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Duke University
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§1. INTRODUCTION

In this article we describe how the singularity theory of
mappings can be used to help solve problems in steady-state
bifurcation theory. Most of the results which follow have
appeared or will appear elsewhere; our objective here is to
explain rather than to prove.

We consider two theoretical issues:

A. Solve G(x,)) = 0 where x = (xl, ooy xn) ¢ R" and
A€ 5 are near 0 and G(x,A) = (g;(x,A), ..., gn(x,x))
is C .
B. Find all small C perturbations of the zero set G = 0.
Before analyzing specific examples, we would like to make
some general comments. The situation which we visualize in A
is that G is given either explicitly by some system of ordi-
nary differential equations %X = G(x,)A) depending smoothly on
the parameter A\ or implicitly by reduction from some infinite
dimensional operator by a procedure like that of Lyapunov and
Schmidt. The variables x are internal state variables and the
variable A is external, being varied quasistatically by some
experimenter. In particular, we are interested in the number
(and stability) of solution x to A for each fixed A as \ var-
ies from negative to positive through zero. Thus, it does not
matter whether we find the zero set of the given G or whether
we find the zero set of any H containing the same information.
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Practically, the simplest way to preserve the zero set is
through smooth changes of coordinates. (We note that the co-
ordinate changes that we have in mind will not in general pre-
serve the stability of solutions. However, for the applica-
tions which we describe here the stability of solutions may be
assigned a postiori.)

Definition 1 Two bifurcation problems G and H are con-
tact equivalent if

H(x,A) = T(x,A)G(X(x,2),A(X))

where X(0,0) = 0, A(0) = 0, det (dxx)(0 0) > 0, AA(O) > 0, and
for each (x,\A) near (0,0), T(x,\) is an invertible n x n matrix.

It should be clear that T does not affect the zero set
while ¢ (x,A) = (X,A) is just an (orientation preserving) change
of coordinates. The assumption that A does not depend on x
guarantees that the number of solutions as A varies through
zero will remain the same in the new coordinate system. We
assume that ¢ is C~ as the main theorems are proved with this
hypothesis. However, it is sufficient for the applications
that ¢ be only a homeomorphism. We call this more general
situation C° contact equivalence.

For a given application (and thus a given G) our approach
to A will be to prove the existence of a contact equivalence
of G to a new and simpler problem H (called a normal form) and
then solve H = 0.

The importance of B is clear. If one performs an experi-
ment whose steady states are idealized by the mathematical
problem G = 0, then one will actually measure H = 0 where--if
the model is a good one--H is a small perturbation of G. Thus,
one would like to classify all small perturbations of G--at
least up to contact equivalence. Mathematically, this is done
through the notion of a universal unfolding. We shall give
several examples of this method in subsequent sections. For
the moment, one should observe that what is meant by "all
small perturbations" may actually vary from example to example.
In particular, many idealized physical problems are given
along with a group of symmetries. In many of these cases one
is only interested in those perturbations which maintain the
given group of symmetries.



STEADY-STATE BIFURCATION THEORY 231

The specific examples which we consider are: (a) buck-
ling of a Euler column [6]; (b) bifurcation in continuous flow
stirred tank reactors (this is joint work with Barbara Keyfitz
[4]); (c) mode jumping in the buckling of a rectangular plate
[12]; and (d) recent work on the problem of thermal convection
in spherical geometry [9].

Other examples where our theory has proved helpful are:
(e) analysis of bifurcation near a double eigenvalue in the
"Brusselator” [13] (which is a much studied model reaction
diffusion equation); (f) an analysis of boundary effects in
the Taylor problem in hydrodynamic stability [11]; and (g) an
explanation for the existence of an explosion peninsula in the
combustion of hydrogen and oxygen [5] (which is again joint
work with Barbara Keyfitz).

