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Golubitsky M, Zhao Y, Wang Y, Lu ZL. Symmetry of general-
ized rivalry network models determines patterns of interocular group-
ing in four-location binocular rivalry. J Neurophysiol 122: 1989–
1999, 2019. First published September 18, 2019; doi:10.1152/jn.
00438.2019.—Previously, symmetry of network models has been
proposed to account for interocular grouping during binocular rivalry.
Here, we construct and analyze generalized rivalry network models
with different types of symmetry (based on different kinds of excit-
atory coupling) to derive predictions of possible perceptual states in
12 experiments with four retinal locations. Percepts in binocular
rivalry involving more than three locations have not been empirically
investigated due to the difficulty in reporting simultaneous percepts at
multiple locations. Here, we develop a novel reporting procedure in
which the stimulus disappears when the subject is cued to report the
simultaneously perceived colors in all four retinal locations. This
procedure ensures that simultaneous rather than sequential percepts
are reported. The procedure was applied in 12 experiments with six
binocular rivalry stimulus configurations, all consisting of dichoptic
displays of red and green squares at four locations. We call configu-
rations with an even or odd number of red squares even or odd
configurations, respectively. In experiments using even stimulus con-
figurations, we found that even percepts were more frequently ob-
served than odd percepts, whereas in experiments using odd stimulus
configurations even and odd percepts were observed with equal
probability. The generalized rivalry network models in which cou-
plings depend on stimulus features and spatial configurations was in
better agreement with the empirical results. We conclude that the
excitatory coupling strength in the horizontal and vertical configura-
tions are different and the coupling strengths between the same color
and between different colors are different.

NEW & NOTEWORTHY Wilson network models of interocular
groupings during binocular rivalry are constructed by considering
features that indicate equal coupling strengths. Network symmetries,
based on equal couplings, predict percepts. For a four-location rivalry
experiment with red or green squares at each location, we analyze
different possible Wilson networks. In our experiments we develop a
novel reporting procedure and show that networks in which stimulus
features and spatial configurations are distinguished best agree with
experiments.

binocular rivalry; Hopf bifurcation; interocular grouping; symmetry;
Wilson networks

INTRODUCTION

When corresponding retinal locations of the two eyes re-
ceive different monocular images, one often perceives alterna-
tion of the two monocular images. The phenomenon, called
binocular rivalry, was first discovered by Porta in the 16th
century. It has been studied extensively by vision scientists
(Wade 1998) and recently has been exploited to study con-
sciousness and visual processing outside of awareness (Blake
2001; Blake and Wilson 2011). Originally considered as a
phenomenon reflecting ocular competition, later studies dem-
onstrated that binocular rivalry could also reflect feature com-
petition (Logothetis et al. 1996). Large rival stimuli often lead
to so-called piecemeal rivalry, in which one perceives a mosaic
consisting of intermingled portions of both monocular images
(Blake et al. 1992; Hollins and Hudnell 1980; Meenes 1930;
O’Shea et al. 1994, 1997), although complete monocular dom-
inance does occur significantly more often than chance (Blake
et al. 1992). With binocular rivalry displays that consisted of
multiple targets (e.g., green and red circles) in multiple loca-
tions, a very interesting phenomenon, called “interocular
grouping,” was discovered: Multiple small rival targets scat-
tered throughout the visual field engaged in synchronized
alternations such that all targets of a particular feature (e.g., all
the green circles), independent of the eye of origin, became
dominant simultaneously (Alais and Blake 1999; Drenhaus
1975; Kovács et al. 1996; Whittle et al. 1968). These obser-
vations suggest that binocular rivalry may reflect both ocular
and stimulus feature interactions (Blake and Wilson 2011).

In many binocular displays with multiple targets and retinal
locations (attributes), targets with two different stimulus fea-
tures are directed into each of the two eyes (e.g., one red and
one green) at each retinal location. If there is only interocular
competition in the visual system at each retinal location, a
binocular rivalry display with N locations would generate 2N

perceptual states, which is the number of all possible combi-
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nations of the percept at each retinal location. The prominence
of interocular grouping seems to suggest that some of the
perceptual states might be perceived more often than others. In
this study, we ask: Are some of the potential perceptual states
more probable than others? What can the relative frequencies
of the different perceptual states tell us about neural process-
ing?

The original binocular rivalry displays (Alais and Blake
1999; Drenhaus 1975; Kovács et al. 1996; Whittle et al. 1968)
used to demonstrate interocular grouping involved many reti-
nal locations and a large number of potential perceptual states.
Although some extremely interesting observations on intero-
cular grouping were made from those displays, it is impossible
to obtain detailed measures of the perceptual states during
binocular rivalry because reporting simultaneous percepts at all
the retinal locations is very difficult or impossible. To reduce
the number of required responses, Tong et al. (2006) suggested
a simplified version of the colored disks experiments in Kovács
et al. (1996) in which two monocular images each with four
colored disks are shown to the subject. To our knowledge no
one has conducted an experiment with such displays, perhaps
because reporting simultaneous percepts at four locations is
still difficult.

In this study, we developed a novel reporting procedure for
four-location binocular rivalry stimuli, in which the stimulus
disappeared when the subject was cued to report the simulta-
neously perceived colors in all four retinal locations to ensure
that simultaneous rather than sequential percepts were re-
ported. Six binocular rivalry configurations, all consisting of
dichoptic displays of red and green squares at four retinal
locations, were used in the study, including all the same color
in each eye, equal number of red and green squares arranged in
diagonal, horizontal and vertical configurations in each eye,
and unequal numbers of red and green squares in each eye. Prior
to the experiment, we constructed and analyzed generalized ri-
valry network models with different types of symmetry to derive
predictions of possible perceptual states in these binocular dis-
plays. The results of the experiments allowed us to specify the
symmetry in the neural architecture of binocular rivalry.

