
1

Synchrony in Lattice Differential Equations∗

Fernando Antoneli

Department of Applied Mathematics, University of São Paulo

São Paulo, SP 05508-090, Brazil

E-mail: antoneli@ime.usp.br

Ana Paula S. Dias
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Abstract

We survey recent results on patterns of synchrony in lattice
differential equations on a square lattice. Lattice differential equa-
tions consist of choosing a phase space R

m for each point in a lat-
tice and a system of differential equations on each of these phase
spaces such that the whole system is translation invariant. The
architecture of a lattice differential equation is the specification
of which sites are coupled to which (nearest neighbor coupling is
a standard example). A polydiagonal is a finite-dimensional sub-
space obtained by setting coordinates in different phase spaces
equal. A polydiagonal ∆ has k colors if points in ∆ have at most
k unequal cell coordinates. A pattern of synchrony is a polydi-
agonal that is flow-invariant for every lattice differential equation
with a given architecture. We survey two main results: the classi-
fication of two-color patterns of synchrony and the fact that every
pattern of synchrony for a fixed architecture is spatially doubly
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periodic assuming that the architecture includes both nearest and
next nearest neighbor couplings.

1 Introduction

In this paper we survey recent results on lattice differential equations
(LDE) [6, 11, 12, 2, 1] that show that certain characteristics of the dy-
namics of LDE depend significantly on whether the coupling is nearest
neighbor coupling or a more general coupling. In our exposition we fo-
cus on planar square lattices. We show that patterns of synchrony that
occur naturally in these systems can be aperiodic in the case of near-
est neighbor (NN) coupling and must be spatially doubly periodic when
both nearest and next nearest coupling (NNN) are present. The frame-
work of our work is a general theory of patterns of synchrony in coupled
systems developed by Stewart et al. [10, 9]. The dynamics of LDE are
also discussed in Chow et al. [3, 4, 5].

We index the planar square lattice L ∼= Z2 by pairs of integers (i, j)
and call each lattice point a cell. The architecture of a lattice dynamical
system specifies which cells are coupled to which, which cells have the
same dynamics, and which couplings are the same. The set I(c), the
input set of a cell c ∈ L, is the set of all cells coupled to c. For example,
with NN coupling the input set of cell (i, j) is

I(i, j) = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)}

whereas, with NNN coupling the input set is

I(i, j) = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)} ∪
{(i + 1, j + 1), (i − 1, j + 1), (i + 1, j − 1), (i − 1, j − 1)}

See Figure 1.1.

Figure 1.1: (Left) square lattice network with NN coupling (—). (Right)
square lattice network with NN and NNN couplings (- - -).
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We assume that the phase space of cell c is Rm and we denote the
coordinates in this phase space by xc. We consider only those LDE that
are equivariant with respect to the symmetries of the lattice. Square
lattice symmetries are generated by translations within the lattice (L
itself) and rotations and reflections of the origin that preserve the lattice.
The latter group is isomorphic to D4, the eight element symmetry group
of the square. Thus the group of symmetries of the square lattice is

GL = D4+̇L

Equivariance with respect to L requires that m is constant for all cells.
Suppose that the input set I(c) = {c1, . . . , cp}. Then we denote the

coordinates in the input set, the coupling variables, by

xI(c) = (xc1
, . . . , xcp

) ∈ (Rm)p

With this notation a lattice differential equation is a coupled system of
differential equations of the form

ẋi,j = gi,j(xi,j , xI(i,j))

where (i, j) ∈ L, xi,j ∈ Rm, and gi,j is a function that depends on
the internal cell variable xi,j and the coupling variables xI(i,j). More-
over, equivariance with respect to translations implies that gi,j = g is
independent of the cell.

With NN coupling the square symmetry D4 forces g to be invari-
ant under permutations of the coupling variables. Thus square lattice
differential equations with nearest neighbor coupling have the form

ẋi,j = g(xi,j , xi+1,j , xi−1,j , xi,j+1, xi,j−1) (1.1)

where g is invariant under all permutations of the coupling variables
under the bar.

Synchrony is one of the most interesting features of coupled cell sys-
tems and in order to study it, we need to formalize the concept. We use
a strong form of network synchrony, which we now define. A polydiago-

nal ∆ is a subspace of the phase space of a coupled cell system that is
defined by equality of cells coordinates.

Definition 1.1. A polydiagonal ∆ is a pattern of synchrony if ∆ is
flow-invariant for every coupled cell system with the given network ar-
chitecture.