§2. BUCKLING OF A EULER STRUT

Consider the strut pictured in Fig. 1. Let A + AO be the
applied load where XO is the critical load where buckling first
occurs. The variable x represents, for pedagocical purposes,
the maximum deviation of the strut from the horizontal. Let
V(x,1) be the potential energy of the strut; then (for x and A
scaled) we have that

Gx,A) = L (x,0) = x3 = Ax + ... (1)

defines the steady state configurations on the strut. (See
[6], Sec. 6, for details.)

The issues raised in the Introduction are solved for this
example by the following:

A

Strut

FIG. 1. Buckling of a Euler strut.
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Proposition 1

3. AX.

(a) G in (1) is contact equivalent to x
(b) F(x,A2,0,B) = x3 + sz - Ax + a is a universal

unfolding of x3 - AX.

The first part of this proposition shows that one may
neglect the higher order terms in (1). Thus the zero set of
G in (1) is--up to a smooth change of coordinates--just the
familiar pitchfork pictured in Fig. 2.

The content of part (b) of Proposition 1 is that any small
perturbation of (1) may be found up to contact equivalence in
the family F for some fixed o and B. Actually more is proved
as the choice of a and B depend smoothly on the perturbation.

The information about bifurcation diagrams contained in F
may be organized [6,8] to show that all small perturbations of
the pitchfork are pictured, up to a smooth change of coordi-
nates, in Fig. 3. (For a more precise statement of the infor-
mation contained in Fig. 3, see [6].)

A final observation is that the universal unfolding
parameters depend nonsingularly on the physical parameters a
and b where a is a central load and b is an initial unstressed
curvature. See Fig. 4. The pitchfork is actually richer in
structure than one might think at first.

Definition 2 The minimum number of parameters to appear
in a universal unfolding of a given problem G is called the
codimension of G.

- A

FIG. 2. The pitchfork. Organizing center for Euler buckling.
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FIG. 3. Classification of perturbations of the pitchfork.

As indicated above the pitchfork xa - Ax has codimension
two.

An easy to misapply maxim, motivated by geometric con-
siderations in singularity theory, is that in a physical model
one expects to observe only problems which are stable under
small perturbations; that is, problems of codimension zero.
The loose reasoning is simply that the mathematical descrip-
tion of a physical problem should have the same form when sub-
jected to small perturbations or else it will not be observed.
This naive reasoning fails in many ways (for discussions, see
[3,7)); however, it is useful as a warning. In particular, it
suggests questioning why (the mathematical idealization of)
Euler buckling generates a bifurcation problem of codimension

two.

=

Initial
unstressed
curvature = b

FIG. 4. Physical imperfections in Euler buckling.
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The answer is simple: symmetry. Models for Euler buck-
ling assume that "buckling up" has the same potential energy
as "buckling down." Thus V is forced to be even in x and G
odd in x.

A universal unfolding of the pitchfork x3 - Ax in the
space of all functions which are odd in x contains zero param-
eters [7]. In other words, if H(x,A) is a small perturbation
of x3 - Ax which is odd in x, then H is contact equivalent to
the pitchfork.

§3. THE CONTINUOUS FLOW STIRRED TANK REACTOR

A continuous flow stirred tank reactor (CSTR) is an ideal-
ized and simplified chemical reactor which chemical engineers
have found useful. Uppal, Ray, and Poore [15] studied the
steady states of the CSTR by a combination of analytic tech-
niques and computer calculations. In joint work with Barbara
Keyfitz [4] it was shown that Uppal et al. had found most, but
not all, of the gualitative behavior which can be exhibited by
a CSTR. Interestingly, the study of this problem from the
singularity theory point of view led to a more singular bifur-
cation problem than those studied in classical bifurcation
theory. Recent work [5] on aspects of the combustion of hydro-
gen and oxygen shows the necessity of studying a yet more de-
generate bifurcation problem. It seems likely that chemical
reaction problems, with their large number of external parame-
ters, will yield examples of bifurcation problems which are as
complicated as the most complicated examples which mathematics
can analyze.

