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Abstract Let r be a finite group acting on R" and let .xg be an initial point for a r-equivariant 
map f : R" +~R". "he question of determining the symmetries of the o-limit set o,(xo) is 
discussed by Barany et a1 and Dellnitz et al. The methods introduced therein are based on the 
notion of a symmetry detective. Detectives replace the question of determining the symmetries 
of the set q ( x 0 )  by the easier question of determining the symmetries of a point in an associated 
space W. "he detective theorem of Barany et 01 has a limitation in that its implementation tacitly 
assumes that o,(xo) contains a point of vivid isotropy; this assumption is explicit in Dehi tz  
et al. In this paper we extend the ideas of these authors lo present sufficient conditions for an 
equivariant polynomial q : R" -t W to be a detective, even when the o-lirni'set is contained 
in a proper fixed-point subspace. We show that W need only satisfy the Conditions given by 
Barany et al and Dellnie et al while the map q has to satisfy Certain conditions in.addition 
to the ones listed by these authors. We also present a density theomn for such aetectives and 
we show that the detective for rings of p coupled cells (nearest-neighbour coupling) with Up 
symmetry fust given by Barany er a1 is a detective for all (SBR) aUractors. 

AMs classification scheme numbers: 34C35.58F12 

1. Introduction 

The notion of a symmetry detective was introduced in [l,  21 to address the following 
question. Let V = R". Given a (discrete) dynamical system f : V + V that is r- 
equivariant with respect to a finite group r c O(n) and an initial point XO, how does one 
determine, in practice, the symmetries of the o-limit set w,&o). The idea behind symmetry 
detectives is to transfer the question of determining the symmetries of the set o f ( x 0 )  (a 
difficult question) to one of determining the symmetries of a point in an auxiliary space W 
that depends on r and its action on V (a simpler question). 

A given symmetry detective cannot work in all cases-but theorems in [ 1, 21 show that 
detectives can work generically. An example of Gatermann [3] showed that one difficulty 
with the theorem in [l] is that its implementation implicitly assumes that ~ ( x o )  contains a 
point of trivial isotropy. This point was also noted by Tchistiakov [5]. This assumption was 
made explicit in [Z]. It is the purpose of this paper to state and prove a detective theorem 
which works without the assumption of trivia1 isotropy. We note that Tchistiakov [5I has 
proved independently a similar detective theorem. Our results show that no additional 
conditions on the auxiliary space W beyond those given in [l,  21 is needed. 

It was shown in [I] that the matrix outer product xxf is a detective (for attractors 
containing points of hivial, isotropy) for rings of p identical coupled cells with nearest- 
neighbour coupling. Such systems have dihedral Dp symmetry. In this paper we use our 
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SBR detective theorem to prove that XX' is a detective (for all SBR attractors-even those 
contained in fixed-point subspaces). This detective has been used by Kroon and Stewart 141 
to study a model for hexapodal gaits. Tchistiakov [5] has found a method for generating 
detectives for finite groups and he explicitly constructs a detective for coupled systems of 
p identical cells having all-to-all coupling. The Josephson junction system is such a system 
(having S, symmetry) and some of the dynamics in this system is explored in [5]. 

1.1. SBR attractors 

We begin by recalling the notion of a detective. To do this we need to define the terms 
observable, SBR measure and SBR attractor-where SBR stands for Sinai, Bowen and 
Ruelle. We assume that all group actions are orthogonal. 

M Golubitsky and M Nicol 

Let W be a linear space on which r acts. Define an observable to be a C' I?-equivariant 
mapping q : V -+ W. 
An SBR measure for a mapping f : V + V with an invariant set A is an ergodic 
measure p with support equal to A and with the property that there exists an open 
neighbourhood U 3 A such that for every continuous function h : V + R and for 
Lebesgue a.e. x E U 

1 N-I 

N j d  

lim,+,m- h(f'(x)) = h d p .  

We define an SBR attractor to be a topologically transitive w-limit set with an SBR 
measure. 

Qpically, we apply (1.1) to observables q : V + W. Define 

(1.2) 

One consequence of this definition is that for Lebesgue a.e. x E U 

When necessary we use the notation K , E ( A )  for K,". 