Solutions in a flow-invariant polydiagonal ∆ have sets of coordinates
that remain equal for all time, and hence have coordinates that are
synchronous in this very strong way. Coloring two cells the same when
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Figure 1.2: Horizontal two-color pattern of synchrony in square lattice
with NN coupling.

the coordinates in ∆ are required to be equal permits us to visualize the
pattern of synchrony associated with a flow-invariant polydiagonal. A
k-color pattern of synchrony is one which is defined by exactly k colors.

Symmetry generates many patterns of synchrony. Let Σ ⊂ GL be a
subgroup and define the fixed-point subspace

Fix(Σ) = {x : σx = x ∀ σ ∈ Σ}

Fixed-point subspaces are well-known to be flow-invariant for any equiv-
ariant system. See [8, Lemma XIII 2.1] or [7, Theorem 1.17]. Moreover,
fixed-point subspaces of subgroups of GL are polydiagonals; so, for lattice
differential equations, fixed-point subspaces are patterns of synchrony.
As an example, let Σ be generated by two translations σ1(i, j) = (i+1, j)
and σ2(i, j) = (i, j + 2). Then Fix(Σ) is 2m-dimensional and consists of
points where xi,j = xk,l whenever j ≡ l mod 2. In this case Fix(Σ) is
a 2-color pattern of synchrony on the square lattice with NN coupling.
See Figure 1.2.

It is not the case that every pattern of synchrony in a coupled cell
system is a fixed-point subspace. Stewart et al. [10, Theorem 6.1] prove
that a polydiagonal is a pattern of synchrony if and only if the coloring
associated to the polydiagonal is balanced.

Definition 1.2. A coloring is balanced if for for every pair of cells c and
d that have the same color there is a bijection from I(c) to I(d) that
preserves both color and coupling type.

In the horizontal two-color pattern with nearest neighbor coupling in
Figure 1.2, all couplings are identical and every black cell receives two
black inputs and two white inputs and every white cell receives two black
inputs and two white inputs. So this pattern is balanced.

In Section 2 we describe a result from [6] that shows that with NN
coupling there are continua of balanced two-colorings most of which are
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spatially aperiodic. We also describe a result of Wang [11, 12] that
classifies all balanced two-colorings up to symmetries in GL.

There are some subtleties concerning the definition of square lattice
LDE with NNN coupling, which we now describe. First we define square

lattice differential equations with nearest and next nearest neighbor cou-

pling, the NNN case, to be those equations that have the form

ẋi,j = g(xi,j , xi+1,j , xi−1,j , xi,j+1, xi,j−1,

xi+1,j+1, xi−1,j+1, xi+1,j−1, xi−1,j−1)
(1.2)

where (i, j) ∈ Z2, xi,j ∈ Rm, and g is invariant under independent per-
mutation of the nearest neighbor cells and of the next nearest neighbor
cells.

Lattice differential equations can arise from the discretization of sys-
tems of partial differential equations. For example, the discretization of
a planar reaction-diffusion system leads to

u̇i,j = − β+ 4+ui,j − β× 4×ui,j − f(ui,j) , (i, j) ∈ Z2 (1.3)

where β+ > β× > 0 and 4+ and 4× are the discrete 2-dimensional

Laplace operators on Z2 based on nearest neighbors and next nearest
neighbors, respectively, and are given by

4+ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

4×ui,j = ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1 − 4ui,j .

In these equations the parameters β+ and β× are coupling parameters,
and f is a nonlinear function that represents the “internal dynamics.”
When β× = 0 this system has only nearest neighbor coupling, which is
a discretization that is frequently used. When the nine-point footprint
of the discretized Laplacian is used (β+ and β× are both nonzero), then
we have an example of square lattice differential equations with nearest
and next nearest neighbor coupling, since this system is independently
invariant under permutation of the nearest neighbor cells and the next
nearest neighbor cells.

Note that (1.3) is equivariant with respect to rotations, reflections,
and translations that preserve the lattice. There are, however, examples
of GL-equivariant systems that are not in the form of square lattice dif-
ferential equations with nearest and next nearest neighbor coupling; that
is, g is not invariant under independent permutation of the nearest and
the next nearest neighbor cells. For example, consider the D4-invariant
function

g = x1,0(x1,1 + x1,−1) + x0,1(x−1,1 + x1,1)+
x−1,0(x−1,−1 + x−1,1) + x0,−1(x1,−1 + x−1,−1)

(1.4)
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where g is centered at cell (0, 0), i.e. ẋ0,0 = g. So, in fact, there are
two reasonable and distinct classes of LDE with nearest and next near-
est neighbor coupling: NNN equations and D4-invariant g. Each NNN
system is D4-equivariant, but the converse is false.