Consider Fig. 5 which gives a schematic diagram for a
CSTR. A reactant flows in and out of the reactor with flow
rate €. One measures two states of the reactor, the internal
temperature y and the concentration of the reactant x. The
simplifying assumption that the reactor is continuously stirred
implies that x and y are uniform throughout the interior. The
ambient temperature is n and one assumes that the reactant
enters the reactor with concentration 1 and (scaled) tempera-
ture 0. (The temperature is also scaled so that -1 is abso-
lute zero.)
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FIG. 5. Schematic diagram of a CSTR.

The ordinary differential equations describing the time
dependence of x and y (in nondimensionalized form) are:

dx _ _ _ 1
aE& " °¢ €X 5 Afy) 2)
%%= -ey = (y - n) +%A(y)
where
Aly) = exp(yy/(y + 1)) (3)

is the temperature dependent reaction rate in Arrhenius form.
The remaining constants measure physical characteristics of
the reactant and the tank. More precisely, Y is the activa-
tion energy (usually thought to be between 5 and 20), § is a
Damkdhler number measuring the ratio of heat loss across the
wall to chemical heat gain, and B measures adiabatic heat gain.

The bifurcation problem for the CSTR is posed as follows:
How do the steady states of this system evolve as the flow
rate € is varied quasistatically while B, §, y, and n (which
are properties of a particular reactor) are held fixed? Can
one classify the gualitative nature of the various bifurcation
diagrams up to smooth changes of coordinates?

Observe that when setting the right-hand side of (2) to
zero, one may eliminate x to obtain the following equation
for the steady states:

G(y,e,B,8,n) = n - (1 + ¢€)y + ﬁ-—% =0 (4)
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FIG. 6. Qualitative types of bifurcation diagrams found by
Uppal, Ray, and Poore [15].

where A(y) = 1/A(y). Thus for fixed B, 8, n the bifurcation
diagrams may be drawn in the ye plane. Uppal et al. [15]
found five types of bifurcation diagrams which are pictured
in Fig. 6.

We observe that these diagrams are all small perturba-
tions of a simple singular bifurcation problem x3 + 12 =0
which we call the winged cusp (see Fig. 7). The following

proposition makes this observation more precise.

FIG. 7. The winged cusp; organizing center for the CSTR.
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O

(6) (7)

FIG. 8. Additional perturbations of the winged cusp.

Proposition 2

3

(a) A universal unfolding for x~ + Az is given by

= 3 2
F(x,x,al,az,a3) = x° - (azx + a3)x + A7+ oy
(b) There are seven stable bifurcation diagrams contained
in F (for fixed Oyr Qo a3) up to smooth changes of
coordinates. They are the five found by Uppal et al.
[15] plus the two given in Fig. 8.

This proposition suggests that the winged cusp should
appear in (4) for some fixed value of B, §, n. In fact one
can prove [4]:

Theorem 1 For all vy > 8/3

(a) There exists a unigque choice (Bo, 60, no) and a
unique (yo, eo) such that G(y, €, By, 60, no) is
contact equivalent (on a small neighborhood) of
(yo, eo) to the winged cusp x3 + AZ.

(b) The universal unfolding parameters Oqr Ops O3 depend
nonsingularly on the physical parameters B, §, n.

{(c) The local bifurcation behavior which occurs in (4)
already appears (up to contact equivalence) in the
universal unfolding of the winged cusp.

This theorem makes it reasonable to call the winged cusp
the organizing center for the steady states in the CSTR.

We end this section with a comparison of the CSTR with
the Euler strut. It may seem surprising that one of the non-
stable bifurcation diagrams which occurs in the universal
unfolding of the winged cusp is the pitchfork--only as pic-
tured in Fig. 9. To see this set o4y =0, = 0 and ay > 0.
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C— -

FIG. 9. The pitchfork as a perturbation of the winged cusp.

X

The question we ask is: Why is the pitchfork so central
to the understanding of the steady-state structure of the
buckling of an Euler strut and yet so unimportant in the CSTR
that the people who have analyzed the CSTR previously had not
even noted its existence? The answer, again, seems to be
symmetry; there is no natural reflectional symmetry present in
the CSTR.