A is 
Suppose that the r-equivariant map f has an SBR attractor A.  The symmetry group of 

E = [U e r :  a A = A } .  
When necessary we use the notation X(A) for E. We denote the isotropy subgroup of the 
observation K," E W by E,. Since A is an SBR attractor, the definition of SBR measure 
stated in (1.1) implies that there exists an open set U 3 A such that for Lebesgue a.e. x E U 
the vector K," (as computed using (1.3)) and the symmetry group E? are independent of x .  

Definition 1.1. The observable q is an SBR detective 8 for each SBR attractor A there is 
an open dense subset N in a neighbourhood of the identity in (the C' topology on) Diffr( V )  
such that all + E N sati.$y 

We now define the notion of detective relevant to this paper. 

E?(tlr(A)) = E(A). 

Loosely speaking, our main theorem shows that SBR detectives form an open dense subset 
in the space of r-equivariant polynomials. 
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1.2. Types of symmetry 

Attractor symmetries come in two types: instantaneous and average symmetries. The 
element y E r IS an instantaneous symmetry of A if ya  = a for all a E A; y is an average 
symmetry if yA = A. Thus instantaneous symmetries fix A pointwise while average 
symmetnes need only fix A setwise. We have denoted the group of average symmetries by 
E and we denote the group of instantaneous symmetries by T. Note that: 

(a) T is a normal subgroup of E, 
(b) A c Fixv(T), 
(c) C' = C / T  fixes A setwise, 
(d) Let T' = Nr(T)/T. By construction A has points of trivial isotropy with respect to the 

The proof of our SBR detective theorem works by using the same ideas that appear in the 
proof of the detective theorem in [2] when A had trivial r isotropy in the new context 
where A has trivial T' isotropy. Some care is needed in the details. 

group action of T' on Fixv(T). 

1.3. The detective theorem of [21 

Let W ( r )  denote the direct sum of all distinct nontrivial irreducible representations of the 
finite group r and let W 3 W ( r ) .  Theorem 3.3 [2,p 831 states that if Q : V + W is 
a polynomial observable and the coordinate functions of 9 in the directions of W ( r )  are 
nonzero, then Q is a detective for SBR attractors containing points of trivial isotropy. The 
following example is a simplified version of the example of Gatermann [3] which illustrates 
that some restriction on the isotropy type of poi& in the attractors is needed to prove a 
general detective theorem. 

Let r = D3 act on Rz E C in the standard way as symmetries of an equilateral triangle 
and on R by the nonhivial representation where rotations act trivially and reflections acts 
as multiplication by -1. Let V = C C3 R = W and note that W(D3) = W .  Define Q by 

9 ( z ,  r )  = ( z ,  h(z3)) .  
Suppose an attractor A c Fixv(Z3) = (01 @ R such attractors do not have points of trivial 
isotropy. Note that 9(A) = (0.0) and there is no way to determine whether T = D3 or 
T = 23 using measurements constructed from 9. 

1.4. A theorem on density of detectives 

Let denote the space of r-equivariant polynomial mappings of V + W of degree at 
most k. Note that Pk is a finite-dimensional vector space and has its natural topology. 

Theorem 1.2. Let r be afiite group acting on V and let W 3 W ( r )  be a r representation. 
Then, for each sufficiently large k, there exists an open dense subset S c Pk such that each 
9 E S is an SBR detective. 

The important point is that theorem 1.4 holds for attractors contained strictly within 
fixed-point subspaces as well as for attractors containing points of trivial isotropy. When an 
attractor is contained in a fixed-point subspace, then the support of the associated measure 
p also lies within that fixed-point subspace. 

We also give sufficient conditions for an equivariant polynomial from V to W to be 
an SBR detective. We begin our discussion by introducing some terminology. Note that 
an isotropy subgroup T c r has the property that Fixv(T) strictly contains Fixv(C) 

' 
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whenever I: strictly contains T. The instantaneous symmetry subgroup T of an attractor A 
is the largest subgroup T for which A c Fixv(T); such subgroups T are always isotropy 
subgroups. The average symmetries of A form a subgroup that contains T. For each 
subgroup T c r let T' Nr(T)/T. When T' is trivial, A cannot have any additional 
average symmetries and detecting these nonexistent symmetries is unnecessary. 

