
Physica D 238 (2009) 137–155

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Bifurcations from regular quotient networks: A first insight
Manuela A.D. Aguiar a,b, Ana Paula S. Dias a,c,∗, Martin Golubitsky d, Maria da Conceição A. Leite e
a Centro de Matemática da Universidade do Porto,1 Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
b Faculdade de Economia, Universidade do Porto, Rua Dr Roberto Frias, 4200-464 Porto, Portugal
c Dep. de Matemática Pura, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
dMathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
e Department of Mathematics, Purdue University, West Lafayette, IN, USA

a r t i c l e i n f o

Article history:
Received 11 October 2007
Received in revised form
7 July 2008
Accepted 1 October 2008
Available online 26 October 2008
Communicated by M. Silber

Keywords:
Coupled cell network
Quotient network
Bifurcation

a b s t r a c t

We consider regular (identical-edge identical-node) networks whose cells can be grouped into classes
by an equivalence relation. The identification of cells in the same class determines a new network —
the quotient network. In terms of the dynamics, this corresponds to restricting the coupled cell systems
associated with a network to flow-invariant subspaces given by equality of certain cell coordinates.
Assuming a bifurcation occurs for a coupled cell system restricted to the quotient network, we ask how
that bifurcation lifts to the overall space. Surprisingly, for certain networks, new branches of solutions
occur besides the ones that occur in the quotient network. To investigate this phenomenon we develop
a systematic method that enumerates all networks with a given quotient. We also prove necessary
conditions for the existence of solution branches not predicted by the quotient.We then apply ourmethod
to two particular quotient networks; namely, two- and three-cell bidirectional rings. We show there are
no additional bifurcating solution branches when the quotient network is a two-cell bidirectional ring.
However, two of the 12 five-cell networks that have the three-cell bidirectional ring as a quotient network
exhibit bifurcating solutions that do not occur in the quotient itself. Thus, network architecture sometimes
forces the existence of bifurcating branches in addition to the ones determined by the quotient.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A theory for coupled cell networks has been developed in [12,8,7]. In this theory a cell is a system of ordinary differential equations
and a coupled cell network is a collection of interacting cells. The network architecture is a directed graph whose nodes represent cells
and whose arrows represent couplings between cells. Such networks form an interesting class of dynamical systems that have been used
as models in different areas such as biology, economics, physics and ecology. See, for example, Strogatz [13], Wang [14], Stewart [11],
Lieberman et al. [10], Boccaletti et al. [3] and references therein.
In this paper, we only consider regular networks: networks where each node has the same differential equation (up to reordering

of coordinates) and one kind of coupling. The general theory associates a class of admissible vector fields to each network. In a regular
network let xj ∈ Rk be the coordinates of the jth cell, where k is the dimension of the internal dynamics in each cell. The jth coordinate of
an admissible vector field of an n-cell regular network has the form

ẋj = f (xj, xσj(1), . . . , xσj(v)) j = 1, . . . , n (1.1)

where v is the valency of the network, σj(i) is the index of the ith cell that couples to cell j. The overbar indicates the coupling coordinates
are invariant under permutations of the coupling cells; this invariance is assumed since there is just one kind of coupling. Since there is
only one kind of node, we assume that the function f : Rk × (Rk)v → Rk is independent of j. In general, the theory permits self-coupling
(σj(i) = j for some i and j) andmultiple arrows (σj(i1) = σj(i2) for some i1 6= i2 and j).
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Fig. 1. Three-cell bidirectional ring.

Fig. 2. Two-cell quotient of the three-cell bidirectional ring.

The three-cell bidirectional ring pictured in Fig. 1 is an example of a regular network architecture and the admissible vector fields have
the form

ẋ1 = f (x1, x2, x3)
ẋ2 = f (x2, x1, x3)
ẋ3 = f (x3, x1, x2)

(1.2)

where the overline indicates that

f (a, b, c) = f (a, c, b). (1.3)

Note that the bidirectional ring has S3-symmetry.
In this paper, we discuss a surprising feature of synchrony-breaking bifurcations in certain regular networks. To describe this featurewe

need to define synchrony subspaces. A polydiagonal is a subspace of the network phase space (Rk)n that is defined by equalities between cell
coordinates; that is, xi = xj for certain pairs of cells i, j. A synchrony subspace is a polydiagonal that is flow-invariant for every admissible
vector field. It follows that solutions whose initial conditions are in∆ stay inside∆ for all time. Solutions in∆ are (partially) synchronous
since xi(t) = xj(t) for all time t . It is straightforward to note that setting all coordinates equal in a regular network yields a synchrony
subspace. Let

∆0 = {(x, . . . , x) ∈ (Rk)n}.

We assume that an admissible vector field F has a (fully) synchronous equilibrium X0 ∈ ∆0. Let Ec be the center subspace of (dF)X0 .
The equilibrium X0 has a synchrony-breaking bifurcation if Ec \∆0 is nonempty; that is, there is a vector in Ec that is not in∆0.
Suppose that ∆ ⊃ ∆0 is another synchrony subspace and that F |∆ has a synchrony-breaking bifurcation. One might expect that all

bifurcating solutions remain inside∆. In this paper we show that there are five-cell examples where this supposition is false, and in those
cases we analyze the actual bifurcations.
To understand this observation more fully we need to describe more of the general theory. We can associate to each polydiagonal ∆

a coloring of the network nodes. In this coloring two cells i, j have the same color precisely when xi = xj is part of the definition of ∆.
Theorem 4.3 of [8] states that ∆ is a synchrony-subspace if and only if the coloring associated to ∆ is balanced. For regular networks,
a coloring is balanced if any pair of cells with color r have the same number of inputs from cells of color b for each b. An example of a
balanced coloring of the bidirectional ring is given in Fig. 2 (left). Note that each blue cell has one white cell and one blue cell as inputs.
Hence x2 = x3 is a synchrony subspace.
The restriction of an admissible vector field (1.2) to the synchrony subspace x2 = x3 has the form

ẋ1 = f (x1, x2, x2)
ẋ2 = f (x2, x1, x2).

(1.4)

These vector fields are admissible with respect to the network (withmultiple arrows and self-coupling) in Fig. 2 (right). Theorem 5.2 of [8]
shows that for any synchrony subspace ∆ there is always a network, called the quotient network, such that the restrictions of admissible
vector fields to ∆ are the admissible vector fields of the quotient network. Observe that a given network can be the quotient network of
many different networks. However, a quotient network is a regular network if, and only if, the original network is a regular network. Part
of this paper will address the ‘inverse’ problem: Given a regular network Q , enumerate the networks G that have Q as a quotient network.
We develop techniques to enumerate such networks and point out that these techniques can also be useful when trying to find networks
with pre-defined dynamics. See Aguiar et al. [2].
As noted, dynamics on a quotient network describe (partially) synchronous dynamics on the whole network. Specifically, admissible

vector fields associated with the two-cell network in Fig. 2 (right) describe the dynamics of the three-cell network in Fig. 2 (left) in
which cells 2 and 3 form a subset of cells or a population of cells that move synchronously. More generally, a balanced coloring enables
us to partition the cells in a network into subsets of cells or subpopulations of cells, where the cells within each subpopulation move
synchronously. From this perspective, it seems surprising that bifurcationswithin the quotient networkmay force, because of the network
architecture of the larger network, solutions in which these subpopulations do not move synchronously. However, we will present
examples of five-cell networks with three-cell bidirectional rings as quotients where bifurcations within the ring dynamics leads to
solutions that break synchrony in the five-cell network.
The adjacency matrix A of a regular network G is the matrix whose i, j entry is the number of arrows that connect cell j to cell i. Results

in [9,5] relate the eigenvalues of the Jacobian JG of a coupled cell system at X0 with the eigenvalues of A. In order for bifurcations within
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Fig. 3. Two-cell bidirectional ring.

Fig. 4. Four-cell networks with the three-cell bidirectional ring as a quotient network.

the quotient network Q to lead to nonsynchronous solutions in the larger network G the center subspace of JG must be larger than the
center subspace of JQ . We present results that relate the eigenvalues of the adjacency matrix of the network Gwith those of the adjacency
matrix of the quotient Q . These results provide an easy way to identify networks G for which the dimension of the center subspaces of JG
and JQ are the same.
We organize the paper as follows. In Section 2 we develop a general method to enumerate all networks that admit a given quotient.

Moreover, we relate the eigenvalue structure of the adjacency matrices of such networks with the adjacency matrix corresponding to the
quotient.
In Section 3.1, we enumerate connected networks that admit the two-cell bidirectional ring of Fig. 3 as a quotient network. We show

that codimension-one steady-state synchrony-breaking bifurcations for coupled cell systems associated with that quotient do not lead to
new branches besides the ones guaranteed by the quotient.
In Section 3.2 we enumerate the four and five-cell networks admitting the three-cell bidirectional ring quotient network. Up to

isomorphism, there are two four-cell and twelve five-cell networks. See Figs. 4 and 5. In Theorem 3.2we show that only two such networks
can exhibit branches of steady-state solutions not predicted by bifurcation in the three-cell bidirectional ring. In Theorems 3.4 and 3.5 we
show that, generically, the coupled cell systems associated with networks 4 and 6 in Fig. 5 have additional branches. The proofs of these
theorems involve long computations which are given in Appendices A and B.