§4. MODE JUMPING IN BUCKLING OF RECTANGULAR PLATES

Consider the rectangular plate of Fig. 10. It is well
known that when such a plate is buckled it can support a num-
ber of configurations. These configurations are distinguished
by their wave number, by which we mean the number of zeroces of
the normal deflection function along a line parallel to the
sides.

Experiments by Manuel Stein [14] show that mode jumping
for such a plate can occur. More precisely, Stein considers
a plate where the aspect ratio % is approximately 5.38 and
finds that the plate first buckles into a configuration with
wave number 5., Moreover, when the load A is increased to
approximately 1.7 times the initial loading, the plate jumps
“"suddenly” and "violently" into a configuration with wave num-
ber 6. It is this secondary buckling which is termed mode

jumping.

Z
Side om 2

End
el =

Side &w

FIG. 10. Buckling of a rectangular plate.
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In fact, as A is increased further buckled states with
wave numbers 7 and 8 appear. However, these states occur after
the plate has begun to deform plastically. We only consider
elastic deformations and will attempt to explain the jump from
5 to 6 buckles by analyzing the von Karmdn equations.

There are several commonly used boundary conditions asso-
ciated with the von K&rmédn equations. We find that whether or
not mode jumping occurs by our methods, depends on which bound-
ary conditions are employed. Fortunately, when one uses the
boundary conditions which are most relevant for Stein's [14]
experiment, one does obtain a mathematical explanation for
mode jumping.

The von Karman equations are:

o>
€
I

{¢p,Ww] - sz 2
11 (5)

>
R
1

- 3 tw,wl

where w is the vertical deflection function (in the z4 direc-
tion), ¢ the Airy stress function, and A2 the biharmonic oper-
ator, and

[ulV] =u v - 2u

¥4 2.2

¥4 VZ+uZZVZZ
2% 2171 1%22 %172 2%2 %1%
It is somewhat difficult to determine completely realis-
tic boundary conditions for Stein's experiment. We consider

the following boundary conditions for ¢:

oy = (B4l =0 on boundary (6)

where N indicates differentiation in the direction normal to
the boundary. This differs from the case most frequently
studied, namely, ¢ = A¢ = 0 on the boundary. We explain this
choice in [12]. There are two choices of boundary conditions
for w which are often employed: clamped and simply supported.

W= Wy = 0 on ends
(clamped) (7a)
w=A40w=0 on sides

w=Aw=20 on boundary {simply supported) (7b)
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Stein, in his paper [14], suggests that clamped boundary con-
ditions are more appropriate for his experiment; indeed, the
difficulties of achieving simply supported boundary conditions
in practice are well known. However, many mathematicians have
frequently studied simply supported boundary conditions, pre-
sumably to facilitate computations. 1In Sec. 2 of [12], we
give a more detailed discussion of the merits of various bound-
ary conditions. 1In any case, for comparison we consider both
choices of boundary conditions.

In [1], Bauer, Keller, and Reiss suggest that mode jump-
ing should be thought of as a secondary bifurcation and that
secondary bifurcations are created by perturbing double eigen-
values. The double eigenvalues are obtained as follows:
Consider the linearized von Karman equation

Az w + AW =0 (8)

1%y

with the two choices of boundary conditions. One finds that
for a discrete set of values, LO of the aspect ratio %, the
first eigenvalue [in (8)] is double. In particular, the
critical aspect ratios and the corresponding eigenfunctions
are

8, = EEF 2V

Wy = [k ; 2 sin[k:l] - sin[k I 2]zl]sin(zz) (%a)
w, = [cos[E;l] - cos[k ; 2 zl]]sin(zz)

20 = k+1

wy = sin[%‘zl]sin(zz) (9b)
W, = sin[iﬁ—%—ll zlein(zz)

for clamped and simply supported boundary conditions, respec-
tively. Note that wave numbers of 5 and 6 occur at a double
eigenvalue when 2y = V35 = 5.92 for clamped conditions, and
20 = V30 = 5.48 for simply supported boundary conditions.
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In either case the actual experimental £ of 5.38 is slightly
less than the critical 20 where a double eigenvalue occurs.