Define the finite set 

M Golubitsky and M Nicol 

G ( V )  = {T c r : T is an isotropy subgroup such that T' # 9. (1.4) 

It is only the subgroups in G(V) that need be considered when proving that rp is an SBR 
detective. 

The group T' acts on Fixw(T); let W;, . . . , Wi be the isotypic components of the action 
of T' on Fixw(T) corresponding to nontrivial irreducible representations. Let pi : W + W; 
be orthogonal projection. 

Theorrm 1.3. Let W 3 W ( r ) .  Suppose that (0 : V -+ W is a r-equivariantpolynomial 
withtheproperty thatforeach T E G(V)andforeachi theprojectionpiorp~ixv(T)) c W[ 
is nonzero. Then rp is an SBR detective. 

Note that 1 is always in G(V)  and that the detective theorem in [Z] is just the part of 
theorem 1.3 that refers to the case T = 1. 

1.5. A detective for rings of coupled cells 

As an application of these ideas we present a SBR detective for systems of p coupled 
cells coupled in a ring. Such systems have Dp symmetry. This discussion expands on the 
example given in [I]. Let the state space of the coupled cell system be V = ( R m ) p ;  that 
is, assume that each of the p cells is governed by a system of equations with m unknowns. 
The group Dp acts on V by permuting the 'cells' R"'. Let W be the space of mp x mp 
symmetric matrices and let Dp act on W by 

y . w = ywy' 

where y is viewed on the right as a permutation matrix. 

Proposition 1.4. Suppose that 

i~ = f (Zj-1, z j ,  Zj+l, A) 1 6 j 6 P 

where zj E Rm is a system of coupled cells. Assume that 

f ( a , b , c , A ) =  f ( c , b , a , A )  V a , b , c E R m  

p 2 3 and m 2 2. Then the Dp-equivariantpolynomial (0 : V + W defined by 

p(x) = X X f  

is an SBR detective. 

In the next section we recall (and extend) some results from [l, 21 as well as some general 
results about equivariant polynomial mappings. We prove the density theorem (theorem 1.4) 
in section 3 and we discuss the sufficiency result for SBR detectives (theorem 1.3) and the 
application to coupled cell systems (proposition 1.4) in section 4. 
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2. Background material 

To prove these results we need to present several lemmas. Let V and W be I' representations 
and let r, denote the isotropy subgroup of a point p where p is either in V or in W. 

Lemma 2.1. Suppose t h t x  E V, y E W and r, c r,. Then there exists a r-equivariant 
polynomial mapping p : V + W such that p(x) = y. 

A proof, based on the Weierstrass approximation theorem, may be found in [6].  
We now define integers k(T) and k based on the existence result in lemma 2. Recall that 

the normalizer Np(T) is the subgroup ,of r consisting of elements that preserve Fixw(T). 
RecallthatT'=Nr(T)/TandnotethatT'actsonFixw(T). Let",, ..., Weheacomplete 
set of nonbivial nonisomorphic irreducible representations of T' on Fixw(T) and define 

(2.1) WT = wl @ '.' @ wt. 
Let ni : W + Wf be orthogonal projection and define a : Fixw(T) + WT by 

n=(n1, ... ,ne). (2.2) 

Recall the definition of G ( V )  in (1.4) and let T E G(V). Since T is an isotropy subgroup, 
Fixv(T) contains an open dense set of points with isotropy precisely T. Let x E Fixv(T) 
be a point such that rr = T. Choose y E Fixw(T) such that q ( y )  # 0 for i = 1,. . . ,e. 
Since ry 3 T, it follows that Fx c ry; hence by lemma 2, there exists a r-equivariant 
polynomial p such that p(x) = y .  Hence ni o (0 # 0 for i = 1, . . . , e. Let k(T) be the 
smallest degree of such a polynomial mapping p. Fix an integer k such that 

k > max k(T) .  
TEG(V) 

Let g : V + W be a map between real vector spaces. Denote by ( g )  the vector subspace 
of W generated by linear combinations of the vectors g(x )  where x ,E V.  