2. Networks with a quotient network

In this paper we consider regular networks— networks with one kind of node and one kind of coupling, and where the number of edges
directed to each cell is equal for all cells.
For a valency l regular network G and a balanced equivalence relation FG on its cells, the quotient network GFG is also a valency l regular

network defined naturally as follows: the set of cells of GFG is formed by one cell of each color (each FG-equivalence class) and the edges
in the quotient network are the projection of edges in the original network. Specifically, given a cell in the quotient, representing the cells
with a color i, the number of edges directed from a cell representing the cells with a color j to that cell is equal to the number of edges that
any cell with color i receives from cells with color j in the network G.
In this section, we derive general results concerning the enumeration of all networks that admit a given quotient and the eigenvalue

structure of the corresponding adjacency matrices in order to address the main question of the paper.

2.1. Enumeration

Given a regular network Q with p cells we present a general method to enumerate the n-cell (regular) networks, where n > p, that
admit Q as a quotient network. This is equivalent to determining the n-cell networks G that admit a balanced equivalence relation FG such
that Q is the quotient network of G by FG.
In what follows we denote by AG the n × n adjacency matrix of an n-cell regular network G with cells C = {1, . . . , n}. The ij-entry of

AG is the number of directed edges from cell j to cell i.

Definition 2.1. Let G be a regular coupled cell network with n cells C = {1, . . . , n} and let AG be the corresponding adjacency matrix
whose columns we denote by AG1 , . . . , AGn . Let FG be an equivalence relation on C with classes I1, . . . , Ip. Denote by AG the n× p-matrix
whose columns C1, . . . , Cp are defined by

Cj =
∑
i∈Ij

AGi .

We say that the matrix AG is FG-balanced if for each j = 1, . . . , p, the rows for i ∈ Ij of AG are identical.

Proposition 2.2. Let G be an n-cell regular network and AG the corresponding adjacency matrix. An equivalence relation FG on the set of cells
of G is balanced if, and only if, the matrix AG is FG-balanced.
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Fig. 5. Five-cell networks with the three-cell bidirectional ring as a quotient network.

Proof. The definition of balanced equivalence relation in terms of the adjacency matrix associated with the network gives the result. To
see that, letG be a regular coupled cell networkwith n cells, sayC = {1, . . . , n}, AG the corresponding n×n adjacencymatrixwith columns
AG1 , . . . , AGn , and FG a balanced equivalence relation on C with classes I1, . . . , Ip. Let j ∈ {1, . . . , p}. Now observe that each entry i in the
jth column of the matrix AG as defined in Definition 2.1 represents the number of cells in the class Ij that are tail cells of edges with head
cell i. Moreover, because FG is balanced it follows that if i, i′ belong to the same class, then the corresponding entries in column j of AG are
equal. �

Proposition 2.3. Let G be a regular network, AG the corresponding adjacency matrix and FG a balanced equivalence relation on the set of cells of
G with classes I1, . . . , Ip. For each j = 1, . . . , p, choose any ji ∈ Ij. Then the adjacency matrix of the quotient network GFG is the p× p submatrix
of AG whose jth row is the row ji of AG.

Proof. By Proposition 2.2, since FG is balanced, the matrix AG is balanced. Now the definition of quotient network leads to the above
result. �

Definition 2.4. Given t ∈ Z+0 and r, s ∈ N define

Mrs(t) =

{
M = [mij] 1≤i≤r,

1≤j≤s
∈ Mr×s(Z+0 ) :

s∑
j=1

mij = t, i = 1, . . . , r

}
. �

Theorem 2.5. Let Q be a regular network with p cells and adjacency matrix AQ = [qij]1≤i,j≤p. A regular network G with n cells, say
C = {1, . . . , n}, admits the quotient network Q if and only if there is a partition of C into p-parts, say I1, . . . , Ip, such that, after relabeling the
cells if necessary, the adjacency matrix AG of G has the following block structure:Q11 · · · Q1p... · · ·

...
Qp1 · · · Qpp
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where

Qij ∈ M#Ii #Ij(qij), for i, j = 1, . . . , p.

Here #Il denotes the cardinality of the set Il.

Proof. By definition, an n-cell regular network G admits a quotient network Q if and only if there is some balanced equivalence relation
FG on the set of cells of G such that Q is the quotient of G by FG. Moreover, by Proposition 2.2, the corresponding adjacency matrix is
FG-balanced and by Proposition 2.3, up to an isomorphism of the cells, the adjacency matrix of G has the above form. �

Using Theorem 2.5, we describe, below, an algorithm that enumerates all the regular networks G with n cells admitting a given
regular quotient network Q with p cells. It starts by partitioning the set {1, . . . , n} into all possible parts with sizes d1, . . . , dp such that
0 < d1 ≤ · · · ≤ dp. For each of these partitions, it enumerates the adjacencymatrices of all non-isomorphic connected networks that admit
a balanced equivalence coloring with equivalence classes of sizes d1, . . . , dp such that the corresponding quotient is Q . In this algorithm,
we use two subroutines. One is to check if a given network is isomorphic to any of the networks of a given set of networks. The other is to
check if a network is connected.

Algorithm 2.6. Given a regular network Q with p cells and adjacency matrix AQ = [qij]1≤i,j≤p and a positive integer n > p, this algorithm
finds the set SG of the adjacency matrices of all non-isomorphic connected networks with n cells admitting the quotient Q .
1. [Compute the Set of Partitions] Compute the set P n of vectors (d1, . . . , dp) such that 0 < d1 ≤ · · · ≤ dp and d1 + · · · + dp = n.
2. [Initialize] Set SG = ∅.
3. [Compute Sub-blocks for Each Partition] Given (d1, . . . , dp) ∈ P n do the following: set P n = P n \ {(d1, . . . , dp)}; for i, j = 1, . . . , p
computeMdi dj(qij).

4. [Actualize AG] For each (Q11, . . . ,Qpp) ∈ Md1 d1(q11)× · · · ×Mdp dp(qpp) do the following: let

M =

Q11 · · · Q1p... · · ·
...

Qp1 · · · Qpp

 ;
if Connected(M) = 1 then: if CheckIsomorphic(SG,M) = 0 then SG = SG ∪ {M}.

5. [Finish?] If P n = ∅ then output SG and terminate the algorithm. Otherwise go to step 3. �

The next algorithm determines if a n×n squarematrixM is the adjacencymatrix of a connected n-cell network. Note that the graph can
have multiple arrows. Moreover, a network is connected if, and only if, given any two distinct cells, there is a path formed by undirected
edges connecting them. Thus, we start by forming the connection matrix C = [cij]1≤i,j≤n defined in the following way: (i) for all i, j we
have cij = cji; cij = 1 if cell j has at least one directed edge to i or cell j has at least one directed edge to cell i, and zero otherwise; (ii) cii = 1
for all i. Then the graph is connected if, and only if, all the entries of Cn are nonzero.

Algorithm 2.7 (Connected). Connected(M) verifies if an n×n square matrixM is the adjacencymatrix of a connected regular network. Let
A = [aij]1≤i,j≤n = M+M t + Idn and C = [cij]1≤i,j≤n where each cij is 0 if aij = 0 and 1 otherwise. If Cn has zero entries returns 0, otherwise
returns 1. �

Algorithm 2.8 (CheckIsomorphic). CheckIsomorphic(SG,M) verifies if an n×n squarematrixM is the adjacencymatrix of a regular network
isomorphic to one of the regular networks that have adjacencymatrix in SG. If for somematrix A ∈ SG there is a permutationmatrix Pσ ∈ Sn
such that

M = PσAP−1σ
then returns 1. Otherwise returns 0. �

2.2. Eigenvalue structure of adjacency matrices

We now present a few properties related to the structure of the adjacency matrices of regular networks admitting balanced colorings.
In the cases where the quotients associated with the balanced colorings have no self-coupling, we can conclude some important remarks.

Theorem 2.9. Let G be an n-cell regular network. Let FG be a balanced equivalence relation on the set of cells of G with p classes. Let AQ be the
p× p adjacency matrix of the quotient network Q of G by FG.
Then the adjacency matrix of G is similar to a matrix with the following block structure:[

AQ R
0(n−p)×p B

]
(2.1)

where R is a p× (n− p)matrix and B is a (n− p)× (n− p)matrix.

Proof. Let AG be the adjacencymatrix associated to network G. We can interpret AG as thematrix of a linear G-admissible vector field with
respect to the canonical basis of Rn, say (e1, . . . , en). If

∆FG = {x ∈ Rn : i FG j⇒ xi = xj}

then AG(∆FG) ⊆ ∆FG. Moreover
(∑

i∈I1
ei, . . . ,

∑
i∈Ip ei

)
is a basis of∆FG and AG|∆FG with respect to this basis is the adjacency matrix AQ of

the quotient networkQ of G by FG. Denote by I1, . . . , Ip the FG-equivalence classes. Choose sj ∈ Ij, j = 1, . . . , p and let S = C \{s1, . . . , sp}.
We can complete the above basis of∆FG with the elements of {ei : i ∈ S} obtaining a basis of Rn. The matrix AG with respect to that basis
has the structure (2.1). �
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Remark 2.10. Wemake a few observations related to the above theorem when FG determines a quotient network with no self-coupling.
That is, when there are no connections between cells in the same FG-class.