The classical Lyapunov-Schmidt, essentially the implicit
function theorem for Banach spaces, guarantees the existence
of a smooth mapping.

G : R2 X R + R2

where G(x,y,2) = (g, (x,¥,2), g,(x,¥,})) (10)

such that G = 0 parametrizes the solution to the full nonlinear
von Kiarmé&n equations. Here xw, + yw, parametrize the eigen-
space to (8) at the double eigenvalue where Wy and w, are given
by (9).

Observe now that there are several reflectional symmetries
present in this problem. As with the Euler strut, one assumes
implicitly in the von Kdrmdn equations that buckling up has the
same potential energy as buckling down. Reflecting about the
center line connecting the sides of the plate also preserves
the solution set. These two symmetries induce restrictions on
G in (10). 1In particular, 9; must be odd in x and even in y,
while g, is odd in y and even in x. Thus, to the lowest order
G must have the form

G(x,y,A) = (ax3 + bxy2 - Ax, cxzy + dy3 - Ay) + o+ (11)

when the aspect ratio is as in (9). For the von Kirmin equa-
tions a + 4 is positive; thus, scaling implies that G has the
form

G(x,y,2) = (x> + bxy2 - Ax, cxzy +yS = Ay) 4 ee- (12)

Definition 3 A bifurcation problem (12) is nondegenerate

if
(a) g, = 0 and g, = 0 are nowhere tangent
(b) The cubic parts of 9, and g, have no common factors

The main results from singularity theory are:

Theorem 2 Let G be a nondegenerate bifurcation problem
of type (12). Then
(a) The higher order terms in (12) can be removed by a
contact equivalence
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(b) A universal unfolding of (12) preserving the given
symmetries contains one new parameter and is given
by
F(x,y,A,b,c,L) = (x2 + bxy2 - Ax, cxzy

+y3 - (- L)y) (13)

Setting L = 0, one observes that degeneracies occur when
b=1, c =1, and bc = 1. These curves separate the bc-plane
into seven regions as shown in Fig. 1l. One can prove more:
(b,c) and (b',c') are in the same region of the bc-plane if
and only if G and G' = (x2 + b'xy2 - Ax, c'x2y + y3
C°® contact equivalent.

Using the Lyapunov-Schmidt method, one can actually com-
pute b and c at the aspect ratios 20 in (9) obtaining:

- Ay) are

Theorem 3

(a) For clamped boundary conditions the point (b,c) lies
in region 4 of Fig. 11

(b) For simply supported boundary conditions the point
(b,c) lies in region 1 of Fig. 11

(c) For either choice of boundary conditions the unfold-
ing parameter L can be identified with the aspect

ratio £ - lo

If one studies the bifurcation diagrams associated with
(13) when L < 0, one sees that the assumption of simply sup-
ported boundary conditions can not lead to mode jumping, at
least by these methods, while clamped boundary conditions do
lead to mode jumping.

In particular, if (b,c) lies in region 1 of Fig. 11 then
the associated bifurcation diagram is shown in Fig. 12.
Observe that after the initial bifurcation the solution lies
on branch (d) and no secondary bifurcation occurs. (Branch
(d) corresponds to solutions with wave number 5.) If (b,c)
lies in region 4, the associated bifurcation diagram is pic-
tured in Fig. 13.

Now after the initial bifurcation to branch (d) there is
a secondary bifurcation which causes a jump to branch (c).
(Branch (c) corresponds to solutions with wave number 6.)
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(6) (1)

(4)
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bc

(3) (2) (7)

FIG. 11. Degeneracies of (12) viewed in the modal parameter
plane.

(d)

(d)

FIG. 12. Perturbations of region 1 with simply supported
boundary conditions.
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(d)

FIG. 13. Perturbations of region 4 with clamped boundary
conditions.