Lemma 2.2. Let V be a r representation and W an irreducible r representation. Let T c r 
be an isotropy subgroup and let @ denote the restriction of 'p to Fixv(T). Then there is an 
open dense set SF C Pk such that ifp E S$, a((@))   WT. 

Proof. Note that @ : Fixv(T) + Fixw(T) is T'-equivariant. Furthermore (nj o @) n Wj # 
0 for j = 1,.  . . ,e. Since the subspaces W,, . . . , We are nonisomorphic irreducible 
representations, it follows that a((@)) = WT. 

Now we prove the open and dense property that we claimed. We define Sr to be the 
set of all r-equivariant E Pk which satisfy x(($)) = WT. Note that the set S ~ ' i s  open 
by definition so we need only show density of the set ST to prove the lemma 

Suppose that a r-equivariant polynomial g E Pk has the property that nj o g = 0 for 
0 

Now define 

some j .  Then for E # 0, q o (g + &p) # 0. Thus Sr is dense in A. 

S =  n S:. (2.3) 
TeG(V) 

Note that S is an open dense subset of ' P k .  We will show below that elements of S are SBR 
detectives. 

Lemma 2.3. Let T E G ( V )  and suppose the representation space W 3 W ( r ) .  Then 
Fixw(T) contains a copy of each nontrivial irreducible representation of T'. 
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Proof. First we  establish the claim in the case that W = L 2 ( r ) .  Then we generalize the 
result to arbitrary W containing all nontrivial irreducible representations of r. Suppose that 
W = L.*(r). In this case 

Fixw(T) = (h  : r + R such that h is constant on T cosets). 

Each such h induces a map : N r ( T ) / T  + Rand we get all such maps Nr(T) /T  + R.in 
this way. Hence Fixw(T) 3 L2(T'). Since L2(T') contains all irreducible representations 
of T', so does Fixw(T). 

Now suppose that W contains a copy of each nontrivial irreducible representation 
of r. Extend W so that the new W contains L 2 ( r )  by adding isomorphic copies of 
the irreducible representations which were already in W (here we use the fact that W 
contains each irreducible representation of I?). Thus the irreducible representations of T' 
acting on Fixy(r)(T) can only be obtained by adding isomorphic copies of the irreducible 
representations of T' acting on Fixw(T). Hence Fixw(T) itself contains all irreducible 

The proof of our main theorem uses the notion of a representation distinguishing 
subgoups. This idea was introduced in [l]. We say that a representation W distinguishes 
all subgroups of if 
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representations of T'. 0 

dimFixw(A) < dimFixv(Z) 

whenever A 3 E are distinct subgroups. Let W ( r )  denote the direct sum of aU nontrivial 
irreducible representations of r. A sufficient condition for distinguishing all subgroups of 
r is given in [I], theorem 4.3, p 70. 

Lemma 2.4. Let r be afnite group and let W 3 W ( r ) .  Then W distinguishes all subgroups 
o f r .  

We will also use a modified version of a lemma found in 111 (lemma 5.5, p 72) and 
[2]. The modification allows us to consider attractors in Fixv(T). Define the smooth map 
@; : Diffr(V) + W by 

Lemma 2.5. Let 'p : V + W be a polynomial observable and suppose that W 3 W(r). 
Then 'p is an SBR detective if for each T E G(V) and for each SBR attractor A with 
instantaneous symmetries T (A) = T there exists an open neighbourhood N of the identity 
in Diff,(V) such that the projections z o @; cover an open neighbourhood U of n(K;(A))  
in Fixw,(Z') where E' = X ( A ) / T .  

Proof. Choose T E G(V) and let A c Fixv(T) be an SBR attractor with instantaneous 
symmetries T and setwise symmetries E'. Recall the definitions of WT in (2.1) and z in 
(2.2). Lemma 2 and W 3 W ( r )  together imply that Fixw(T) contains a copy of every 
irreducible representation of T'; that is, Fixw(T) 3 WT.  Let V, UFixwT(A) where 
the union is taken over all subgroups A c T' containing but not equal to Z / T .  Since 
W, distinguishes all subgroups of T', V, is a variety of codimension one or greater (by 
lemma 2). Hence the set U' = 0 - VT is an open dense subset of 0 in Fxwr(E') whose 
closure contains x(K;(A)) .  