(a) Following the proof of the theoremwe can complete the basis of∆FG with the elements of {ei : i ∈ S} choosing any ordering in S such
that the cells in the same FG-equivalence class are contiguous. In this case, B is an (n− p)× (n− p)matrix with diagonal blocks that
are null square matrices of order #Ij − 1, for all j ∈ {1, . . . , p} such that #Ij > 1.

(b) Consider the special case where FG is a balanced equivalence relation on the set of cells of Gwith classes I1, . . . , In−1 such that #Ij = 2
for some j = 1, . . . , n − 1 and #Ii = 1 for i 6= j. Then the eigenvalues of the adjacency matrix associated to G are the eigenvalues of
AQ plus the zero eigenvalue.

(c) More generally, suppose FG is a balanced equivalence relation on the set of cells of Gwith classes I1, . . . , In−s such that #Ij = s+ 1 for
some j = 1, . . . , n − s and #Ii = 1 for i 6= j. Then the eigenvalues of the adjacency matrix associated to G are the eigenvalues of the
matrix AQ , with the same algebraic multiplicity, plus the zero eigenvalue, with algebraic multiplicity s. �

Algorithm 2.11. Given an n-cell regular network G with adjacency matrix AG and a balanced equivalence relation FG on the set of cells
of G with classes I1, . . . , Ip such that ij = #Ij, j = 1, . . . , p. This algorithm computes a matrix similar to AG and with the block structure
(2.1).

1. For each equivalence class Il, l = 1, . . . , p substitute the first column of thematrix AG indexed by a cell in Il by the sumof all the columns
of AG indexed by cells in Il.

2. Permute the columns of AG such that the first column is the sumof the columns for class I1, the second column is the sumof the columns
for class I2, and so on until column p. The next columns are the remaining columns of AG.

3. Permute the rows of AG such that the first row is the first row of the matrix AG indexed by a cell in I1, the second row is the first row of
the matrix AG indexed by a cell in I2, and so on until row p. The next rows are the remaining rows of AG indexed by cells in I1, then the
remaining rows of AG indexed by cells in I2, and so on until the remaining rows of AG indexed by cells in Ip.

4. According to Proposition 2.3 the p × p submatrix of AG with the first p rows and the first p columns of AG is the matrix AQ associated
with the quotient network Q and the first p columns of the rows indexed by cells in the same equivalence class are identical.

5. For each equivalence class Il, l = 1, . . . , p subtract the first row of thematrix AG indexed by a cell in Il to all the other rows of AG indexed
by cells in Il. This way the first p columns of the last n− p rows of AG have null entries. �

Remark 2.12. If FG determines a quotient network with no self-coupling, the matrix B in (2.1) will have diagonal blocks corresponding to
null square matrices if, in step 2 of the above algorithm, the last n − p columns are ordered such that the columns of AG indexed by cells
in I1 appear first, then followed by the columns of AG indexed by cells in I2, and so on. �

Theorem 2.13. Let Q be a p-cell regular network with no self-coupling and G an n-cell network, with n > p, that admits Q as a quotient
network.
Assume there are networks Q0 = Q , Q1, . . . ,Qn−p = G such that for j = 1, . . . , n − p, Qj has p + j cells and Qj admits Qj−1 as a quotient

network. Then the eigenvalues of the adjacency matrix associated to G are the eigenvalues of the adjacency matrix associated to the quotient
network Q , with the same algebraic multiplicity, plus the eigenvalue zero, with algebraic multiplicity n− p.

Proof. The result follows from Theorem 2.9 and Remark 2.10. �

2.3. Codimension-one bifurcations

In Proposition 2.14, which is a generalization of [9, Proposition 3.1], we use the eigenvalue structure of adjacency matrices of networks
G admitting a quotient Q to describe the linearization J of the admissible vector fields for the networks at the bifurcation point.
Consider an n-cell regular network G and denote the total phase space by P = (Rk)n where Rk is the phase space of each cell. Recall

that the coupled cell systems associated to such networks have the form Ẋ = F(X, λ), where X = (x1, . . . , xn) ∈ P , λ ∈ R and the n
coordinate functions of F are defined by the same function f . As mentioned above, we assume that there exists a synchronous equilibrium
in the synchronous subspace ∆0 = {(x, x, . . . , x) : x ∈ Rk}, which we may assume, after a change of coordinates, is at the origin. Let
J = (dF)(0,0) and Jc = J|Ec , where Ec denotes the center subspace.
Let α = (dxi f )0 be the linearized internal dynamics and let β = (dxj f )0 be the linearized coupling. Note that α and β are k× kmatrices.

Denote the eigenvalues of A byµ1, . . . , µnwhereµ1 corresponds to the synchrony eigenvector (1, . . . , 1) ∈ 40 and is equal to the valency
of the network.
The proof of the following proposition is similar to the one given for Proposition 3.1 in [9].

Proposition 2.14. The eigenvalues of J are the union of the eigenvalues of the k × k matrices α + µjβ , j = 1, . . . , n, including algebraic
multiplicity.

The eigenvalues of each of the nmatrices α + µjβ of order k× k are generically simple. So the possible steady-state bifurcation types
do not depend on k, and we assume k = 1. In this case the n × n matrix J has n eigenvalues γj = α + µjβ , where α and β are 1 × 1
matrices. Say, γ1 corresponds to the synchrony eigenvector (1, . . . , 1) ∈ 40.
Codimension-one bifurcations divide into steady-state (Jc has a zero eigenvalue) and Hopf bifurcation (Jc has purely imaginary

eigenvalues). Each of these bifurcation types divides into synchrony-preserving (Ec ⊂ 40) and synchrony-breaking (Ec 6⊂ 40). We focus in
this paper on synchrony-breaking steady-state bifurcations from a synchronous equilibrium.
Suppose∆ ⊃ ∆0 is a synchrony subspace of the total phase space. Then Jc(∆∩ Ec) ⊆ ∆∩ Ec . Denote the quotient network associated

to ∆ by Q . Assume a codimension-one steady-state bifurcation occurs in a coupled cell system associated to Q (and hence for G). In this
paper we investigate whether this bifurcation also gives rise to branches of steady-state solutions outside of∆.
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3. Two sample cases

In this section we apply our results to regular quotient networks with two and three cells.

3.1. Networks with two-cell bidirectional ring quotient

Following the methods in Section 2.1, we now describe all connected networks G that admit the two-cell bidirectional ring (see Fig. 3)
as a quotient network. We prove, then, that for any such G, the synchrony-breaking bifurcations that occur in G lead only to branches of
solutions guaranteed by the quotient two-cell network.
The adjacency matrix of the two-cell bidirectional ring quotient network Q is

AQ =
[
0 1
1 0

]
.

An n-cell network admitting Q as quotient has a balanced coloring of two colors such that one group I1, say of n1 cells, receives one color,
and the other group I2, say with n2 cells, receives the other color. Thus n1+ n2 = n. Moreover, in order for the coloring to be balanced and
lead to the given quotient Q , cells inside each group do not connect between them and each cell of one group receives an edge from a cell
of the other group. The graphs corresponding to such networks are called bipartite graphs. The adjacency matrix of any such network has
the form[

0 Q12
Q21 0

]
where each Qij is an ni × nj-matrix having rows with one nonzero entry equal to 1. Here, we are enumerating so that the cells from group
I1 appear first. Coupled cell systems consistent with the quotient network have the form

ẋ1 = f (x1, x2, λ)
ẋ2 = f (x2, x1, λ)

(3.6)

where x1, x2 ∈ R and λ ∈ R is the bifurcation parameter. As mentioned in Section 2.3, there is no loss of generality in assuming that each
cell-phase is one-dimensional. The eigenvalues of the adjacency matrix of the two-cell ring are 1,−1 and the eigenvalues of the Jacobian
of the associated systems at the origin are fu(0)+ fv(0), fu(0)− fv(0)where fu(0), fv(0) denote the derivative of f with respect to the first
and second variable, respectively, evaluated at the origin. (Recall Proposition 2.14.)
Assuming f (0, 0, λ) = 0 and fu(0) − fv(0) = 0, generically we have a codimension-one steady-state synchrony-breaking bifurcation

from the trivial equilibrium to a branch of steady-state solutions satisfying x1 6= x2. Observe that the critical value fu(0)−fv(0) is associated
with the eigenvalue−1 of the adjacencymatrix of the two-cell directed ring. Now, any coupled cell systemadmitting this quotient network
with the restriction to the synchronous subspace given by (3.6) admits this branch of solutions.
The first step to analyze if there are additional branches outside the synchronous subspace is to determine the multiplicity of the

critical eigenvalue fu(0) − fv(0). This multiplicity is greater than one if, and only if, the adjacency matrix AG of G has the eigenvalue −1
with multiplicity greater than one. We show that this cannot happen.
Observe that, as any G has a bipartite structure, we necessarily have an l-cycle where l ≥ 2: Just fix one cell in one group, and call it a1

of group I1. Then there is a cell of group I2, say b2, that has a directed edge to a1. Again, there is a cell in group I1 that has a directed edge
to cell b2. If it is a1, we have a 2-cycle. If not, suppose it is a2. We repeat this process. There will be a stage where, necessarily, a cell in one
group that has already appeared will connect to a cell in the other group and so close an l-cycle where l ≥ 2.
Now, ifG contains two ormore cycles, again because any cell receives only one edge fromanother cell, these cycles cannot receive inputs

from other cells and they can only send inputs. It follows, then, that the graph is disconnected, which we exclude from our discussion.
Therefore, if G is connected, we can enumerate the cells in the graph G such that the adjacencymatrix AG has the following block structure:[