§5. THE BENARD PROBLEM IN A SPHERICAL GEOMETRY

The language of singularity theory can be very helpful in
organizing experimental data by relating them to known theo-
retical results. As an illustration of this power, we con-
sider the Bénard problem in a spherical geometry, a problem
which arises in plate tectonics. This problem has been con-
sidered by, among others, Chossat [2] from a theoretical point
of view and Young [16] in a numerical simulation. Chossat
considers the self-adjoint case (defined below); he shows that
in this case the only bifurcating solutions are axisymmetric
and that they appear supercritically. Young, on the other
hand, considers a nonself-adjoint case, and in his data non-
axisymmetric solutions play an important role. In the process
of trying to reconcile this disparate information one is led
to a rather convincing plausibility argument that the basic
bifurcation in the case Young considers must be subcritical,

a point on which he makes no comment. Of course, this in-
volves no contradiction, as he considers a nonself-adjoint
case. Nevertheless, it is a little surprising that a seeming-
ly small change in certain auxiliary parameters can reverse
the orientation of the primary bifurcation in this problem.
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It should be remarked that the complexity of the problem ren-
ders a direct analysis exceedingly difficult; for example, the
calculations of Young required integration of a time-dependent
system of nonlinear equations with nontrivial dependence on
all three space coordinates.

The governing equations for this problem are formulated
on a three-dimensional annular region
3 4

2 =1{x €eR n < |x| < 1} (14)

where n = 0.3. Both authors work in the Boussinesq approxima-
tion. After subtraction of the conduction solution, the equa-
tions become

u, = -Vp + Au + Rg(r)e - (u - V)u (15a)

|~

e =

t (A0 + R VT0 cu) - (u-V)o (15b)

Here u, p, and 0 measure velocity, pressure, and temperature,
respectively, while P and R are the Prandtl and Rayleigh num-
bers, respectively. The gravity vector a(r) is given by

Y
§r) = 3 F + v 7
r
and
B
_ 1= >
VTO——3'I+82I'
r
is the gradient of the equilibrium temperature. (More detail

concerning the origin of (15) is given in both [2] and [16].)
If Yl/Yz = 61/62, then Eq. (15) linearized about the zero
solution defines a self-adjoint operator; intuitively, this
just means that 0 enters into the u equation (15a) in the same
form that u enters into the 0 equation (15b).

The zero solution of (15) loses stability as the Rayleigh
number R is increased, and nontrivial steady-state solutions
bifurcate from the trivial solution. In studying these bifur-
cations we make three reductions of the problem, starting with
the standard Lyapunov-Schmidt procedure. Let Vi i=1, ..., n
be a basis for the kernel of the linearization of (15) at the
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first bifurcation point, say at R = Rc' This reduction is
based on looking for a solution u of (15) in the form

L X, v, + W(x,A) (16)

=
1]
[ =]

i
where <vi,W> = 0and A = R - Rc' (Here x denotes the n-vector
of unknown coefficients in (16), not a spatial coordinate.)

The method leads to a parametrization of solutions of (15) by
the solutions of a certain n x n system of equations

G(x,2) =0 (17)

In principle, derivatives of any order of the reduced mapping
G : R xR »R" may be calculated at the origin from (15) in
the standard way (see [2] for details).

For the problem at hand with n = 0.3 in (14), calculations
show that the first bifurcation from (15) is from an eigenvalue
of multiplicity 5. Indeed, this bifurcation provides an in-
stance of high multiplicity occurring as a result of symmetry,
as described by Sattinger [10]. Specifically, Eg. (15) is
invariant under the action of the orthogonal group 0(3). The
high multiplicity arises as follows. An axisymmetric bifurca-
ting solution of (15) may be found, and it has the angular
dependence of the spherical harmonic Y20(6,¢). Because of the
invariance of (15), any rotation operator applied to this func-
tion will yield another solution. Of course, the kernel of
the linearized problem is a linear subspace, and the linear
span of the set of rotations of Y20(0,¢) is five-dimensional,

a basis being provided by {Yzm(e,¢), m=-2, ..., 2}. The
action of 0(3) on Eg. (15) leads to an irreducible representa-
tion of 0(3) on the five-dimensional space spanned by {YZm}’
(See [10].)