Since z o @; is smooth, (ir o @;)-'(O') n U is an open dense subset of U in Diffr(V) 
whose closure contains the identity.-It follows that for most near identity diffeomorphisms + the observations R a@;(@) are not in VA and arbitrarily close to z(K,E(A)).  This proves 
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the lemma since those observations whose projection under x do not lie in V, have the 
correct isotropy group. 13 

3. Proof of  density of  SBR detectives 

In this section we prove theorem 1.4. We show that if a r-equivariant polynomial 'p lies 
in the set S defined in (2.3), then (0 satisfies the requirements of lemma 2 and hence is an 
SBR detective. This shows that most polynomial observables of sufficiently high degree 
are SBR detectives. 

We assume that A is an SBR attractor for f and that T = T ( A ) .  (It follows that T 
is an isotropy subgroup.) As in [I] and [2] we may verify that the conditions of lemma 2 
hold if the linearization of @]OA, see (2.4), 

x O L z : C 1 ( V , V ) +  w 
is onto Fixw,(Z'). This step is an application of the implicit function theorem. 

Suppose 'p E S. We show that for an open dense set of r-equivariant diffeomorphisms 
$I close to the identity, the corresponding linear maps x o Lr* are onto Fixw,(Z'). Thus 
by lemma 2 for an open dense set of near identity r-equivariant diffeomorphisms $I the 
groups &(@(A)) and Z(A) are identical. Thus 'p is an SBR detective. 

We now compute the derivative L z .  Let qt be a smooth onsparameter family of C' 
r-equivariant diffeomorphisms of V with @o(x) = x and let X = $$It I t=o . Then 

Note that x o L',(X) is the derivative of the mapping n o  CJ', at. $I. Note that x o L',(X) E 
Fixw,(Z'). If x o L z  is onto Fixw,(C'), then the implicit function theorem and lemma 2 
imply that (0 is an SBR detective. 

There are four steps in the proof that x o L', is onto Fiuw,(Z'). They differ in only 
minor details from the corresponding steps given in 121. 

(1) Thicken A to 
A, = (x E Fixv(T) : d(x ,  A) < E )  

where E > 0 is chosen sufficiently small so that the symmetry group of A, is the same as 
the symmetry group of A. Define the vector space Hq,z c WT by 

where x E A, and X E C'(V,  V ) .  We also define the vector space Hp by 
f& = span Ix 0 ( ~ u l ) A X ( x ) ) I  

f& = span Ix 0 ( ~ ~ o ) A X ( x ) ) l  
where x E A and X E C ' ( V ,  V ) .  

We claim that Hq,E = W,. We begin by noting that if g : Rp + Rm is smooth and if the 
images (Dg) ,X(x )  all lie in aproper subspace of R", then, modulo a fixed constant vector, 
the image of g also lies in that subspace. Applying the first comment to g = x o VIA,, it 
follows that if the linear subspace Hq,E is a proper subspace of W,, then ~ ( ( ' p ) )  must lie in 
a proper subset of W,, contradicting the assumption that 'p E S (and hence ~( ( ' p ) )  = W,). 

= WT, we may choose a finite number of points xi E A, and a finite 
number of vector fields Xi E, C'(V, V )  such that the set of vectors x o (D'p),(X;(xi)) is a 
basis for WT. By continuity this basis property holds for yi E A, sufficiently close to x i .  

(2) Since 
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(3) Let P : W + Fixw(C) be the orthogonal projection. In this step our goal is to 
show that the image of Lz is onto H,'. where 

H,' = span (P 0 (Dm),(X(x))l 
for x E A and X E C'(V,  V). This observation is important in our context since it implies 
that the image of 3~ o Lz equals P o Hv. Now we duplicate the proof given in [Z]. The 
image of Lz is contained in Hv, so we need only prove the reverse inclusion. This is done 
with the aid of the trace formula 111, which gives an explicit formula for the projection P 
defined by: 

Choose points zi E A and vector fields Xi E C1(V, V) so that [Po(Dp),,(Xi(zi))) is a basis 
for If,'. We now show that we may approximate each vector P o  (Dq)zj(Xi(zi)) arbitrarily 
closely by a vector in the image of L'b, and, hence by linearity, we have that the image of 
Lz contains Hp. For concreteness choose the vector P o (Dp)z!(X~(zl)). Let B,(zl) be a 
small ball centred at ZI .  Let X be a vector field such that 

{ IZIP(B&~) I X I ( Z ~ )  forz  E B,(z~), X(Z) = 

Use the group action of r to extend X to a r-equivariant vector field on V supported 
on the balls yB8(zl) (which we can assume are either disjoint or equal if E is small enough). 
Then, 

off of a slightly larger set. 