Cl 0
B1 B2

]
where Cl corresponds to the adjacency matrix of an l-cycle, B1 is an (n− l)× l-matrix and B2 is an (n− l)× (n− l) lower triangular matrix
with zero entries at the diagonal.
To see the structure of the matrix B2 we should consider the subnetwork consisting of the cells not belonging to the l-cycle and the

connections between them. There is at least one cell in the subnetwork that does not receive any connection from the other cells in the
subnetwork and so the matrix B2 has at least one row with all the entries equal to zero. The cells in the subnetwork can be rearranged
into groups such that the cells in each group are ‘sequentially connected’. In the intersection of any two groups of cells there is at most
one cell. That common cell receives at most one connection from only one of the cell groups. Thus, there is an ordering of the cells in the
subnetwork such that the adjacency matrix B2 is a lower triangular matrix with zero entries at the diagonal. So, the matrix B2 has the
eigenvalue zero with (n− l) algebraic multiplicity.
Since AQ has eigenvalues±1, it follows that Cl has eigenvalues±1. Moreover, as Cl corresponds to an l-cycle permutation matrix, the

eigenvalues are the lth roots of unity. Thus l is even and the real parts of the other eigenvalues of Cl are not equal to−1. Therefore, AG has
the eigenvalue−1 with algebraic multiplicity one and it has no other eigenvalues with real part−1. Thus, the algebraic multiplicity of the
critical eigenvalue fu(0)− fv(0) of the Jacobian at the origin for the coupled cell systems associated with G is one, and there are no other
eigenvalues whose real part equal to fu(0)− fv(0).



144 M.A.D. Aguiar et al. / Physica D 238 (2009) 137–155

3.2. Networks with three-cell bidirectional ring quotient

We now consider the three-cell bidirectional ring Q in Fig. 1. We observe that Q is the only S3-symmetric three-cell network which
has neither self-coupling nor multiple arrows. (All the other three-cell S3-symmetric networks are ODE-equivalent to Q in the sense that
they all generate the same space of admissible vector fields, see Dias and Stewart [4]. Moreover, Q has minimal number of edges among
all such networks. Following Aguiar and Dias [1], Q is theminimal network of the ODE-class.)

Five-cell networks: Enumeration
Using the method described in Section 2.1 we find, up to isomorphism, the four-cell and five-cell networks admitting the quotient

Q . In Theorem 3.1 we show that there are twelve such five-cell networks, see Fig. 5. Analogous computations prove the existence, up to
isomorphism, of two four-cell networks admitting the quotient Q , see Fig. 4.

Theorem 3.1. Let G be a five-cell network. The network G admits the three-cell bidirectional ring quotient network Q if, and only if, it is
isomorphic to one of the twelve coupled cell networks in Fig. 5.

Proof. We start by observing that, by definition, a network G has the three-cell bidirectional ring quotient network Q if, and only if, Q is
the quotient of G by a balanced equivalence relation FG on the set of the five cells of G having three equivalence classes. Say I1, I2, I3.
Let C = {1, 2, 3, 4, 5} be the set of cells of G and A = [aij]1≤i,j≤5 the corresponding adjacency matrix. Let AQ = [qij]1≤i,j≤3 be the

adjacency matrix of the quotient network Q .
By Theorem 2.5, relabeling the cells if necessary, the adjacency matrix A of G satisfies:

A =

[Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

]
where

Qij ∈ M#Ii #Ij(qij), for i, j = 1, . . . , 3.

As the quotient network Q has no self-coupling, that is, qii = 0 for i = 1, 2, 3, we have that Q11,Q22 and Q33 are zero matrices.
Up to a renumbering of the cells, there are only two possible partitions of the set of five cells into three equivalence classes, I1, I2, I3, as

follows:

(a) #I1 = #I2 = 1 and #I3 = 3,
(b) #I1 = 1 and #I2 = #I3 = 2.

We now consider the two cases separately.
Case (a)
Since q12 = 1 and q21 = 1 we have Q12 = [1] and Q21 = [1]. Moreover, the matrices Q31 and Q32 are column vectors of order 3 × 1

with all entries equal to 1 since q31 = 1 and q32 = 1. Hence, the structure of A is

A =


0 1 Q13
1 0 Q23
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 .
As the quotient network Q has valency 2, this implies that one of the entries in Q13 is 1 and the others are zero, and one of the entries

in Q23 is 1 and the others are zero. This corresponds to nine hypotheses for the matrix Awhich, up to isomorphism, correspond to the last
two matrices in Table 1, the adjacency matrices of the last two networks in Fig. 5.
Case (b)
Since q12 = 1 and q13 = 1 we have that the matrices Q12 and Q13 of order 1× 2 have one entry equal to 1 and the other entry is zero.

Without loss of generality, we can assume that Q12 = [1 0] and Q13 = [1 0]. Moreover, the matrices Q21 and Q31 are column vectors of
order 2× 1 with all entries equal to 1 since q21 = 1 and q31 = 1. This implies the following structure for A:

A =


0 1 0 1 0
1
1

0 0
0 0 Q23

1
1 Q32

0 0
0 0

 .
The valency 2 of the quotient network Q implies that

Q23,Q32 ∈
{[
1 0
1 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1
0 1

]}
which consists in sixteen hypotheses for matrix A. It is easy to see that, up to isomorphism, there are only ten hypotheses for A, the first
ten matrices in Table 1, which correspond to the adjacency matrices of the first ten networks in Fig. 5. �



M.A.D. Aguiar et al. / Physica D 238 (2009) 137–155 145

Table 1
Adjacency matrices associated to the networks in Fig. 5.

(1)


0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 1 0 0
1 0 1 0 0

 (2)


0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0

 (3)


0 1 0 1 0
1 0 0 0 1
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0



(4)


0 1 0 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

 (5)


0 1 0 1 0
1 0 0 0 1
1 0 0 1 0
1 1 0 0 0
1 0 1 0 0

 (6)


0 1 0 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0



(7)


0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 1 0 0 0
1 0 1 0 0

 (8)


0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 0

 (9)


0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 1 0 0
1 0 1 0 0



(10)


0 1 0 1 0
1 0 0 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

 (11)


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 (12)


0 1 1 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0



Five-cell networks: Codimension-one steady-state bifurcation
The coupled cell systems associated to the bidirectional ring Q of Fig. 1 satisfy

ẋ1 = f (x1, x2, x3, λ)
ẋ2 = f (x2, x1, x3, λ)
ẋ3 = f (x3, x1, x2, λ)

(3.7)

where x1, x2, x3 ∈ R, the bifurcation parameter is λ ∈ R and f (u, v, w, λ) is a smooth function. The adjacency matrix of Q is

AQ =

[0 1 1
1 0 1
1 1 0

]
with eigenvalues 2,−1,−1 and associated eigenspaces

E2 = 〈(1, 1, 1)〉, E−1 = 〈(1,−1, 0), (1, 0,−1)〉.

By Proposition 2.14 the eigenvalues of the Jacobian J at the origin, say for λ = 0, are fu(0)−2fv(0), fu(0)− fv(0) and fu(0)− fv(0). Assuming
f (0, 0, 0, λ) = 0 and fu(0) = fv(0), it is known that, generically, there are three branches of steady-state solutions bifurcating from the
trivial equilibrium. See, for example, [6, Ch 1].
We analyze the codimension-one steady-state synchrony-breaking bifurcation imposed by the same degeneracy condition for systems

associated to networks with the quotient Q . This bifurcation leads to the three bifurcating solution branches lying in the synchrony
subspace associated with Q . Additional branches can only exist for the networks with adjacency matrix admitting the eigenvalue −1
with algebraic multiplicity greater than 2. That is, the center subspace at bifurcation for the corresponding coupled cell systems is not
contained in the synchronous subspace associated with the quotient.
By Remark 2.10(b) it follows immediately that for the four-cell networks with quotient Q the algebraic multiplicity of the eigenvalue

−1 does not change and, thus, no new branches appear. As we show in the next theorem, this is not the case for only two of the five-cell
networks with quotient Q .

Theorem 3.2. Consider the coupled cell systems associated with the twelve five-cell networks (in Fig. 5) that admit the three-cell bidirectional
ring quotient network Q . Assume that a codimension-one steady-state synchrony-breaking bifurcation associated with the eigenvalue fu(0) −
fv(0) occurs for the coupled cell systems associated with Q . Then, generically, only the coupled cell systems associated with the two
networks 4 and 6 in Fig. 5 admit additional branches of steady-state solutions besides the three branches lying in the synchrony subspace
associated with Q .