GENERALIZED RIVALRY NETWORK MODELS

A number of mathematical theories and computational mod-
els have been proposed to account for the rich phenomena in
binocular rivalry (Alais 2012; Brascamp et al. 2015; Dayan
1998; Freeman 2005; Hayashi et al. 2004; Hohwy et al. 2008;
Kakimoto and Aihara 2009; Kang and Blake 2011; Kovács et
al. 1996; Said and Heeger 2013; Stollenwerk and Bode 2003;
Wilson 2007, 2009, 2010). Although each theory or model
provides unique insights on certain aspects of visual processing

related to rivalry, all share many of the principles of the
generalized rivalry network model proposed by Hugh Wilson
(Wilson 2007, 2009, 2010). In addition, the generalized rivalry
network model (“Wilson networks”) has also received a tre-
mendous amount of empirical support in accounting for the
dynamics of binocular rivalry (Brascamp et al. 2015; Dieter et
al. 2017; Klink et al. 2008, 2010; Richard et al. 2018; Seely and
Chow 2011; van Ee 2009; Wilson 2017). Here, we construct
and analyze symmetries of generalized rivalry network models
in a number of four-location binocular rivalry experiments.
Our intention is to derive predictions of percepts that we expect
to occur more frequently in these experiments.

Generalized rivalry network models consist of nodes that
represent neuronal populations and arrows that indicate cou-
pling (excitatory or inhibitory) between the nodes, organized as
a set of attribute columns, each representing one attribute of an
external image. Specifically, in the models of our experiments,
each column in the network represents a spatial location and
consists of two nodes, each representing a feature (red or
green) of the image at that spatial location. At any moment of
time, according to the model, the percept experienced by an
observer corresponds to the dominant activation pattern of the
network.

Wilson networks have two types of coupling. First, there is
inhibitory coupling between the two nodes in the same attribute
column. These couplings represent stimuli from the two eyes in
each retinal location; the inhibitory couplings in Figs. 1B, 2B,
3B, 4B, 5B, and 6B are indicated by arrows with end stops.
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Fig. 1. A (configuration A in Fig. 7): left eye and right eye images of
one-location experiment with two possible colors (red and green). B: Wilson
network with one location column and two levels. Arrows with end stop
indicate inhibitory coupling.
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Fig. 2. A (configuration B in Fig. 7) left eye and right eye images of
two-location experiment with two possible colors (red and green) in each
location. B: Wilson network with two location columns and two levels in each
column. Red solid arrows indicate excitatory coupling between different colors
in two horizontally placed locations. Arrows with end stop indicate inhibitory
coupling.

3

A B

1

5

7

3

7

3

7

4

2

6

82

4

8

4

88

Fig. 3. A (configuration C in Fig. 7): left eye and right eye images of
four-location pure color even experiment with two possible levels in each
location (red and green). B: Wilson network with four location columns and
two levels in each column. Black solid arrow indicates excitatory coupling
between same color in two horizontally placed locations. Black long-dashed
arrow indicates excitatory coupling between same color in two vertically
placed locations. Black short-dashed arrow indicates excitatory coupling be-
tween same color in two diagonally placed locations. Symmetry group is ! "
Z2(!) # Z2(") # Z2(#), where !, ", and # are defined in Eq. 5. Arrows with
end stop indicate inhibitory coupling.
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Motivated by ocular competition in binocular rivalry, the
inhibitory coupling tends to promote winner-take-all dynamics
in each retinal location; that is, if the activity level in any one
retinal location is maximum at time t, then in the absence of
excitatory coupling from other columns that value will tend to
continue to be the maximum in forward time. Second, through
Hebbian learning, the dichoptic displays promote all-to-all
excitatory coupling between nodes within each eye, corre-
sponding to the patterns on which the network is trained. These
patterns are called learned patterns. Diekman and Golubitsky
(2014) observed that the strength of the different excitatory
couplings in Wilson network models may well depend on
image features. For example, the Hebbian learning-induced
coupling between two nodes in the same eye might depend on
whether the nodes being connected are stimulated by the same
colors or different colors or the geometric orientation (hori-
zontal, vertical, or diagonal) of connection (see, e.g., Fig. 4B).
In particular, the symmetry group of the Wilson network can
change depending on whether the various couplings are the
same or different.

In general, it is difficult to solve the differential equations
of the generalized rivalry network models analytically and
Wilson proceeded using simulations of Wilson-Cowan equa-
tions (Wilson 2007, 2009, 2010). As discussed in Diekman et
al. (2012, 2013) and Diekman and Golubitsky (2014), progress
on understanding possible solution types, that is, possible
perceptual states from such network models, can be made by
analyzing the symmetries and the symmetry-breaking bifurca-
tions in such networks. The basic idea is to enumerate the kinds
of rigid phase-shift synchrony that small-amplitude periodic
solutions can have in the class of network equations. This list
— or menu — gives a prediction of possible perceptual states.
Because rigid phase-shift synchrony is a product of network
symmetry (Golubitsky et al. 2012; Stewart and Parker 2007)
and network symmetries are based on node types and types of
inhibitory and excitatory coupling between nodes, we can
predict possible perceptual states from the generalized rivalry
networks and compare them with empirical observations. Our
hypothesis is that the percepts that are specified by symmetry
breaking will appear more frequently in the experiments than
will the percepts that are not. This kind of assumption is
discussed in Golubitsky and Stewart (2002).

In this section, we follow (Diekman et al. 2012, 2013;
Diekman and Golubitsky 2014) and use symmetry to predict
possible perceptual states from the generalized rivalry network
models. In each case, we predict a menu of possible perceptual
states by classifying the symmetry types of small-amplitude
periodic solutions that can be associated with alternation and
can be obtained through Hopf bifurcation (see APPENDIX for an
introduction). To familiarize the readers with our methodology,
we first present symmetry analyses of Wilson networks in
one-location and two-location rivalry experiments, then pro-
ceed to make predictions for four-location binocular rivalry
experiments in six different configurations (see Fig. 7, A–H). In
the first set of analysis, we assume that all types of couplings
are different. We then consider reduced cases in which some
couplings are the same.

