anomalous growth rate. Elmhirst and Golubitsky38 confirm

this conjecture rigorously. They prove that under suitable

generic conditions, there is a bifurcating branch of periodic

states in which cell 1 is steady, the amplitude of the oscilla-

tion of cell 2 grows like k1=2, where k is the bifurcation pa-

rameter, and the amplitude of the oscillation of cell 3 has an

anomalous growth rate of k1=6. This increases more steeply

than k1=2 near the origin. An alternative treatment using cen-

ter manifold theory is developed in Ref. 57. There is an anal-

ogous system with a feed-forward chain of m nodes.

Synchrony-breaking Hopf bifurcation then leads to solutions

that grow k1=18 in the fourth node, k1=54 in the fifth node, etc.

For a proof see Rink and Sanders.102

A potential application of this behavior is to the design

of a nonlinear filter which selects oscillations close to a spe-

cific frequency and amplifies them.58 Experimental proof-of-

concept can be found in McCullen et al.90

X. OTHER CONTEXTS

In closing, it should be made clear that there are many

other contexts in which periodic states arise in a nonlinear

dynamical system and can be analyzed using a similarly

Thomist approach. We mention a few for completeness.

The Takens–Bogdanov bifurcation is a codimension-2

bifurcation involving a periodic cycle and a homoclinic

connection, associated with a zero critical eigenvalue in a

nontrivial 2� 2 Jordan block (nonzero nilpotent part).

Analogous bifurcations can be studied for symmetric

ODEs.

Bifurcations from rotating waves and other relative

equilibria have been studied for compact groups by Field,44

Krupa,86 and Vanderbauwhede et al.123 The analysis

involves a normal/tangential decomposition of the vector

field in a tubular neighborhood of the relative equilibrium.

FIG. 11. Monkey-text experiment. Left: training set. Right: percepts reported by some subjects. Reproduced by permission from Kov�acs et al. Proc. Nat.

Acad. Sci. U. S. A. 93, 15508 (1996). Copyright 1996 by National Academy of Sciences of the United States of America.

FIG. 12. Monkey-text experiment. Left: “jigsaw” decomposition of images.

Right: Wilson network model. Vertical connections are inhibitory to create

“winner takes all” choices. Diagonal connections are excitatory, to represent

the training patterns. FIG. 13. A 3-cell feed-forward network.
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The results of Barkley discussed in Sec. VII fit into this

framework.

There are interesting similarities between periodic states

in a Hamiltonian dynamical system, arising via the Liapunov

Center Theorem and its generalization the Moser–Weinstein

Theorem, and symmetric Hopf bifurcation. See Montaldi

et al.91–94

Discrete time symmetric dynamics—iteration of equiv-

ariant mappings—can generate periodic orbits, along with

more complex dynamics such as symmetric chaos, Chossat

and Golubitsky23,24 and Field and Golubitsky.45

Spatio-temporal symmetries of periodic states in forced

symmetric systems have been studied in special cases, Ben-

Tal.12 The beginnings of a general theory can be found in

Rosas.103

Finally, singularities in adaptive game theory124 require

yet another variant of Thom’s singularity theory, also cov-

ered by Damon’s general theory.32
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