Proof. As we have remarked before, the critical space of the Jacobian of the coupled cell systems at the bifurcation point is determined
by the eigenvalue structure of the adjacency matrix of the network. Recall Proposition 2.14. Specifically, the degeneracy condition
fu(0) − fv(0) = 0 corresponds to the −1 eigenvalue of the adjacency matrix of Q . Additional branches of steady-state solutions for
the five-cell coupled cell systems, besides the three branches lying in the synchrony subspace associated with Q , may arise only when the
algebraic multiplicity of the eigenvalue −1 of the adjacency matrix increases, i.e., it is greater than 2. All the five-cell networks, except
networks 4, 5, 6 of Fig. 5, admit a four-cell quotient network in Fig. 4. Hence, by Theorem 2.13, there are no new branches of steady-state
solutions for those networks. It remains to analyze the networks 4, 5, 6 in Fig. 5.
By Theorem 2.9 and Remark 2.10, if A = [aij]1≤i,j≤5 is the adjacency matrix of a five-cell network with quotient Q , then it is similar to

a matrix of the form[
AQ R
02×2 B

]
, (3.8)



146 M.A.D. Aguiar et al. / Physica D 238 (2009) 137–155

Table 2
Eigenvalues and eigenspaces of the adjacency matrix of networks 4 and 6 of Fig. 5.

Net Eigenvalues Eigenspaces

(4) 2,−1,−1,−1, 1 E2 = 〈(1, 1, 1, 1, 1)〉
E−1 = 〈(1,−1,−1, 0, 0), (1, 0, 0,−1,−1)〉
E1 = 〈(0,−1, 1, 1,−1)〉

(6) 2,−1,−1,−1, 1 E2 = 〈(1, 1, 1, 1, 1)〉
E−1 = 〈(1,−1,−1, 0, 0), (1, 0, 0,−1,−1), (1, 0,−1,−1, 0)〉
E1 = 〈(0, 0, 1, 0, 1)〉

where AQ is the 3× 3 adjacency matrix of the bidirectional ring Q of Fig. 1 and

B =
[

0 a35 − a25
a53 − a43 0

]
. (3.9)

The two eigenvalues of B depend on whether cell 3 does or does not connect to cells 4 or 5 and whether cell 5 does or does not connect
to cells 2 or 3. Moreover, they are both zero or symmetric with values±1 or±i, since the trace of B is zero.
For network 5 the matrix B has eigenvalues ±i. For the networks 4 and 6 it has eigenvalues ±1. So the algebraic multiplicity of the

eigenvalue −1 increases only for networks 4 and 6. We prove the generic existence of additional branches of steady-state solutions for
the coupled cell systems associated with these two networks in Theorems 3.4 and 3.5. �

Remark 3.3. Observe that network 4 is Z2 = 〈(24)(35)〉-symmetric and network 6 is Z2 × Z2 = 〈(24), (35)〉-symmetric. In both cases,
the symmetry implies matrix B in (3.9) to be symmetric and so to have symmetric real eigenvalues.

The eigenvalue structure for the adjacency matrices for the networks 4 and 6 is summarized in Table 2.

Network 6: Additional branches of solutions
Following the discussion given in Section 1, more precisely, using (1.1), it is straightforward to give the form of the admissible vector

fields for network 6 of Fig. 5

ẋ1 = f (x1, x2, x4, λ)
ẋ2 = f (x2, x1, x4, λ)
ẋ3 = f (x3, x1, x5, λ)
ẋ4 = f (x4, x1, x2, λ)
ẋ5 = f (x5, x1, x3, λ)

where xi ∈ R, the bifurcation parameter is λ ∈ R and f : R4 → R is smooth.
We show that bifurcations for network 6 associated to the critical eigenvalue fu(0) − fv(0) = 0 lead to nine nontrivial bifurcating

branches that are either transcritical or pitchfork.
In order to state the following results, we present a list of expressions involving the first and second derivatives of f with respect to the

first and the second variable at the origin, that we denote by fu(0), fv(0), fuu(0), etc.
Let

C = fuu(0)− 2fuv(0)− fvv(0)+ 2fvw(0) (3.10)
D = (fuuu(0)− 3fuuv(0)+ 3fuvv(0)− fvvv(0)) (3.11)
E = fuu(0)+ fvv(0)− 2fuv(0) (3.12)

F = E −
2
3

fu(0)D
fuu(0)− fvv(0)

(3.13)

G = 2D− 3
fuu(0)− fvv(0)

fu(0)
E (3.14)

L =
fvv(0)− fuu(0)+ 6fuv(0)− 6fvw(0)

fuu(0)− fvv(0)
. (3.15)

Theorem 3.4. Consider a coupled cell system associated to network 6 satisfying the following nondegeneracy conditions:

fu(0) = fv(0) 6= 0, fuλ(0)− fvλ(0) 6= 0, fuu(0)− fvv(0) 6= 0,
C 6= 0 6= F , G 6= 0 6= L.

Then, there are eight transcritical branches of solutions and one pitchfork branch of solutions bifurcating from the trivial solution. See Table 3 for
the form of the solution branches. All these solutions are unstable.

The proof of Theorem 3.4 (see Appendix A) consists basically in listing the polydiagonal subspaces of R5 that are flow-invariant by all
admissible vector fields associated with the network 6, and then by showing the existence of eight bifurcating branches of steady-state
solutions contained in those flow-invariant subspaces. Finally, we prove that, besides those branches, there is only one more branch.
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Table 3
Form of asynchronous branches of equilibria for network 6. The nonzero terms in x1, . . . , x5 indicated in the last column are the approximation at lowest order in λ. The
three first solution branches are inside the synchrony subspace, associated to the quotient bidirectional ring.

Zero eigenvalue Eigenvectors Synchrony Growth rates

fu(0)− fv(0)
(0, 0, 1, 0,−1)
(−2, 1, 1, 1, 1)
(1,−1,−1, 0, 0)

x1 = x2 = x3, x4 = x5
x1 = x4 = x5, x2 = x3
x2 = x3 = x4 = x5

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

x1 = x2 = x5, x3 = x4
x1 = x3 = x4, x2 = x5
x1 = x4, x3 = x5
x1 = x2, x3 = x5
x1 = x2 = x4 = 0
x2 = x4

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

λ λ λ λ λ

0 0 λ1/2 0 λ1/2

λ λ λ1/2 λ λ1/2

Table 4
Form of asynchronous branches of equilibria for network 4. In all solution branches, the growth rate in each coordinate x1, . . . , x5 , at lowest order in λ, is of order λ. The
three first branches of solutions are inside the synchronous subspace associated to the quotient bidirectional ring.

Zero E’value Generalized E’vectors Synchrony

fu(0)− fv(0)
(1, 1, 1,−2,−2)
(2,−1,−1,−1,−1)
(0,−1, 2,−1, 2)

x1 = x2 = x3, x4 = x5
x1 = x4 = x5, x2 = x3
x2 = x3 = x4 = x5
x2 = x4, x3 = x5
x2 = x5
x3 = x4

Network 4: Additional branches of solutions
The form of the coupled systems associated to network 4 is:

ẋ1 = f (x1, x2, x4, λ)
ẋ2 = f (x2, x1, x5, λ)
ẋ3 = f (x3, x1, x4, λ)
ẋ4 = f (x4, x1, x3, λ)
ẋ5 = f (x5, x1, x2, λ)

where we are assuming xi ∈ R, the bifurcation parameter is λ ∈ R and f : R4 → R is smooth. We show that bifurcations occurring for
these vector fields and the critical eigenvalue fu(0) − fv(0) (which has algebraic and geometric multiplicity respectively three and two)
lead to six nontrivial bifurcating solution branches that are transcritical.

Theorem 3.5. Consider a coupled cell system associated to network 4 satisfying the following nondegeneracy conditions:

fu(0) = fv(0) 6= 0, fuu(0)− fvv(0) 6= 0, fvw(0)− fuv(0) 6= 0, (3.16)

fuλ(0)− fvλ(0) 6= 0, A 6= 0, D 6= 0, (3.17)

where

A = fuu(0)− 2fuv(0)− fvv(0)+ 2fvw(0),

D =
1
2
(fuu(0)+ fvv(0)− 2fuv(0))+ fu(0)E,

E =
fvvv(0)− fuuu(0)+ 3fuuv(0)− 3fuvv(0)

3(fuu(0)− fvv(0))
.

(3.18)

Then, there are six transcritical branches of solutions bifurcating from the trivial solution. See Table 4 for the form of the solution branches.

Appendix B contains the proof of Theorem 3.5. In the proof we start by considering the polydiagonal subspaces of R5 that are flow-
invariant by all admissible vector fields associatedwith the network 4, and by computing the bifurcating branches of steady-state solutions
contained in those subspaces. We show that there are four such branches. Then we prove the existence of two more nontrivial branches.

4. Conclusions

In the first part of this paper, we obtained two general results. First, we developed an algorithm that enumerates all networks that
admit a given quotient network. Second, we found necessary conditions that identify those networks with a given quotient, that could
exhibit branches not predicted by the quotient. These conditions are given in terms of the eigenvalue structure of the adjacency matrix.
In the second part of the paper, we apply our results to two quotient networks. The intuitive answer to the question on how steady-

state bifurcations lift from the quotient network, seemed to be that, in general, there would be no additional branches of solutions for the
full network, besides the ones in the quotient. The answer turned out to be the opposite for one of the two quotient network examples
we discuss here. We show that, among all the four-cell and five-cell networks that quotient to the three-cell bidirectional ring, there are
two exhibiting bifurcating solution branches not occurring in the quotient itself. This result is interesting since it shows that sometimes
the network architecture forces additional bifurcating branches of solutions other than the ones determined by the quotient network. We
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Table 5
Symmetry and synchrony subspaces associated to the five-cell network 6 of Fig. 5.