One-Location Binocular Rivalry

The simplest binocular rivalry stimulus consists of di-
choptic presentation of two incompatible stimulus features
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Fig. 4. A (configuration F in Fig. 7): images in diagonal even colored-square
experiment (Kovács et al. 1996; Tong et al. 2006). A: left eye and right eye
images of four-location experiment with two possible levels in each location
(red and green). B: Wilson network with four location columns and two levels
in each column. Red solid arrow indicates excitatory coupling between
different colors in two horizontally placed locations. Red long-dashed arrow
indicates excitatory coupling between different colors in two vertically placed
locations. Black short-dashed arrow indicates excitatory coupling between
same color in two diagonally placed locations. Symmetry group is ! "
Z2(!) # Z2(") # Z2(#), where !, ", and # are defined in Eq. 5. Arrows with
end stop indicate inhibitory coupling.
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Fig. 5. A (configuration E in Fig. 7): images in horizontal even colored-square
experiment (Kovács et al. 1996; Tong et al. 2006). A: left eye and right eye
images of four-location experiment with two possible levels in each location
(red and green). B: Wilson network with four location columns and two levels
in each column. Black solid arrow indicates excitatory coupling between same
color in two horizontally placed locations. Red long-dashed arrow indicates
excitatory coupling between different colors in two vertically placed
locations. Red short-dashed arrow indicates excitatory coupling between
different colors in two diagonally placed locations. Symmetry group is ! "
Z2(!) # Z2(") # Z2(#), where !, ", and # are defined in Eq. 5. Arrows with
end stop indicate inhibitory coupling.
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Fig. 6. A (configuration H in Fig. 7): images in odd colored-square experiment
proposed in Diekman and Golubitsky (2014). Left eye and right eye images of
four-location experiment with two possible levels in each location (red and
green). B: Wilson network with four location columns and two levels in each
column. Lines with arrow heads indicate excitatory coupling and lines with end
stop heads indicate inhibitory coupling. Black indicates arrows that connect
nodes of the same color. Red indicates arrows that connect nodes of different
colors. Solid arrows indicate horizontal coupling; long-dashed arrows indicate
vertical coupling; and short-dashed arrows indicate diagonal coupling. Sym-
metry group is ! " Z2(!), where ! is defined in Eq. 5.
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at one retinal location (Fig. 1A). The resulting bistable
perceptual rivalry can be captured by a simple Wilson
network with one attribute column and two mutually inhib-
iting nodes.

The activity of the two nodes is often described by the
following system of differential equations (Curtu et al. 2008;
Diekman et al. 2012; Laing and Chow 2002; Shpiro et al.
2007):

$Ė1 % & E1 ' G!I1 – (E2 & gH1"
Ḣ1 % E1 & H1

$Ė2 % & E2 ' G!I2 – (E1 & gH2"
Ḣ2 % E2 & H2

(1)

where the activity of each node is described by a firing rate
variable Ei and a rate adaptation variable Hi for i"1,2. G is a
sigmoid function that models the effect of all inputs to the
node; g is the strength of adaptation and $ is the ratio of time
scales on which E and H evolve. The mutual inhibition due to
conflict information in the two eyes is described by ( and input
strength, modeled by Ii for i " 1,2. Note that when I1 " I2, the
system has Z2 symmetry. The case with I1 $ I2 can be viewed
as a system resulting from perturbation to the symmetric
system with I1 " I2. Since the symmetry can simplify our
analysis, we assume I1 " I " I2.

In this model, the stimulus in the right eye is perceived when
E2 % E1; the stimulus in the left eye is perceived when E2 &
E1. Equality in activity levels is called fusion. Moreover, a
solution to Eq. 1 corresponds to perceptual alternation when
the direction of the inequality changes in time. As noted in
Diekman et al. (2012), perceptual alternation and fusion can
occur robustly in periodic solutions with spatiotemporal sym-
metry.

We can simplify the notation by letting X1 " (E1, H1) be the
upper node coordinates and X2 " (E2, H2) be the lower node
coordinates. Then Eq. 1 has the form

Ẋ1 % F!X1, X2, I"
Ẋ2 % F!X2, X1, I"

(2)

A network symmetry is a permutation of nodes that takes
solutions to solutions. The system Eq. 2 has a permutation
symmetry ! given by swapping nodes 1 and 2; that is,

!!X1, X2" % !X2, X1"
In shorthand, the symmetry is just the permutation ! (1 2).

This symmetry leads in a mathematically naturally way to
perceptual alternation, as follows. Suppose that X(t) is a T-pe-
riodic solution to Eq. 2 and suppose that )X(0) lies on the
solution trajectory {X(t)}. Then uniqueness of solutions to
initial value problems implies that there is a phase-shift *
between 0 and 1 such that

!X!t" % X!t ' *T"
for all t. Applying ! twice yields

X!t ' 2*T" % X!t"

for all t. Hence either * " 0 or * "
1

2
.

In the first case X2(t) " X1(t) for all t and the state is a fusion

state, whereas in the second case X2!t" % X1#t '
T

2$ for all t.

Perceptual alternation follows from the phase-shift synchrony

because E2(t) % E1(t) implies E1#t '
T

2$ + E2#t '
T

2$. In

other words, the symmetry of the network in this case predicts
alternation between two possible rivalry states: the stimulus
perceived in the left eye (stimulus “red square”) or in the right
eye (stimulus “green square”).

It is an important fact that phase-shifts that are associated with
network symmetries are rigid; that is, small changes in parameters
in the model will perturb the periodic solutions but will not change
the phase shifts (see Golubitsky and Stewart 2002). Moreover, in

Pure Color Vertical                            Pure Color (RRRR)                     Vertical (RRGG)

no-spacing (RRRR)                 no-spacing (RRGG)

Horizontal (RGGR)                     Diagonal (RGRG)                    Upper Left (GRRR)                   Lower Right(RRGR)

A                                    B                                    C                                    D

E                                    F                                     G                                    H

Fig. 7. Each subfigure A–H identifies a stimulus configuration used in one of eight experiments. In each subfigure, the left image is the stimulus shown to the
left eye and the right image is the stimulus shown to the right eye. The stimulus itself is defined by a sequence of four Rs and Gs (in parentheses) as follows:
Use the left eye stimulus to list the colors (Red or Green) of the small squares in the order upper left, lower left, lower right, upper right.
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networks, rigidity of phase-shift synchrony in periodic solutions
can only be caused by network symmetry (Golubitsky and Stew-
art 2006; Golubitsky et al. 2012).