Lz(W = / Dv(x)dp 
A 

= p 0 ( ~ m ) z ~ ( x I ( z d )  by (3.1). 
Thus the image of Lz equals H,' and so the image of x o Lz equals Hp. Note that in the 
last equality we needed to use the fact that p(B,(ux))  = p(B,(x)) ,  which follows from the 
C-invariance of SBR measures. See [Z]. 

There is an error in (3.2) due to the truncation of the vector field X outside the ball 
B(zl, E ) ,  which we have ignored for ease of exposition. It is easy to see that this error can 
be controlled and we omit the proof. 

(4) Recall that Hp.E equals W,. Choose a basis for W, of the form 

{r 0 (DP).rj(Xi(xi))l 
where xi E A, and Xi E C'(V, V). We may assume that the xi 's have disjoint orbits under 

Now choose ai E A close to xi and map xi + ai under a r-equivariant diffeomorphism 
r. 

@. We now define 

where x E A and X E C1(V. V). By our choice of @ the sets 'I+* and W, are equal. Bur 
as shown in step 3, Po ?l* is the same as the image of r o L:*. 

0 

% = span 0 (DV)*(~)(X(+(~)))I 

Hence the image of TC o L:* is equal to Fixw,(X') which finishes the proof. 
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In this section we give sufficient conditions by which an equivariant polynomial is an SBR 
detective. These criteria are easily abstracted from the proof we have given for the density 
of SBR detectives in theorem 1.4. Recall that G(V) is the set of isotropy subgroups of r 
consisting of those T for which T' = N r ( T ) / T  is nontrivial. 

Recall that W;, . . . , W; are the isotypic components of the action of T' on Fixw(T) 
corresponding to nontrivial irreducible representations and that pi : W + W: is orthogonal 
projection. 
Proof of theorem 1.3. Since the image of pi o rp(Fixv(T)) in the isotypic component W/ 
is nonzero, the image of pi o rp(Fixv(T)) in at least one of the isomorphic copies of the 
irreducible representations that constitute W: must be nonzero. Suppose that the projection 
into the irreducible representation Ui c W; is nonzero. Let xi : W + U, be orthogonal 
projection. The linear span < xi orp(Fixv(T)) > is a r-invariant subspace of U, which must 
equal Ui as Ui is an irreducible representation. Thus for each i < piorp(Fixv(T)) > contains 
an irreducible representation U: isomorphic to Vi. We may define Wr = U; . . . @ U;. 
Hence the projection of the linear span of rp into Wr equals WT for each T E G(V). 

In the proof of theorem 1.4 we show that if rl. : V + W is an equivariant polynomial 
which lies in the set S defined in (2.3), then + is an SBR detective. We can choose S 
so that S consists of polynomial mappings of degree less than or equal to k where k is 
arbitrarily large. We choose k to be at least the degree of p. The previous discussion shows 
that rp E S and hence rp is an SBR detective. I3 
Proof of proposition 1.4 The representation space W that we use here is the space of 
mp x mp real symmetric matrices where y E Dp acts on the mahix w by y . w = ywy' .  
It is easy to check that V(X) = XX' is Dp-equivariant with respect to this action on W. In 
[I] it is shown, using the theory of characters, that W contains every nontrivial irreducible 
representation of D, and that p detects attractors containing points of trivial isotropy. That 
is, the hypotheses of theorem 1 3 a r e  satisfied when T = 1. 