In Section 3 we review results in [2] that show that every balanced
k-coloring for square lattice NNN equations is spatially doubly periodic
and that there are only a finite number of k-colorings for each k. These
results show that there are huge differences in patterns of synchrony
between the NN and NNN cases. The techniques we develop are general
enough to prove similar theorems for other lattices (in particular the
other planar lattices); the general principle seems to be that if there is
enough coupling, then balanced k-colorings are spatially periodic and
finite in number.

Note that every balanced coloring for the D4-equivariant case is au-
tomatically a balanced coloring for the NNN case. So once the finiteness
and spatial periodicity theorems about balanced k-colorings are proved
for the NNN case, they are automatically valid for the D4-equivariant
case as well. But there may be fewer balanced colorings for the D4 case
than exist for the NNN case, and in fact this happens. See Example 3.11.

2 Square Lattice with NN Coupling

Examples show that with NN coupling there are a continuum of balanced
two-colorings, most of which are spatially aperiodic. These examples are
easily understood using the trick of interchanging colors along diagonals
discovered in [6].

Consider the balanced horizontal two-coloring in Figure 1.2 and the
diagonal line drawn in Figure 2.1 (left). If we interchange colors along
that diagonal we arrive at the two-coloring in Figure 2.1 (right). Observe
that this new coloring is still balanced. For example each black cell still
receives two black inputs and two white inputs. The only difference is
that the black inputs are now not necessarily along the horizontal. Also
note that the new pattern of synchrony is not spatially doubly periodic,
even though the original pattern is.

Next we observe that this diagonal trick can be repeated indepen-
dently on as many diagonals as one wishes. This process leads to patterns
of synchrony like those in Figure 2.2. In fact there are a continuum of
such patterns of synchrony. To see this, fix any horizontal line H and
any binary sequence of colors black and white along H . Now by per-
forming the diagonal trick along each diagonal, if needed, we can arrange
for the balanced coloring restricted to H to be the designated binary se-
quence. Since the number of bi-infinite binary sequences is the same as
the real numbers there are a continuum of balanced two-colorings. Of
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Figure 2.1: Alternating diagonal trick for horizontal two-coloring.

course many of these are identical up to symmetry. But there are only
a countable number of symmetries in GL; so, up to symmetry, there are
still a continuum of different balanced two-colorings.

Figure 2.2: Repeating the alternating diagonal trick for horizontal two-
coloring.

There is an interesting observation that follows from these results.
Suppose that an LDE has an equilibrium inside the horizontal pattern
of synchrony in Figure 1.2. Then there is a corresponding equilibrium
in every one of the continuum of balanced two-colorings that can ob-
tained from the horizontal one using this diagonal trick. The reason
is that LDE’s restricted to each of these flow-invariant spaces are iden-
tical, and hence each has an equilibrium. (This point can be checked
directly from the LDE, but it also follows from the notion of quotient
networks discussed in [10, 9].) So symmetry forces a countable number of
equilibria with patterns of synchrony that are identical up to symmetry,
but network architecture (NN coupling) forces a continuum of equilibria
corresponding to patterns of synchrony that are quite different.
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Wang [11, 12] classifies, up to symmetry, all balanced two-colorings
with NN coupling. There are eight isolated examples, shown in Fig-
ure 2.3, and two infinite families, shown in Figure 2.4.

Figure 2.3: Isolated balanced two-colorings on square lattice with NN
coupling. The pattern in the box is not a fixed-point subspace of a
subgroup of GL.

Figure 2.4: Balanced two-colorings on square lattice with NN coupling
that generate a continuum of patterns of synchrony by the diagonal trick
of interchanging colors on diagonals along which colors alternate.

There is an interesting question: Does the existence of a continuum
of balanced two-colorings in the NN case tell us about spurious solutions
to discretizations of planar systems of PDE. By themselves, the answer is
probably no since two-color solutions are highly oscillatory solutions. If
there is to be some such correspondence, we would have to find continua
of balanced k-colorings that would, in some sense, converge to a variety
of patterns in a sensible limit. For now we just present a continua of
balanced k-colorings in Figure 2.5.

3 Square Lattice with NNN Coupling

In this section we discuss the following result proved in [2].



Synchrony in Lattice Differential Equations 9

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

CB

C

C

C

C

C
D

D

D
D

D
D

D

D

D
D

D

D

Figure 2.5: A double continua of balanced 6-colorings where diagonals
with colors AB and diagonals with colors CD can be interchanged. Sim-
ilarly, a balanced 5-coloring can be obtained by setting C = D. Both
examples generalize to examples for any k.