As is true of any experiment, symmetry can only be approx-
imate and breaking of symmetry or the inclusion of small
stochastic effects can change results slightly. In this way,
symmetry can lead to experimentally verifiable results and can
help to explain certain aspects of experiments.

Two-Location Binocular Rivalry

Binocular rivalry with two stimulus features may involve mul-
tiple retinal locations. The monkey-jungle experiments of Kovács
et al. (1996) give an example of a two-location experiment as do
the experiments in Jacot-Guillarmod et al. (2017). A general
two-location Wilson network analysis of this experiment was
given in Diekman et al. (2013) and Diekman and Golubitsky
(2014). We review those results here expressed in terms analo-
gous to our four-location colored-square experiment.

Figure 2 shows the stimulus and Wilson network model for
a binocular rivalry configuration that involves dichoptic pre-
sentation of stimuli at two retinal locations. The Wilson rivalry
network model has four nodes and two attribute columns that
represent neuronal populations receiving inputs from the two
locations in each of the two eyes. To simplify the presentation
of excitatory couplings in the Wilson network, we organize the
two learned patterns by one on the top nodes and one on the
bottom nodes of the attribute columns.

The activity of one of the four nodes is described by the
following system of differential equations:

Ḣ1 % E1 & H1

$Ė1 % & E1 ' G!I ' ,13E3 & (12E2 & g1H1"
(3)

where ,13 % 0 represents the strength of the excitatory cou-
pling (due to Hebbian learning) that associates different loca-
tions in the same learned pattern. The differential equations for
the other three nodes are obtained by permuting the variables
in Eq. 3 in obvious ways. We can write the equations in a form
analogous to Eq. 2 as follows.

Ẋ1 % F!X1, X2, X3, I"
Ẋ2 % F!X2, X1, X4, I"
Ẋ3 % F!X3, X4, X1, I"
Ẋ4 % F!X4, X3, X2, I"

(4)

where Xj " (Ej,Hj) and F is the right side of Eq. 3.
There are four perceptual states associated with the four-

node network in Fig. 2B: stimulus R or G at the left location
and stimulus R or G at the right location. We name these
percepts RR, RG, GR, GG. States in Eq. 4 predict these
percepts as follows:

RG E1 + E2 E3 + E4

RR E1 + E2 E4 + E3

GG E2 + E1 E3 + E4

GR E2 + E1 E4 + E3

This two-column network has two independent symmetries.
The generalization of the one-column network symmetry that

permutes the stimuli is ! " (12)(34). The new symmetry that
permutes the two locations is " " (12)(34).

With these symmetries, equivariant Hopf bifurcation gener-
ates four types of periodic solutions: two bifurcations lead to
fusion states that we eliminate and two bifurcations lead to
perceptually alternating states (see the APPENDIX or Diekman et
al. 2013; Diekman and Golubitsky 2014; Golubitsky and Stew-
art 2002). As above, let X(t) " (X1, X2, X3, X4) be T-periodic.
If !X(t) " X(t), then X(t) consists of fusion states since E1(t) "
E2(t) and E3(t) " E4(t). On the other hand, if !X!t" %

X#t '
T

2$, then perceptual alternation occurs. Specifically, if

also " X(t) " X(t), then the periodic solution alternates between

percepts RG and GR, whereas if "X!t" % X#t '
T

2$, then the

periodic solution alternates between percepts RR and GG. In
particular, the Wilson rivalry model predicts that four percep-
tual states, RR, GG, RG, GR, can be expected to be observed in
two-location rivalry experiments with equal likelihood.

Four-Location Binocular Rivalry

The simplified version of the colored-square experiments
suggested by Tong et al. (2006) consists of four retinal loca-
tions. Here, following (Diekman and Golubitsky 2014), we
consider six stimulus configurations, all involving dichoptic
displays consisting of squares that are either red or green with
the colors interchanged between the two images. We describe
them using the left eye image:

1) Pure color: Configuration has four red squares. See Fig.
7A or Fig. 7C.

2) Diagonal: Configuration has two red squares and two
green squares on diagonal lines. See Fig. 7F.

3) Horizontal: Configuration has two red squares and two
green squares on horizontal lines. See Fig. 7E.

4) Vertical: Configuration has two red squares and two
green squares on vertical lines. See Fig. 7B or Fig. 7D.

5) Upper left: Configuration has one green square in upper
left location and three red squares. See Fig. 7G.

6) Lower right: Configuration has one green square in lower
right location and three red squares. See Fig. 7H.

The Wilson networks for these configurations have all-to-all
monocular excitatory coupling between nodes in each learned
pattern. Specifically, in the Wilson network figures, there are
six types of excitatory coupling: horizontal (solid), vertical
(long-dashed), and diagonal (short-dashed) each of which can
be black (connecting two nodes stimulated by the same colors)
or red (connecting two nodes stimulated by different colors).

As we will see the network symmetries of the Wilson
networks are identical for the first four configurations. The
interpretation of the symmetric solutions is slightly different.
However, the important point is that nonfusion periodic solu-
tions obtained by Hopf bifurcation are identical for these four
configurations and have a simple description. All of the pre-
dicted perceptual states in these configurations have an even
number of red squares and an even number of green squares.
We call these the even percepts. In the last two configurations,
the symmetries are minimal and no specific perceptual pattern
is predicted. These models suggest that even percepts should
appear more frequently than odd percepts in experiments using
the first four stimulus configurations and even percepts and odd

1993SYMMETRY IN FOUR-LOCATION BINOCULAR RIVALRY

J Neurophysiol • doi:10.1152/jn.00438.2019 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Ohio State Univ HSL (140.254.087.149) on November 4, 2019.



percepts should be equally likely in the last two stimulus
configurations.

Configuration C. In this configuration, one learned pattern
has four red squares and the other has four green squares, as
shown in Fig. 3A.