Symmetry Z2 × Z2 = 〈(24), (35)〉

Synchrony subspaces ∆00 = {x : x2 = x4}
∆01 = {x : x3 = x5}
∆02 = {x : x1 = x2}
∆03 = {x : x1 = x4}

∆1 = {x : x2 = x3, x4 = x5}
∆2 = {x : x1 = x2 = x4} = Fix(< (124), (12) >)
∆3 = {x : x2 = x4, x3 = x5} = Fix(< (24), (35) >)
∆4 = {x : x2 = x5, x3 = x4}
∆5 = {x : x3 = x5, x1 = x4}
∆6 = {x : x1 = x2, x3 = x5}

∆11 = {x : x1 = x2 = x3, x4 = x5} ⊆ ∆1
∆12 = {x : x2 = x3, x1 = x4 = x5} ⊆ ∆1
∆13 = {x : x2 = x3 = x4 = x5} ⊆ ∆1,∆4,∆3

∆21 = {x : x1 = x2 = x4, x3 = x5} ⊆ ∆2,∆3,∆5,∆6

∆41 = {x : x1 = x2 = x5, x3 = x4} ⊆ ∆4
∆43 = {x : x1 = x3 = x4, x2 = x5} ⊆ ∆4

also show that there are no new bifurcating solution branches for the systems associated with networks having the two-cell bidirectional
ring as a quotient network.
Aswe increase the number of cells, the number of networks that have a specific quotient network increases exponentially. However, we

note thatmost of the five cell networks (nine out of twelve) admit a four cell quotient network that quotients to the three-cell bidirectional
ring. Using the results of Section 2.2 we conclude immediately that no new branches can arise for those five cell networks. This property
generalizes to networks with any number of cells. Specifically, it can easily be argued that many of the n-cell networks that quotient to
the three-cell bidirectional ring also quotient to an (n − 1)-cell network that quotients to the three-cell bidirectional ring. Recursively,
we obtain networks with n cells that admit a chain of quotient networks Qk with k cells for 3 ≤ k ≤ n − 1 such that Q3 is the three-cell
bidirectional ring. Using the results of Section 2.2 againwe conclude that no new branches arise for that chain of networks. Those networks
certainly form a big subset of all the networks that quotient to the three-cell bidirectional ring.
We remark that the two networks with five cells that quotient to the three-cell ring and have additional branches (networks 4 and

6) are symmetric. Furthermore, only the symmetry of the network 4 leaves invariant the synchrony subspace associated to the three-cell
ring. As we have proved, some of the additional solution branches of network 6 are forced by the symmetry; but the others seem not
to be explained by the symmetry. It would be interesting to clarify, in general, the relation between the existence of symmetry and the
occurrence of branches of solutions, besides the ones in the quotient.
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Appendix A. Proof of Theorem 3.4

In Table 5 we list the polydiagonal subspaces of R5 that are flow-invariant by all admissible vector fields associated with the network 6.

The critical space associated with the Jacobian at the origin is given by

Efu(0)−fv(0) = {x ∈ R5 : x4 = −x1 − x2, x5 = −x1 − x3}.

We start by proving the existence of eight bifurcating branches of steady-state solutions contained in the flow-invariant subspaces∆1,
∆4,∆6,∆5 and∆2. We end by proving that, besides those branches, there is only one more branch.
Consider the coupled cell systems associated to network 6. Those systems restricted to∆1 have the form

ẋ1 = f (x1, x2, x4, λ)
ẋ2 = f (x2, x1, x4, λ)
ẋ4 = f (x4, x1, x2, λ)

and are S3-symmetric. They correspond to the coupled cell systems associated to the bidirectional ring in Fig. 1. Observe that Efu(0)−fv(0)∩∆1
is two-dimensional. The bifurcations for these systems have been studied in [6, Ch 1]. Provided the nondegeneracy conditions fuλ(0) −
fvλ(0) 6= 0 and C 6= 0 are satisfied, codimension-one bifurcations lead to three nontrivial transcritical symmetry related branches whose
form is given in Table 3. We obtain branches of solutions in the following flow-invariant subspaces of ∆1: ∆11, ∆12 and ∆13. Moreover,
using the Z2×Z2-symmetry of the network 6we obtain twomore transcritical branches in the flow-invariant subspaces∆41 and∆43. Note
that the coupled cell systems associated with the network 6 restricted to the flow-invariant space ∆4 also correspond to the admissible
vector fields for the bidirectional ring of Fig. 1.
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Fig. 6. Three-cell network 26 in [9].

The coupled cell systems associated with the network 6 restricted to∆6 have the form

ẋ1 = f (x1, x1, x4, λ)
ẋ3 = f (x3, x1, x3, λ)
ẋ4 = f (x4, x1, x1, λ).

These correspond to the coupled cell systems associated with the three-cell network 26 that appears in [9], see Fig. 6. We can conclude
that there is one transcritical bifurcating branch in∆6 provided fuλ(0)− fvλ(0) 6= 0 and C 6= 0 (C in (3.10)). Using the Z2 × Z2-symmetry
of the network 6 we obtain one more transcritical branch in the flow-invariant space∆5.
Now, taking the coupled cell systems associated with the network 6 restricted to the flow-invariant subspace {x : x1 = x2 = x4 =

0} ⊆ ∆2 we obtain

ẋ3 = f (x3, 0, x5, λ)
ẋ5 = f (x5, 0, x3, λ)

(A.19)

which are Z2-symmetric. Observe that

Efu(0)−fv(0) ∩ {x : x1 = x2 = x4 = 0} = 〈(0, 0, 1, 0,−1)〉

where the Z2×Z2-symmetry of the network 6 acts as−Id. Generically, we have a pitchfork branch of solutions bifurcating from the trivial
solution provided fuλ(0)− fvλ(0) 6= 0 and G 6= 0, where G is given in (3.14).
We end the proof by showing that, generically, there is only one more transcritical branch of solutions bifurcating from the trivial

solution in the flow-invariant subspace x2 = x4 denoted by∆00.
For the systems associatedwith network 6 the equations for cells 1, 2, 4 decouple from the equations for cells 3, 5 and are S3-symmetric:

f (x1, x2, x4, λ) = 0
f (x2, x1, x4, λ) = 0
f (x4, x1, x2, λ) = 0.

Thus, the codimension-one synchrony-breaking bifurcations in cells 1, 2, 4 lead to three symmetry-breaking transcritical branches where
two of the cells are synchronized and the trivial branch. Denote the first three branches by:

• (x1, x2, x4, λ) = (A(λ), A(λ), B(λ), λ);
• (x1, x2, x4, λ) = (A(λ), B(λ), A(λ), λ);
• (x1, x2, x4, λ) = (B(λ), A(λ), A(λ), λ).

Easy computations show that

A′(0) =
2
C
(fuλ(0)− fvλ(0)) , (A.20)

B′(0) = −2A′(0) (A.21)

where C is given in (3.10).
Each of these branches and the trivial branch can be entered into the equations for cells 3, 5 obtaining a system in the variables x3, x5:

f (x3, x1(λ), x5, λ) = 0
f (x5, x1(λ), x3, λ) = 0.

(A.22)

Observe that since f (u, v, w, λ) is invariant in the v,w variables, fu(0) = fv(0) and f (0, 0, 0, λ) ≡ 0, the Taylor expansion of f at the
origin is

f (u, v, w, λ) = fu(0)(u+ v + w)+
1
2
fuu(0)u2 +

1
2
fvv(0)(v2 + w2)+ fvw(0)vw

+ fuv(0)u(v + w)+ fuλ(0)uλ+ fvλ(0)(v + w)λ+ O(3).

Moreover, f (u, v, w, λ)− f (w, v, u, λ) vanishes when u = w. Hence,

f (u, v, w, λ)− f (w, v, u, λ) = (u− w)h(u, v, w, λ) (A.23)

where

h(u, v, w, λ) =
1
2
(fuu(0)− fvv(0))(u+ w)+ (fuv(0)− fvw(0))v + (fuλ(0)− fvλ(0))λ+ O(2). (A.24)

Thus, (A.22) is equivalent to

f (x3, x1(λ), x5, λ) = 0
f (x3, x1(λ), x5, λ)− f (x5, x1(λ), x3, λ) = 0

(A.25)
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and so to

f (x3, x1(λ), x5, λ) = 0
(x3 − x5)h(x3, x1(λ), x5, λ) = 0

(A.26)

where

h(x3, x1(λ), x5, λ) =
1
2
(fuu(0)− fvv(0)) (x3 + x5)+ (fuv(0)− fvw(0)) x1(λ)+ (fuλ(0)− fvλ(0)) λ+ O(2).

We distinguish the following three cases:

(a) If x1(λ) ≡ 0 in (A.26) we obtain (A.19) deriving the pitchfork branch and the trivial branch of solutions in the flow-invariant space
∆2.

(b) If x1(λ) ≡ A(λ) in (A.26) then:
(b.i) If x3 = x5 and (x1, x2, x4) = (A(λ), A(λ), B(λ)) then we have solutions that satisfy x3 = x5 and x1 = x2. Thus, we obtain the

transcritical branch of solutions in the flow-invariant space ∆6. If x3 = x5 and (x1, x2, x4) = (A(λ), B(λ), A(λ)) then we have
solutions that satisfy x3 = x5 and x1 = x4. Thus, we obtain the transcritical branch of solutions in the flow-invariant space∆5.