Theorem 3.1. On the square lattice with both nearest and next nearest

coupling, every pattern of synchrony is spatially doubly periodic. More-

over, for fixed k, there are, up to symmetry, at most a finite number of

balanced k-colorings.

Definition 3.2. Let U ⊂ L be a subset. The closure of U consists of
all cells that are connected by some arrow to a cell in U . The boundary

of U is the set
bd(U) = cl(U) r U

There is a natural expanding sequence of finite subsets that covers
the lattice L and which depends on the kind of coupling. Let

W0 = {0} and Wi+1 = cl(Wi) (3.1)

for i > 0. Note that for any coloring of a lattice L by k colors, there
is some j such that all k colors are represented by cells in Wj . In fact,
more is true for balanced colorings.

Lemma 3.3. In any balanced k-coloring Wk−1 contains all k colors.

Proof. We claim that if ` < k, then W` contains at least ` + 1 colors.
The proof proceeds by induction on W`. W0 = {0} contains one cell and
one color.

Assume that the statement is true for ` < k − 1; we prove that it
is also true for ` + 1. Suppose that the number m of colors contained
in W`+1 = cl(W`) is the same as the number of colors in W`. Then
every cell c ∈ W`+1 has a color that is the same as the color of a cell
d in W`. So, all cells connected to d lie in W`+1 and are colored by
the m colors. Therefore, balanced implies that the cells connected to c

must also be colored by one of the m colors. It follows that the cells in
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W`+2 = cl(W`+1) are also colored by these m colors. By induction the
entire lattice is colored by m colors; hence m = k. So if m < k, the
number of colors in W`+1 must be greater than the number of colors in
W`. That is, W`+1 contains at least ` + 2 colors. It follows that Wk−1

contains all k colors.
It follows from Lemma 3.3 that if we fix a balanced k-coloring to Wk,

then there exists a cell e with that color in Wk−1. Moreover, all the
neighbors of e are in Wk and so all their colors are known. We can ask
now about the extension of the pattern from Wk to the whole lattice,
more specifically, about the extension of the pattern from Wk to Wk+1.
Recall that in a balanced k-coloring, for any two cells c and d of the
same color, there is a bijection between I(c) and I(d) that preserves
arrow type and color. In particular, if we know the color of all cells
in I(c) of a certain coupling type and we know the color of all cells of
the same coupling type except one in I(d), then since the coloring is
balanced we can determine the color of the last cell with that coupling
type in I(d).

Definition 3.4. Let U ⊂ L be a finite set.

(a) Every cell c ∈ U is called 0-determined.

(b) A cell c ∈ bd(U) is p-determined, where p ≥ 1 if there is a cell
d ∈ U such that c is in the input set of d and each cell in the input
set of d that has the same coupling type as c, except c itself, is
q-determined for some q < p.

(c) A cell c ∈ bd(U) is determined if it is p-determined for some p.

(d) The set U determines its boundary if all cells in bd(U) are deter-
mined.

Definition 3.5. The set Wi0 is a window if Wi determines its boundary
for all i > i0.

Remark 3.6. Note that if there are no 1-determined cells then, by
induction, there are no p-determined cells for any p. In particular, if
there are no 1-determined cells, then windows do not exist.

Example 3.7. Let L be the square lattice with nearest neighbor cou-
pling. Then this network has no window.

We claim that no set Wi is a window. By Remark 3.6 it is sufficient
to show that there are no 1-determined cells. For example, consider W2

and its boundary as shown in Figure 3.1. Since the cells on the boundary
are in a diagonal line it is not possible for them to be the only cell in the
input set of a cell in W2 that is not in W2. Note that when i > 2 the set
Wi has the same “diamond shape” as W2. So there are no 1-determined
cells in bd(Wi). By Remark 3.6, this network has no window. 3
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Figure 3.1: The set W2 (black cells) and its boundary (white cells with
a cross).

Example 3.8. Consider L with four nearest neighbors and four next
nearest neighbors. In this case the set Wi is a square of size 2i+1. Note
that all the cells on each side, except the last two on both extremes, are
1-determined, since they are the only nearest neighbor cells outside the
square (Figure 3.2). We show that the sets Wi for i > 2 determine their
boundaries. To do this, we need (by symmetry) to analyze just one of
the four corners.
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Figure 3.2: The set W2 (black cells) and the 1-determined cells in its
boundary (white cells with a cross).