We model the experiment with this stimulus configuration
by a Wilson network consisting of four attribute columns,
where each attribute refers to the position of one of the squares
(upper left, lower left, lower right, upper right) and has two
levels (red, green). The eight-node Wilson network with two
pure color learned patterns is shown in Fig. 3B.

The permutation symmetries of the Wilson network are
generated by

! % !12"!34"!56"!78" top-bottom

" % !17"!28"!35"!46" left-right

# % !13"!24"!57"!68" up-down
(5)

If ! acts trivially on a periodic state [X1(t),..., X8(t)], then

X2!t" % X1!t" X4!t" % X3!t" X6!t" % X5!t" X8!t" % X7!t"
and this state is a fusion state. So, we assume ! acts nontrivi-
ally. Table 1 shows the four kinds of nonfusion periodic states
given by the actions of " and #.

The four nonfusion state types are

- !x0, x1⁄2; x0, x1⁄2; x0, x1⁄2; x0, x1⁄2"
( !x0, x1⁄2; x1⁄2, x0; x1⁄2, x0; x0, x1⁄2"
, !x0, x1⁄2; x0, x1⁄2; x1⁄2, x0; x1⁄2, x0"
. !x0, x1⁄2; x1⁄2, x0; x0, x1⁄2; x1⁄2, x0"

where x0(t) is T-periodic and x1⁄2!t" % x0#t '
T

2$.

There are a total of eight patterns: the four patterns listed in
the first column of Table 2 and the four complementary
patterns obtained when x0!t" / x1⁄2!t".

Configurations D–F. Each of these stimulus configurations
are even states that have two red squares and two green
squares. The Wilson network for the diagonal colored-square
configuration is shown in Fig. 4. This network is presented so
that the learned pattern couplings are in horizontal planes; that
is, the red and green levels are inverted in the lower left and
upper right attribute columns. Note that this network is iso-
morphic to the one in Fig. 3 and hence has the same symmetry
group. Similarly, the four configurations (pure, diagonal, hor-
izontal, and vertical) all have the same set of solution patterns
(see Table 2) and they are characterized by having an even
number of red squares and an even number of green squares.

Details of the horizontal colored-square configuration are
shown in Fig. 5 with all relevant information given in the
caption. The details of the vertical colored-square configura-

tion are not shown; they are analogous to those of the hori-
zontal colored-square configuration.

Configurations G and H. The Wilson network for configu-
ration H is shown in Fig. 6. Each of these stimulus configu-
rations has an odd number of red squares and an odd number
of green squares. The only symmetry is Z2(!) and Hopf
bifurcation leads to solutions that alternate between a pattern
and its complementary pattern. No particular pattern is pre-
ferred; all percepts are equally possible.

The even experiment states have been discussed previously;
here we discuss the RGGG and GRRR rivalry experiment. The
symmetry group for the associated rivalry network is just
Z2(!). As noted in the one-location theory, there are two types
of solutions one of which is a fusion state. Thus, all nonfusion

percepts are given by !X!t" % X#t '
T

2$. Suppose

X!t" % % x1!t", x2!t", x3!t", x4!t", x5!t", x6!t", x7!t", x8!t"& .

Then, ! symmetry implies

x2!t" % x1#t '
T

2$
x4!t" % x3#t '

T

2$
x6!t" % x5#t '

T

2$
x8!t" % x7#t '

T

2$
The percepts associated with these solutions have alternation in
each column but at different times. Therefore, any possible
percept can appear, and all percepts appear with equal
likelihood.

Changes in Model Features Lead to Changes in Symmetry

Diekman and Golubitsky (2014) observe that the process of
modeling rivalry by Wilson networks has two parts:

1) Determine the attributes columns and those columns that
are the same.

2) Determine the excitatory couplings (arrows) and those
couplings that are the same.

For example, the network model for the diagonal experiment
in Fig. 4B has four identical attribute columns (representing
each of the four stimulus locations) and six types of excitatory
arrows (defined by features). More precisely, solid, long-
dashed, and short-dashed arrows indicate whether the connec-
tion is between nodes that are horizontally, vertically, or
diagonally aligned. Red and black arrows indicate whether the
connection is between nodes stimulated by the same or differ-
ent colors.

Table 2. Stimulus configurations

1 2 3 4

- RRRR RGRG RGGR RRGG
( RGGR RRGG RRRR RGRG
, RRGG RGGR RGRG RRRR
. RGRG RRRR RRGG RGGR

Table 1. Symmetry type of percept

" # !

- trivial trivial nontrivial
( trivial nontrivial nontrivial
, nontrivial trivial nontrivial
. nontrivial nontrivial nontrivial
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If no distinction is made between arrows having these two
features (orientation of coupling and color of square), then the
Wilson network would have more symmetry (rotation by 90°,
for example). It would then follow from equivariant Hopf
bifurcation that more spatiotemporal patterns of periodic solu-
tions would exist. In particular, these bifurcations would lead
to the existence of partially fused states (see Diekman et al.
2013; Diekman and Golubitsky 2014).

Similarly, in the odd configuration H, ignoring these features
would lead to specific dominant patterned solutions. First, if we
ignore the color feature, then the result would be a model with
both # and " symmetry. The model predictions would be the
same for this configuration as the ones for configurations C–F.

Second, if the orientation feature is ignored, then the hori-
zontal and vertical excitatory arrows (with the same color)
would be identical and the permutation ) " (37)(48) would be
a symmetry of the Wilson network in Fig. 6B. We would then
expect two special percepts. In the first, the color in the lower
left would be the same as the upper right and the color of the
other diagonal locations would be arbitrary. Second, the color
in the lower left would be opposite to that in the upper right and
the other diagonal locations would be fusion states.

We remark that we could assume that excitatory arrows exist
between nodes in different columns that represent the same
color (red or green). This possibility was discussed in Diekman
and Golubitsky (2014) under the notion of level feature.
However, in the rivalry networks we analyze here, the addition
of level excitatory arrows will not change the symmetry of the
rivalry networks and hence not change the menu of predicted
perceptual states. The addition of these couplings might be
relevant if simulation of specific Wilson-Cowan equations
were contemplated.