(b.ii) If x3 6= x5 then (A.26) is equivalent to

f (x3, A(λ), x5, λ) = 0
h(x3, A(λ), x5, λ) = 0.

(A.27)

Assuming fuu(0) − fvv(0) 6= 0, we can solve the second equation for example for x5 as a function of x3 and λ obtaining x5 = X5(x3, λ)
where X5(0, 0) = 0,

X5(x3, λ) = −x3 − A′(0)λ+ O(2) (A.28)

and A′(0) is given in (A.20). Substitution of (A.28) into the first equation in (A.27) leads to an equation in the two variables x3, λ:

g(x3, λ) ≡ f (x3, A(λ), X5(x3, λ), λ).

Implicit differentiation with respect to x3, λ and evaluation at the origin show that

g(0) = 0, gx3(0) = 0, gλ(0) = 0, gx3x3(0) 6= 0, gλλ(0) 6= 0

with

gx3x3(0) = F (A.29)

gλλ(0) = fu(0)
(
A′′(0)+

∂2X5(x3, λ)
∂λ2

∣∣∣∣
0

)
+ 2A′(0)2(fvv(0)− fvw(0))

where A′ and G are given respectively in (A.20) and (3.13), and

∂2X5(x3, λ)
∂x23

∣∣∣∣
0

= −
2
3

D
fuu − fvv

∂2X5(x3, λ)
∂λ2

∣∣∣∣
0
=

2
fuu − fvv

[
fvλλ − fuλλ + (fvw − fuv)A′′ −

1
3
D(A′)2 +MA′

]
M = fuuλ − fvvλ + 2fvwλ − 2fuvλ

A′′ =
2
C
(fuλλ − fvλλ)+

4
3fuC

(fvλ − fuλ)2.

The derivatives of f and A(λ) are all evaluated at the origin and C , D are given in (3.10), (3.11).
We have two transcritical branches if gx3x3(0)gλλ(0) < 0. As we know that

f (A(λ), A(λ), B(λ), λ) = 0
f (B(λ), A(λ), A(λ), λ) = 0,

(A.30)

it follows this is the case. That is, the system (A.27) in the variables x3, x5, λ has the two transcritical branches of solutions (x3, x5, λ) =
(A(λ), B(λ), λ) and (x3, x5, λ) = (B(λ), A(λ), λ). Thus we obtain the transcritical branches in the flow-invariant spaces ∆11 and ∆41 if
(x1, x2, x4) = (A(λ), A(λ), B(λ)) and the transcritical branches in the flow-invariant spaces∆43 and∆12 if (x1, x2, x4) = (A(λ), B(λ), A(λ)).

(c) If x1(λ) ≡ B(λ) in (A.26) then:
(c.i) If x3 = x5 as (x1, x2, x4) = (B(λ), A(λ), A(λ)), we obtain solutions satisfying x3 = x5 and x2 = x4. Thus we obtain the transcritical

branch of solutions in the flow-invariant space∆13.
(c.ii) If x3 6= x5 then (A.26) is equivalent to

f (x3, B(λ), x5, λ) = 0
h(x3, B(λ), x5, λ) = 0.

(A.31)
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Table 6
Symmetry and synchrony subspaces associated to the five-cell network 4 of Fig. 5.

Symmetry Z2 = 〈(24)(35)〉

Synchrony subspaces ∆00 = {x : x3 = x4}
∆01 = {x : x2 = x5}

∆1 = {x : x2 = x3, x4 = x5}
∆2 = {x : x2 = x4, x3 = x5} = Fix(〈(24)(35)〉)
∆3 = {x : x2 = x5, x3 = x4}

∆11 = {x : x1 = x2 = x3, x4 = x5} ⊆ ∆1
∆12 = {x : x2 = x3, x1 = x4 = x5} ⊆ ∆1
∆13 = {x : x2 = x3 = x4 = x5} ⊆ ∆1

Again, since we are assuming fuu(0)− fvv(0) 6= 0, we can solve the second equation for x5 as a function of x3 and λ obtaining x5 = X5(x3, λ)
where X5(0, 0) = 0,

X5(x3, λ) = −x3 + LA′λ+ O(2) (A.32)

with L given in (3.15). Substitution of (A.32) into the first equation in (A.31) leads to an equation in the two variables x3, λ:

g(x3, λ) ≡ f (x3, B(λ), X5(x3, λ), λ).

Direct calculations show that

g(0) = 0, gx3(0) = 0,

gλ(0) = −6fu(0)
fuλ(0)− fvλ(0)
fuu(0)− fvv(0)

6= 0

and gx3x3(0) is given by (A.29), which is nonzero by assumption. Thus, we obtain a transcritical branch of solutions in the flow-invariant
subspace x2 = x4 where (x1, x2, x4) = (B(λ), A(λ), A(λ)) that we call of parabolic type since the branch is transcritical in the variables
x1, x2, x4 and cells x3, x5 have a rate of growth of order λ1/2.
We end the proof with a final remark on the instability of the solutions. The instability of the solutions of the branches obtained in

cases (b) and (c) follows immediately from the following two facts: (i) equations for cells 1, 2 and 4 decouple from the ones for cells 3 and
5 implying a block structure for the Jacobian matrix at any point and (ii) equations for cells 1, 2 and 4 are S3-symmetric and it is known
that in this case the non-trivial solutions are generically unstable. The solutions of the pitchfork branch obtained in case (a) correspond
to the trivial branch of solutions of the system with equations for cells 1, 2 and 4. In this case, if the branch is supercritical, the instability
follows from the instability of the trivial branch of solutions for λ positive near zero. �

Appendix B. Proof of Theorem 3.5

In Table 6 we list the synchronous polydiagonal subspaces of R5 that are flow-invariant by all admissible vector fields associated to the
network 4.
The critical space at the origin is given by

Efu(0)−fv(0) =
{
x ∈ R5 : x1 = −x3 −

4
3
x4 +

1
3
x5, x2 = x3 + x4 − x5

}
.

Consider the coupled cell systems associated to network 4. We have that these restricted to∆1 have the form

ẋ1 = f (x1, x2, x4, λ)
ẋ2 = f (x2, x1, x4, λ)
ẋ4 = f (x4, x1, x2, λ)

and are S3-symmetric. These systems correspond to the coupled cell systems associated to the network in Fig. 1. As mentioned before,
under the assumptions fuλ(0) − fvλ(0) 6= 0 and A 6= 0, codimension-one bifurcations lead to three nontrivial transcritical symmetry
related branches whose form is given in Table 4. That is, we obtain branches of solutions in the following flow-invariant subspaces of∆1:
∆11, ∆12 and∆13. The solutions are unstable in the directions in the∆1 subspace.
Next, we consider the flow-invariant subspace∆2. The coupled cell systems restricted to∆2 have the form

ẋ1 = f (x1, x2, x2, λ)
ẋ2 = f (x2, x1, x3, λ)
ẋ3 = f (x3, x1, x2, λ)

with synchronous space x2 = x3. These systems correspond to the coupled cell vector fields associated with the three-cell network 11
in [9]. See Fig. 7. Hence, by [9, Theorem 4.14] we conclude that there are two transcritical bifurcating branches of unstable solutions,
provided fuλ(0) − fvλ(0) 6= 0 and A 6= 0. One of these branches occurs in the intersection of the plane x2 = x3 with ∆2 (ie. it lies in the
space∆13). Observe that Efu(0)−fv(0)∩∆13 is one-dimensional. Hence, this transcritical branch is unique and is the one identified previously.
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Fig. 7. Three-cell network 11 in [9].

Fig. 8. Three-cell network 10 in [9].

Weshownow that there are twomore nontrivial branches in addition to these four transcritical branches. The proof consists of studying
all the possible solutions of the following system:

f (x1, x2, x4, λ) = 0
f (x2, x1, x5, λ) = 0
f (x3, x1, x4, λ) = 0
f (x4, x1, x3, λ) = 0
f (x5, x1, x2, λ) = 0.

(B.33)

To find the solutions of (B.33) we apply (A.23) to cells 2, 5 equations and cells 3, 4 equations and we obtain

f (x2, x1, x5, λ)− f (x5, x1, x2, λ) = (x2 − x5)h(x2, x1, x5, λ) = 0 (B.34)

f (x3, x1, x4, λ)− f (x4, x1, x3, λ) = (x3 − x4)h(x3, x1, x4, λ) = 0 (B.35)

where h is defined by (A.24).
Thus, there are the following four possibilities for solutions of (B.33):

1. x2 = x5, x3 = x4;
2. x2 = x5, h(x3, x1, x4, λ) = 0;
3. x3 = x4, h(x2, x1, x5, λ) = 0;
4. h(x2, x1, x5, λ) = 0 = h(x3, x1, x4, λ).