The subgroups of Dp are either Z, where q 2 2 divides p or are isomorphic to D, 
where q 2 1 divides p.  The normalizers of these groups are: 

NO, (z9) D~ 
D, if $ is odd 

ND,,(Dq) = D2q if is even . 
We begin by considering the groups Z,. Note that 

Fixv(Z,) = {(XI, . . . , x,, ..., XI , .  . . , x,)  : X I , .  . . ,xt E R") (4.1) 
where t = E .  Note that 2, is not an isotropy subgroup if either q = p or q = $ since, in 
these cases the vectors in FixV(Z,) are also fixed by Dq. So we may assume that t 2 3. 
We show that the restricted system behaves l i e  a system o f t  cells coupled in a ring with 
m equations. Begin by noting that 

4 

2; = Dp/Z, ED, 
and that D, acts on Fixv(Z,) by permuting the vectors X I , .  . . , x,. Moreover fp restricted to 
Fixv(Z,) is just the same quadratic map on the t system as on the p system. The hypotheses 
of theorem 1.3 are satisfied for the groups Z, using the calculations in [I]. 

is odd, 
D, is not in G(V) when f is odd. It follows that rp is an SBR detective when p is odd; so 
we may assume that p is even and that f is even. 

We now consider the subgroups isomorphic to D,. Since D; = 1 when t = 
9 
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When t = is even there are two conjugacy classes of subgroups A isomorphic to Dq. 
These classes are distinguished by whether the axes of symmetry of the reflections in A 
connect opposite vertices D; or midpoints of opposite sides D;. In the first case we write 
A = D; and in the second we write A = D;. Define K ,  to be the reflection that fixes cell 1 
and generates D& We view the reflection K, by its action on Fix"(&) which, by (4.1), 
we can identify with the t letters XI, . . . , x,. Since t is even we  find that 

~ " ( 1 , .  . . , t )  = (2, t )  (3 ,  t - 1). . . - - + 2  (;,; ) 
Note that D; is the standard D, in Dp. 

x,. A computation shows that 
Similarly, define K~ to be the reflection that generates D;/Zq and interchanges X I  and 

Using the coordinates X I ,  . . . , x, on Fix@,), it follows that 

F i x v q )  = I (XI ,XZ,  ..., x ~ , x ~ + I , x ~  ,.... XZ)} 

FixV(D;) = [(XI,. . . . x i , x i , .  . . ,XI)]. 

(4.2) 
(4.3) 

Note that when t = 2 the group T = D; is not an isotropy subgroup as Fixv(D;) = 
( x l , x l ]  = Fix"(Dp). In all other cases the groups T = D; and T = Dl are 
isotropy subgroups. In general, Fix"@;) is m ($ + 1)-dimensional and Fiw~@:) is mi- 
dimensional. 

We claim that the hypotheses for theorem 1.3 can be verified for T % D, by direct 
calculation, from which it follows that o, is an SBR detective. As a first step, let r be 
the generator of Z,/Zq. Then 5 is a generator for ND~(D~)/D, for either type of group 
isomorphic to Dq. The action of r on Fixv(2,) is 

s(1.. . . , t )  = (1, ; + 1). . . (;, r )  

Thus we can compute the action of the permutation 5 on Fixy(Dq) in the coordinates 
implicit in (4.2) and (4.3) as 

r (1. .. ., ; + 1) = (1, ; + 1) (2, ;) . . . ([TI, [ 61 + 2 )  

+...., ;) = (1,;)(2,;- l ) . . . ( [ ; ] , [ y ] f l )  

In light of theorem 1.3 o, is an SBR detective if we can show that the projection of o, 
into the nontrivial representation of 2 2  on Fixwo),) is nonzero. The projection of p onto 
the nontrivial representation of 2 2  on Fixw(D,) is given by 

1 
2 

1 

x H -(I - Z)o,(X), 

where 1 is the identity element. Since 9 is r-equivariant this mapping is equal to 

(4.4) x $o,(X) - ro(7(x)). 

By considering the case where X I  is distinct from x,+l with x2 = . . . = x, = 0 it is 
straightforward to compute that (4.4) is nunzero on F i x v q ) .  Similarly, by considering 
the case where X I  is distinct from x, with x2 = . . . = xt-l = 0 it is easily computed that 

0 (4.4) is nonzero on Fix"@;). 
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