MATERIALS AND METHODS

Observers

All three observers had normal or corrected-to-normal vision and
provided written, informed consent under an institutional review
board protocol of The Ohio State University.

Apparatus

The experiments were conducted on a Dell (Optiplex 980) PC
computer using MATLAB R2011b with Psychtoolbox 3.0.10 exten-
sions. The stimuli were presented on the center of a Dell CRT monitor
(model no: M993s) and viewed at a distance of 107 cm. Images were
presented to the observer’s left and right eyes via a stereoscope
(Stereo Aids, RdNo70.485) mounted on a chin rest. The monitor was
the only light source in the dark room.

Stimuli

Each colored square extended 112 # 112 pixels (1.36° # 1.36°
visual angle at a viewing distance of 107 cm). Two colors, red and
green, with equal luminance, were used.

Four colored squares centered at the four corners of an imaginary
square were presented to each eye via a stereoscope. Each side of the
imaginary square extended 2.71° and 3.17° in the no-spacing and
spacing conditions, respectively. There were two configurations (Fig.
7, A and B) in the no-spacing experiments and six (Fig. 7, C–H) in the
spacing experiments. Black lines (Fig. 7) were presented around
colored squares to help binocular fusion. The black lines were pre-
sented throughout each 5-min block.

Design

Each observer participated in at least one training session before
the three main sessions. Each session consisted of eight 5-min blocks,
one for each of the eight 2-s presentation experiments (Fig. 7). In each
5-min block, observers reported the simultaneously perceived colors
of the four squares that had been presented for 2 s at the time of each
auditory beep in each trial. The 2-s presentation was based on pilot
experiments in which rivalry was generally observed before the end of
the 2-s period. In response to the request of an anonymous reviewer,
we conducted an additional set of experiments with 4-s presentations
on the same three subjects with configurations C, E, F, and G (Fig. 7).
Each of the same three observers completed two experimental ses-
sions. Each session consisted of eight 5-min blocks, two for each of
the four 4-s presentation experiments.

Procedure

Before each block, observers used four arrow keys (left, right, up,
and down) on the computer keyboard to adjust the relative positions
of the images (the dark lines) presented to the two eyes until stable
binocular fusion was achieved. They then pressed the space bar to
initiate the 5-min block. In each trial, the stimulus was presented for
2 s (or 4 s in the 4-s presentation experiments), and, upon its
termination, an auditory beep cued observers to report the simultane-
ously perceived colors of the squares at all locations at the time of the
auditory cue using the computer keyboard. Counterclockwise, starting
from the upper left, observers pressed the left and right arrow keys to
report the perceived red or green color. R or G appeared at the
corresponding location as the observer pressed left or right arrow
keys. Observers could delete the letter (R or G) at the most recently
reported location with the Delete key and rereport the response. By
pressing the Delete key multiple times, observers could change
responses at multiple locations. A new trial started 0.5 s after the press
of the space bar to confirm the responses or after the press of the ESC
key to abort the current trial (e.g., due to attention lapse). No feedback
was given. Observers were instructed to fixate at the center of the
image.

Analysis

We conducted Student’s t test (Wilcox 2012) with MATLAB
command ttest on the reported percentage of even percepts in the 12
experiments. Specially, we conducted one-sided Student’s t test in
experiments with configurations A–F (null hypothesis: " 0.5; alter-
native hypothesis: %0.5) and two-sided Student’s t test in experiments
with configurations G and H (null hypothesis: " 0.5).

EXPERIMENTAL RESULTS

In the 2-s presentation experiments, Tables 3, 4, and 5 show
the total number of reports of all 16 possible percepts for
observers 1, 2, and 3, respectively. The report frequency of
different percepts differed between experiments and observers.
Two pure color (RRRR, GGGG) percepts and two percepts
consistent with the monocular images presented to either the
left or right eyes were most often reported. In the no-spacing
pure color experiment (Fig. 7A), only two pure color percepts
were reported by observers 2 and 3. However, observer 1 also
reported vertical (GGRR), horizontal (GRRG), and lower right
(GGRG) percepts, suggesting that the black lines might effec-
tively act as “spacing” for this observer. In the no-spacing
vertical experiments (Fig. 7B), two pure color (RRRR, GGGG)
and two vertical (RRGG, GGRR) percepts contributed to the
majority of the reports while the other 12 percepts were rarely
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reported. In the six experiments (Fig. 7, C–H) with spacing,
report frequency spread over more percepts.

Table 6 shows the individual and mean report percentage of
the eight even percepts (pure color, diagonal, horizontal, and
vertical) and the P values. In the no-spacing experiments, more
than 90% of the reports were even percepts. In the experiments
with spacing, even percepts were reported more often (mean
60.1–72.9%) in the even configurations (Fig. 7, C–F) but
around 50% in the odd configurations (Fig. 7, G and H). P
values are 0.001, 0.003, 0.068, 0.027, 0.036, 0.006, 0.576, and
0.300 for configurations A–H, respectively. This suggests that
1) even percepts were reported significantly more often in all
even configurations but configuration C in which the effects
were marginally significant; 2) even percepts were not signif-
icantly more likely to be reported than odd percepts in the odd

configurations. We found similar results in the 4-s presentation
experiments (Table 7).

In summary, in the experiments using stimulus configura-
tions C–F, even percepts (percepts with an even number of red
squares) were more frequently observed than not, whereas in
the experiments using stimulus configurations G and H, even
percepts and odd percepts (percepts with an odd number of red
squares) were observed with equal probability. The Wilson
network models in which all six types of connections are
different was in better agreement with the empirical results
than the other models in which some of the six connections are
the same. We conclude that coupling between neural represen-
tations of input stimulus depends on both the feature values and
spatial configuration of the representations. More specifically,
we conclude that the excitatory coupling strengths in the
horizontal and vertical configurations are different, and the
coupling strengths between the same color and between dif-
ferent colors are different.