The spherical harmonics {YZm} provide one representation
of 0(3), but there is an isomorphic form of the representation
that is more convenient for our analysis. Let X be the set of
symmetric 3 x 3 matrices A with trace zero, and consider the
representation m of 0(3) defined by

1

m(S)A = SAS” (18)
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where S € 0(3). It follows by a refinement [7] of the argu-
ments of Sattinger [10] that the reduced mapping G may be
expressed in the form

G(A,\) = £(tr A%, det A,\)A

+ g(er A%, det 2,0 (A% - 3 (tr 291 (19)

Here we use coordinates on R5 such that the representation of
0(3) assumes the form (18). The coefficients £ and g in (19)
represent arbitrary invariant functions on X. The restricted
form of (19) is a tremendous simplification compared to the
general mapping G : Rs xR » R5; indeed, this is our second
reduction of the problem.

Our third reduction of the problem, from five dimensions
to two, is specific to the problem at hand, unlike the pre-

ceding two which were general. Let
Z={A ¢ X : A is diagonal}

Then Z is a two-dimensional subspace of X (recall that X con-
tains only matrices of trace 0) with the property that

n[0(3)] - Z =X (20)

Because of (20) it suffices to examine the reduced mapping G
on %Z. With respect to an appropriately chosen complex coordi-
nate on Z, Eq. (19) assumes the form

3 =2

G(z,0) = £(]z|2, Re 23, M)z + g(|z]?, Re 23,0)Z (21)

where z denotes the complex conjugate of the complex number z.
This completes the reduction of the problem, which only in-
volved singularity theory peripherally.

The singularity theory methods are used to study what
coefficients in (21) are likely to occur. Using the codimen-
sion--relative to 0(3)--as a measure of complexity, one finds
a list of cases increasing in complexity, starting as follows:

Case 0: £(0) # 0
Case 1l: £(0) 0, g(0) # O, fA(O) # 0
Case 2: f(0) g(0) = 0, plus nondegeneracy conditions
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In the zeroth case here (21) is nonsingular; i.e., the differ-
ential dG is invertible and no bifurcation occurs. We pass
over this case because we imagine setting the bifurcation
parameter R to the value which produces bifurcation.

In case 1, Eq. (21) may be transformed by a contact
equivalence preserving the symmetry group 0(3) to the very
simple form

Az + 22 =0 (22)

The solution set of (22) consists of the trivial solution
z = 0 and three crossed lines
= e (2mi/3)]

z j=0,1, 2 (23)

To relate these solutions with solutions of the full reduced
Eq. (19), one must recall that each point z ¢ 2 generates an
orbit in X when 0(3) acts on Z. Typically, this orbit will
be three-dimensional, as 0(3) is a three-dimensional group.
However, if z has special properties (e.g., axial symmetry)
the orbit may have lower dimension (two if z has axial sym-
metry). It turns out that a point z in Z has axial symmetry
iff z3 is real; thus (23) consists exclusively of axisymmetric
functions. Therefore, each solution (23) of (22) corresponds
to a two-dimensional manifold of axisymmetric solutions of
(19), the two parameters corresponding to the choice of the
axis of symmetry.

Generically, one would expect case 1 to appear when bifur-
cation occurs; otherwise, one would have to explain why g(0)
or fA(O) happened to vanish. However, Chossat showed that in
the self-adjoint case it follows from an integration by parts
that indeed g(0) = 0, so one is led to consider case 2. 1In
this case the canonical form is

(e|z|2 - Nz + (|z[2 +CRe z)z% =0 (24)

where C is a constant which cannot be scaled away and € = *1.
The nondegeneracy conditions required to derive (24) are as
follows: Let u = |z|2, v = Re z> be the arguments of f and g

in (21); then one must have
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£,(00 #0 £,00) #0 g,(0) #0

Chossat also shows that the bifurcation is supercritical so
that € = +1 is the appropriate choice in (24).