Case 1: x2 = x5, x3 = x4. This possibility corresponds to the restriction of network 4 equations to∆3. The restricted coupled cell systems
have the form

ẋ1 = f (x1, x2, x3, λ)
ẋ2 = f (x2, x1, x2, λ)
ẋ3 = f (x3, x1, x3, λ)

which correspond to the three-cell network 10 in [9]. See Fig. 8. Hence, by [9, Table 3] we conclude that there is a unique transcritical
bifurcating branch satisfying x2 = x3 = x4 = x5. This branch lies in∆13 and it was identified previously.
Case 2: x2 = x5, h(x3, x1, x4, λ) = 0. In this case, to find the solutions of (B.33) is equivalent to solving the following system:

h(x3, x1, x4, λ) = 0 (B.36)

f (x1, x2, x4, λ) = 0 (B.37)

f (x2, x1, x2, λ) = 0 (B.38)

f (x3, x1, x4, λ) = 0. (B.39)

By (A.24) it follows that

h(x3, x1, x4, λ) =
1
2
(x3 + x4)(fuu(0)− fvv(0))+ (fuv(0)− fvw(0))x1 + (fuλ(0)− fvλ(0))λ+ O(2).

Let

B = 2
fvw(0)− fuv(0)
fuu(0)− fvv(0)

, C = 2
fvλ(0)− fuλ(0)
fuu(0)− fvv(0)

.

Next we assume (3.16) and we solve (B.36) for x4, which yields

x4 = X4(x1, x3, λ) = −x3 + Bx1 + Cλ+ O(2). (B.40)

Substitution of (B.40) into (B.37)–(B.39) leads to

f (x1, x2, X4(x1, x3, λ), λ) = 0
f (x2, x1, x2, λ) = 0
f (x3, x1, X4(x1, x3, λ), λ) = 0.

(B.41)
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The implicit function theorem guarantees that there exists a unique branch of solutions X(λ) = (x1(λ), x2(λ), x3(λ)) of the system
(B.41) satisfying X(0) = 0 provided fuu(0)− fvv(0) 6= 0 and A 6= 0.
Substitution of (B.40) into (B.39) leads to

g(x3, x1, λ) ≡ f (x3, x1,−x3 + Bx1 + Cλ+ O(2), λ) = 0.

A straightforward calculation shows that

∂g
∂x1

(0) =
fu(0)A

fuu(0)− fvv(0)

which is nonzero by (3.16) and (3.17). Hence, the implicit function theorem guarantees that there exists a unique solution x1 = X(x3, λ)
satisfying X(0) = 0 and

g(x3, X(x3, λ), λ) = f (x3, X(x3, λ),−x3 + BX(x3, λ)+ Cλ+ O(2), λ) ≡ 0.

Implicit differentiation of g with respect to x3 and λ, and evaluation at the origin leads to

Xx3(0) = 0, Xλ(0) = −
2
A
(fvλ − fuλ).

Note that Xλ(0) 6= 0 since (3.17) holds. Hence,

x1 = Xλ(0)λ+ O(2) = −
2
A
(fvλ − fuλ)λ+ O(2). (B.42)

Next we consider (B.38). Observe that

∂ f
∂x2

(0) = fu(0)+ fv(0)

which is nonzero since fu(0) = fv(0) 6= 0. Therefore, the implicit function theorem implies that there exists a unique solution x2 = Y (x1, λ)
such that Y (0) = 0 and

f (Y (x1, λ), x1, Y (x1, λ), λ) ≡ 0.

A straightforward calculation using implicit differentiation of f with respect to x1 and λ shows that

Yx1(0) = −
1
2
, Yλ(0) = 0.

Hence, x2 = − 12x1 + O(2). Substitution of (B.42) in this expression yields

x2 =
1
A
(fvλ − fuλ)λ+ O(2). (B.43)

To complete the analysis of case 2 we consider the equation (B.37). Substitution of (B.43), (B.40) and (B.42) into (B.37) leads to

l(x3, λ) ≡ f (X(x3, λ), Y (X(x3, λ), λ), X4(X(x3, λ), x3, λ), λ) = 0.

Implicit differentiation of lwith respect to λ shows that the Taylor expansion of l at the origin is given by

l(x3, λ) = fv(0)
(
−x3 +

fvλ(0)− fuλ(0)
A

λ

)
+ O(2).

Hence, the solution of l = 0 is

x3 =
1
A
(fvλ(0)− fuλ(0))λ+ O(2). (B.44)

Substitution of (B.44) into (B.40) yields

x4 =
1
A
(fvλ − fuλ)λ+ O(2)

where A is given in (3.18). This branch of solutions is transcritical and is in the flow-invariant subspace x2 = x5. Moreover, it coincides
at linear order (in λ) with the solution branch in the flow invariant subspace ∆13. However, as we prove next, this is a new bifurcating
solution branch and it does not lie in∆13.
Suppose that the transcritical solution branch we have found was in ∆13. Under this assumption the solution branch must satisfy

x3 = x4 and solve the system (B.36)–(B.39). That is, it is a solution of the following system

h(x3, x1, x3, λ) = 0 (B.45)

f (x1, x2, x3, λ) = 0 (B.46)

f (x2, x1, x2, λ) = 0 (B.47)

f (x3, x1, x3, λ) = 0. (B.48)
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Observe that the system consisting of Eqs. (B.46)–(B.48) is precisely the one obtained in case 1. The only nontrivial solution of this
system satisfies x2 = x3 = x4 = x5. Thus, to find the solutions of system (B.45)–(B.48) is equivalent to solving the system:

h(x2, x1, x2, λ) = 0 (B.49)

f (x1, x2, x2, λ) = 0 (B.50)

f (x2, x1, x2, λ) = 0. (B.51)

Note that (A.23) with v = w can be applied to (B.50) and (B.51) reducing (B.49)–(B.51) to the following system

h(x2, x1, x2, λ) = 0 (B.52)

f (x1, x2, x2, λ) = 0 (B.53)
(x1 − x2)h(x1, x2, x2, λ) = 0. (B.54)

There are the following two possibilities for the solutions of (B.52)–(B.54):

(a) x1 = x2 and h(x2, x1, x2, λ) = 0 = f (x1, x2, x2, λ);
(b) h(x2, x1, x2, λ) = 0 = h(x1, x2, x2, λ) = 0 and f (x1, x2, x2, λ) = 0.

In case (a) the solutions are in the fully synchronous subspace. Hence, there is only the trivial solution branch which is not the case of
the transcritical solution branch we have found.
In case (b) a straightforward calculation shows that the Jacobian of the system formed by the three equations, evaluated at the origin,

has determinant given by

3
2
(fuλ(0)− fvλ(0)) fu(0)A

with A given in (3.18). Since we are assuming the nondegeneracy conditions fu(0) 6= 0, fuλ(0)− fvλ(0) 6= 0, and A 6= 0 it follows that the
determinant is nonzero.
Thus the only solution of system (B.45)–(B.48) is the trivial one. That is, the only solution of system (B.36)–(B.39) satisfying x3 = x4 is

the trivial one. Since the transcritical solution branch we have found is nonzero at linear order, we conclude that it is outside∆13 and it is
a new bifurcating branch.
Case 3: x3 = x4, h(x1, x2, x5, λ) = 0. The analysis of this case follows precisely the steps described in case 2, with the variables x3, x4
playing the role of the variables x2, x5 in case 2. Similarly to case 2, we obtain a unique transcritical branch that is in the flow-invariant
subspace x3 = x4. Equivalently, the Z2 = 〈(24)(35)〉-symmetry of network 4 applied to the branch of solutions obtained in case 2 gives
the same result.
Case 4: h(x2, x1, x5, λ) = 0 = h(x3, x1, x4, λ). To find solutions of (B.33) satisfying conditions in case 4 we solve the system consisting of
Eq. (B.36), (B.37), (B.39), and

h(x2, x1, x5, λ) = 0 (B.55)

f (x2, x1, x5, λ) = 0. (B.56)

Observe that (B.36) was solved in case 2 leading to (B.40). Using a similar procedure we solve (B.55) leading to

x5 = X5(x1, x2, λ) = −x2 + Bx1 + Cλ+ O(2). (B.57)

Next we substitute (B.40) (considering the Taylor expansion of X4(x1, x3, λ) around the origin of degree 2) into (B.39) and (B.57)
(considering the Taylor expansion of X5(x1, x2, λ) around the origin of degree 2) into (B.56). Subtracting the resulting expressions we
obtain

(x2 − x3)M(x1, x2, x3, λ) = 0 (B.58)

where

M(x1, x2, x3, λ) = (x2 + x3)
(
1
2
(fuu + fvv − 2fuv)+ fu(0)E

)
+ [(1+ B)fuv − fvw − Bfvv − BEfu(0)]x1

+ [C(fuv − fvv)+ fuλ − fvλ − CEfu(0)]λ+ O(2).

Hence, there are the following two possibilities for solutions of (B.58):

(a) x2 = x3;
(b) M(x1, x2, x3, λ) = 0.

(a) x2 = x3. It is straightforward to see that by (B.57) and (B.40) the condition x2 = x3 implies x4 = x5. Recall that∆1 = {x2 = x3, x4 = x5}
is a flow-invariant subspace and the solutions on this subspace were previously identified.

(b) M(x1, x2, x3, λ) = 0. In this case, we have to solve the following system:

f (x1, x2, X4(x1, x3, λ), λ) = 0
f (x3, x1, X4(x1, x3, λ), λ) = 0
M(x1, x2, x3, λ) = 0.

(B.59)

By the implicit function theorem, provided A 6= 0, fuu(0) − fvv(0) 6= 0, fu(0) 6= 0 and D 6= 0, we have a unique branch of solutions
(X1(λ), X2(λ), X3(λ)) such that X1(0) = X2(0) = X3(0) = 0. This branch must correspond to the solution branch in ∆2 not lying in
∆13. �
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