DISCUSSION

As in Wilson (2007), Diekman et al. (2013), and Diekman
and Golubitsky (2014), we assume that the first step in mod-
eling a rivalry experiment is choosing a rivalry network. In this
study, we constructed and analyzed the symmetries of gener-
alized rivalry network models for a number of four-location
binocular rivalry stimulus configurations. The development of
a novel reporting procedure allowed us to obtained frequencies
of all potential perceptual states in eight experiments. We have
shown that rivalry networks in which coupling depends on
stimulus features and spatial configuration of the nodes can
lead (via fusion-breaking Hopf bifurcations) to the prediction
of the set of percepts that can be perceived in the experiments.

When considering small-amplitude periodic solutions ob-
tained by Hopf bifurcation there is a mathematical reason for
considering only those periodic solutions that bifurcate from a
fusion state. Specifically, periodic states obtained by Hopf
bifurcation can exhibit alternation only if that bifurcation is
from a fusion state. If not, the activity of one oscillating node

Table 3. Report frequencies of the 16 possible percepts for
observer 1 in all eight 2-s presentation experiments

Configuration A B C D E F G H

RRRR 59* 33 33* 59 15 20 42 21
RGRR 0 0 15 9 12 19 33 4
RRGR 0 0 2 4 4 5 1 15*
RGGR 1 0 1 1 24* 12 3 7
RRRG 1 2 9 4 10 12 6 14
RGRG 0 0 5 1 12 20* 20 5
RRGG 0 16* 10 10* 0 2 2 1
RGGG 0 0 4 1 5 1 16† 1
GRRR 0 15 18 50 22 40 27* 22
GGRR 13 138† 32 68† 10 14 7 20
GRGR 0 1 0 6 16 31† 2 11
GGGR 0 1 4 4 9 11 1 12
GRRG 58 1 47 21 104† 60 51 62†
GGRG 16 1 55 6 10 11 16 60
GRGG 1 10 12 12 8 3 20 5
GGGG 122† 37 19† 11 3 1 17 2

G and R refer to green and red, respectively. The order of the reports was
counterclockwise from the top left. Configurations correspond to configura-
tions in Fig. 7. * and † refer to the percepts that are the same as the monocular
images presented to the left and right eyes, respectively.

Table 4. Report frequencies of the 16 possible percepts for
observer 2 in all eight 2-s presentation experiments

Configuration A B C D E F G H

RRRR 135* 33 110* 66 44 58 47 53
RGRR 0 0 3 9 4 11 5 2
RRGR 0 0 2 14 10 3 2 28*
RGGR 0 2 7 7 48* 6 2 19
RRRG 0 0 7 4 9 6 13 4
RGRG 0 0 2 7 7 12* 5 0
RRGG 1 10* 2 17* 3 3 11 2
RGGG 0 1 0 13 8 2 76† 2
GRRR 0 0 7 13 3 20 21* 0
GGRR 0 121† 4 23† 0 2 0 1
GRGR 0 0 1 14 4 34† 3 7
GGGR 0 7 1 12 5 16 2 8
GRRG 0 1 30 3 54† 11 21 9
GGRG 0 1 5 9 8 8 2 55†
GRGG 1 0 6 12 8 24 10 6
GGGG 122† 64 60† 17 27 17 22 46

G and R refer to green and red, respectively. The order of the reports was
counterclockwise from the top left. Configurations correspond to configura-
tions in Fig. 7. * and † refer to the percepts that are the same as the monocular
images presented to the left and right eyes, respectively.

Table 5. Report frequencies of the 16 possible percepts for
observer 3 in all eight 2-s presentation experiments

Configuration A B C D E F G H

RRRR 108* 61 48* 21 26 10 10 39
RGRR 0 3 12 10 7 10 19 9
RRGR 0 2 3 0 6 6 1 26*
RGGR 1 0 9 0 46* 6 24 14
RRRG 0 2 1 8 1 6 1 2
RGRG 0 4 2 6 5 23* 4 1
RRGG 1 27* 1 48* 5 4 3 4
RGGG 0 0 1 11 6 18 26† 2
GRRR 0 10 2 0 4 8 35* 2
GGRR 1 59† 50 9† 4 1 32 8
GRGR 0 4 3 0 8 3† 16 10
GGGR 1 7 29 3 37 2 4 39
GRRG 0 0 0 3 10† 39 13 1
GGRG 0 3 7 1 3 27 1 24†
GRGG 1 3 1 16 28 21 20 5
GGGG 134† 28 65† 105 29 49 33 46

G and R refer to green and red, respectively. The order of the reports was
counterclockwise from the top left. Configurations correspond to configura-
tions in Fig. 7. * and † refer to the percepts that are the same as the monocular
images presented to the left and right eyes, respectively.

1996 SYMMETRY IN FOUR-LOCATION BINOCULAR RIVALRY

J Neurophysiol • doi:10.1152/jn.00438.2019 • www.jn.org

Downloaded from www.physiology.org/journal/jn at Ohio State Univ HSL (140.254.087.149) on November 4, 2019.



will be larger than the activity of all other oscillating nodes for
all time and alternation will not occur. It follows that alterna-
tion obtained from small-amplitude periodic solutions can only
occur robustly in a model network where fusion states are
structurally stable in that network. For this reason, to describe
alternation, we require a rivalry network structure that leads to
fusion states.

The rivalry experiments we discussed exhibit interocular
grouping, that is, components of the left eye and right eye
images are combined to achieve a single coherent percept (Lee
and Blake 2004; Papathomas et al. 2005). Such groupings
occur when learned images can be naturally subdivided and
reassembled in other forms. The subdivision process seems to
be captured by the attributes and their types (which define node
types) and the features (which define excitatory coupling
types), as has been shown for the experiments described here.
Together the attributes and features define the rivalry networks
and their symmetries. The mathematics of symmetry-breaking
Hopf bifurcation leads to an enumeration of the likely ways
that the subdivisions can be reassembled, that is, to a set of
interocular groupings associated with percepts.