The three cells in the corners of the square are 2-determined using
the next nearest neighbors coupling as long as the square has size greater
than 3. See Figure 3.3. 3

Lemma 3.9. Assume that Wi0 is a window. Suppose that a balanced

k-coloring restricted to Wi−1 for some i > i0 contains all k colors. Then

the k-coloring is uniquely determined on the whole lattice by its restric-

tion to Wi.

The proof of this lemma [2, Lemma 3.11] uses determinacy.
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Figure 3.3: The corner of a set Wi (black cells), the 1-determined cells
(white cells with a cross) and 2-determined cells (white cells connected
to black cells by dashed lines).

Theorem 3.10. Suppose that a lattice network has a window. Fix k > 1.
Then there are a finite number of balanced k-colorings on L and each

balanced k-coloring is spatially multiply-periodic.

Proof. Let Wj be a window for GL where j > k. By Lemma 3.3, the
interior of Wj contains all k colors. Then by Lemma 3.9, a balanced
k-coloring is uniquely determined by its restriction to Wj . Since there is
only a finite number of possible ways to distribute k colors on the cells in
Wj it follows that there are only a finite number of balanced k-colorings.

Let K be a balanced k-coloring on GL and let v ∈ L. Let Tv(K)
be the coloring obtained by shifting the coloring K by v, that is, the
color of cell c in Tv(K) is the same as the color of cell c − v in K.
Since translations are symmetries of the lattice network Tv(K) is also a
balanced coloring.

Let v be a generator of the lattice and consider all translates of K

in the direction of v. Since there are only a finite number of balanced
k-colorings and an infinite number of translates of K, there must exist
N ∈ Z+, such that K and TNv(K) exhibit exactly the same coloring.
It follows that K is invariant under the translation TNv. Hence K is
periodic in the direction of v. The same argument can be applied to all
the generators of the lattice, thus all balanced k-colorings are spatially
multiply-periodic.

Example 3.11. It is straightforward to check that the two-coloring in
Figure 3.4 (left) is balanced in the NNN case. Note that up to symmetry
there are three different kinds of black cells; see Figure 3.4 (right). Each
of these black cells has two white and two black nearest neighbors and
three white and one black next nearest neighbors; hence the black cells
are NNN balanced. An analogous calculation works for the three types
of white cell.
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1

2

3

Figure 3.4: A pattern of synchrony of square lattices with NNN coupling
that is not flow-invariant for all D4-equivariant LDE.

We claim that this pattern is not flow-invariant for all D4-equivariant
LDE. Indeed, we can just check this statement using the D4-invariant
function g given in (1.4), which we recall here as

ẋij = xi+1,j(xi+1,j+1 + xi+1,j−1) + xi,j+1(xi+1,j+1 + xi−1,j+1)+
xi−1,j(xi−1,j+1 + xi−1,j−1) + xi,j−1(xi−1,j−1 + xi+1,j−1)

(3.2)

Let the black cells have the coordinate xB and the white cells have the
coordinate xW . Then the differential equation associated to black cell 1
in Figure 3.4 (right) has the form

ẋB = xW (xW + xW ) + xW (xW + xW )+
xB(xW + xB) + xB(xB + xW )

(3.3)

and the differential equation associated to the black cell 2 has the form

ẋB = xB(xW + xW ) + xW (xW + xB)+
xW (xB + xW ) + xB(xW + xW ).

(3.4)

However, the right hand side of (3.4) is not equal to the right hand side
of (3.3). Hence, the subspace corresponding to Figure 3.4 (left) is not a
flow invariant subspace of (3.2). 3
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[8] M. Golubitsky, I.N. Stewart and D.G. Schaeffer. Singularities and

Groups in Bifurcation Theory: Vol. 2. Applied Mathematical Sci-
ences 69, Springer-Verlag, New York 1988.

[9] M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in
coupled cell networks with multiple arrows. SIAM J. Appl. Dynam.

Sys. 4 (1) (2005) 78–100.

[10] I. Stewart, M. Golubitsky, and M. Pivato. Symmetry groupoids and
patterns of synchrony in coupled cell networks. SIAM J. Appl. Dy-

nam. Sys. 2 (4) (2003) 609–646.

[11] Y. Wang. Patterns of Synchrony in Lattice Dynamical Systems.

PhD Thesis, Department of Mathematics, University of Houston,
August, 2006.

[12] Y. Wang and M. Golubitsky. Two-color patterns of synchrony in
lattice dynamical systems. Nonlinearity 18 (2005) 631–657.