In this study, we constructed and tested the predictions of the
generalized rivalry network models for six four-location bin-
ocular rivalry configurations. Our goal for this paper is to
demonstrate that the mathematical approach, namely, symme-
try analysis of the generalized rivalry networks, can lead to
predictions of perceptual states that should be observed more
frequently in psychophysical experiments. The approach can
be extended to make predictions for 1) more complicated
binocular rivalry configurations that involve more stimulus
features and more stimulus locations, and more interesting
learned patterns (Hong and Shevell 2006; Kovács et al. 1996),
and 2) other bistable or multistable perceptual illusions such as
the Necker cube illusion (Necker 1832; Stewart and Golubitsky
2019).

In the current mathematical approach, we have focused on
“the menu of possible percepts” predicted by the symmetries of
generalized rivalry networks. Moreover, generalized rivalry
networks are specified by listing attributes of learned patterns

and by determining those excitatory couplings that are assumed
to be the same and those that are assumed to be different. Our
percept predictions are based on these modeling assumptions.
Note that the symmetry analysis that follows can also make
predictions concerning perceptual alternations; these alterna-
tions consist of states along the periodic solutions.

Our experiments confirmed that percepts consistent with
symmetry-breaking Hopf bifurcation did appear more fre-
quently than other percepts. However, the observed types of
alternation between states did not seem to be in agreement with
the symmetry predicted alternation. In the future, a systematic
experimental approach may obtain more detailed temporal
dynamics of binocular rivalry and directly test predictions of
the properties of the periodic solutions.

APPENDIX: EQUIVARIANT HOPF BIFURCATION

A system of differential equations Ẋ % F!X" has a linearly stable
equilibrium at X0 if F(X0) " 0 and all eigenvalues of the Jacobian
matrix J % !DF"X0

have negative real parts. If the system depends on
a parameter 0, Hopf bifurcation occurs at 0 " 00 when a complex
conjugate pair of simple eigenvalues of J at 00 has zero real part.
Generically, as 0 varies, this complex conjugate pair crosses into the
right hand side of the complex plane with nonzero speed. In this case,
the equilibrium loses stability and a unique periodic solution with
small-amplitude grows around the equilibrium. Such a bifurcation is
called supercritical if the periodic solution is stable and subcritical if
the periodic solution is unstable.

!-Equivariant

A matrix ) acting on X ! !n is a symmetry of the vector field

Ẋ % F!X" if ) maps solutions to solutions. Being a symmetry is
equivalent to the equivariance condition

F!)X" % )F!X" . (6)

Let ! be a group of matrices acting on X ! !n. The vector field F
is !-equivariant if Eq. 6 is valid for all ) ! !.

Hopf Bifurcation with Symmetry Group !

Assume ! is abelian, which is the case with all symmetry groups

analyzed in this paper, and assume the system Ẋ % F!X" is
!-equivariant. Suppose also that the equilibrium is !-symmetric;
that is, )X0 " X0 for all ) ! !. If X(t) is the T-periodic solution
emanating from this equilibrium, then ! preserves the bifurcating
trajectory and ){X(t)} " {X(t)}. It follows that ){X(t)} " X(t'*)T)
for *) ! S1 " [0,1); that is, as far as the periodic solution is concerned
the action of every symmetry ) is compensated for by a phase shift *).
The set

' !), *)" ! 1 2 S1 : )X!t" % X!t ' *)T" for all t ! !

describes spatiotemporal symmetries of the periodic solution.

Table 6. Report percentage (%) of even percepts in all eight 2-s presentation experiments

Configuration A B C D E F G H

Observer1 93.4 88.6 55.3 66.3 69.7 61.1 54.5 49.2
Observer2 99.6 96.3 87.4 64.2 77.3 61.4 45.9 56.6
Observer3 99.2 85.9 76.1 79.7 59.1 57.9 55.8 53.0
Mean 97.4 90.3 72.9 70.0 68.7 60.1 52.1 53.0
P 0.001* 0.003* 0.068 0.027* 0.036* 0.006* 0.576 0.300

Configurations correspond to configurations in Fig. 7. *Significance level - " 0.05.

Table 7. Report percentage (%) of even percepts in all four 4-s
presentation experiments

Configuration C E F G

Observer1 75.8 73.8 67.7 60.6
Observer2 88.4 75.9 60.0 46.8
Observer3 74.1 55.9 55.9 52.0
Mean 79.4 68.5 61.2 53.1
P 0.011* 0.050*† 0.042* 0.517

Configurations correspond to configurations in Fig. 7. *Significance level
- " 0.05; †0.049861 is rounded to 0.050.
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Systems of !-equivariant differential equations have a type of Hopf
bifurcation for each irreducible representation of !. If ) " ! has order
two, which is the case for all nontrivial symmetries in this paper, then
there are two possible types of Hopf bifurcation leading to T-periodic
solutions of the form

)X!t" % X!t" and )X!t" % X#t '
T

2$ (7)

Each rivalry network in this paper has a symmetry ! that permutes
the red and green nodes in each attribute column simultaneously. It
follows from !X(t) " X(t) that the nodes in each attribute column are
equal and the associated periodic solution is a fusion state. So, we may

assume that !X!t" % X#t '
1

2
T$ and consequently all percepts have

the form that alternation occurs between complementary red and
green patterns.

If ! " Z2(!)QZ2("), then there are two types of Hopf bifurcation
leading to nonfusion percepts and they have the form

!a""X!t" % X!t" or !b""X!t" % X#t '
T

2$ (8)

If ! " Z2(!)QZ2(")QZ2(#), then there are four types of Hopf
bifurcation leading to eight nonfusion percepts and they have the form

!a" #X!t" % X!t" "X!t" % X!t"

!b" #X!t" % X!t" "X!t" % X#t '
T

2$
!c" #X!t" % X#t '

T

2$ "X!t" % X!t"

!d" #X!t" % X#t '
T

2$ "X!t" % X#t '
T

2$
(9)

The networks described in this paper have abelian symmetry
groups Z2(!), Z2(!)QZ2("), or Z2(!)QZ2(")QZ2(#) and the rivalry
percepts are characterized by the spatiotemporal symmetries in Eqs. 7,
8, or 9.
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