The solutions of (24) may be obtained explicitly: There
is the trivial solution z = 0 and three curves of solutions
located in planes containing the A axis and making an angle
of 120° with one another, specifically

2, .3 4 - e (2Ti/3)]

A=r" +1r° + Cr z j=0,1, 2 (25)

where -» < r < », While (23) is suggestive of the familiar

transcritical bifurcation from a simple eigenvalue, (25) is

suggestive of supercritical bifurcation from a simple eigen-
value, with this significant difference: When r < 0 in (25)
the corresponding solution is stable, while for r > 0 it is

unstable. Also note that all points enumerated in (25) are

axisymmetric.

As mentioned above, nonaxisymmetric solutions figured
prominently in the numerical simulation of Young [16]. Spe-
cifically, Young found that the axisymmetric solution which
bifurcated at Rayleigh number Rc remained stable only up to
R~ 2.9 R,/ while a nonaxisymmetric steady solution (still
with angular dependence associated to spherical harmonics of
order 2) appeared at R~ 2.2 Rc and remained stable up to the
largest value of R in his data, approximately 4.5 Rc. The
most significant point here is that in the range 2.2 R, < R <
2.9 R, both the axisymmetric and nonaxisymmetric solutions
are stable.

The cases considered by Young [16] and Chossat [2] differ

only in the value of the constants Y B. in the expressions

defining g(r) and VT, in (15); specificaily, Young takes

Yy = 0 but Yqr Bl’ 62 all nonzero. In Chossat's case, the
constraint of self-adjointness leads to the degenerate bifur-
cation problem (24) rather than the simpler problem (22). Of
course, a nonself-adjoint perturbation of (24) will in general
eliminate this degeneracy. The universal unfolding [6,7] pro-
vides a convenient language in which to describe the effect of
such perturbations. The universal unfolding of (24) requires

only one parameter; one choice is
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FIG. 14. Perturbations of the organizing center for the
symmetric problem.



STEADY-STATE BIFURCATION THEORY 251

3

F(z,A;a) = (e|z|2 - Nz + (|z|2 + C Re z° + a)z? (26)

The universality property means that any sufficiently small
perturbation of (24) may be transformed, by an appropriate
change of coordinates, to the equation

F(z,x;a) =0 (27)

for some value of a. In particular, to determine the qualita-
tive behavior of solutions of perturbations of (24), it suf-
fices to examine (27), a problem involving only one auxiliary
parameter.

The bifurcation diagrams
{(ZIA) : F(Z'k;a) = 0}

which result for o # 0 are indicated schematically in Fig. 14.
The portion shown is the portion contained in the plane Im 2z =
0; there are two similar pieces in planes rotated 120° and 240°
about the ) axis. The branches labeled "u" and "-" are both
unstable while those labeled "s" are stable. In addition, when
a < 0 there is a ring of nonaxisymmetric solutions (shown as a
dotted line in the figure) which bifurcates from the axisym-
metric solutions at the points B, and B,. This phenomenon
closely resembles the secondary bifurcation discussed by Bauer
et al. [1] (see Sec. 4). The nonaxisymmetric solutions are
stable or unstable according to C > 0 or C < 0. If they are
stable, then B, lies to the left of B, in the figure, so that
there is an interval in A where no axisymmetric solutions are
stable; if they are unstable B2 lies to the right of Bl and
there is a short range where two distinct axisymmetric solu-
tions are stable.

The crucial point in our analysis is the following:
Although the perturbed versions of (24) involve nonaxisym-
metric solutions, neither of the above cases matches Young's
data where the nonaxisymmetric and axisymmetric solutions are
stable for the same Rayleigh number. This suggests that
Young's case is simply not a gualitatively small perturbation
of Chossat's. We therefore examined the next few cases on
the classification list. Only one of these appears to give
agreement with Young's data, namely, a singularity associated
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with the vanishing of fu(O) in (21) where u is the first coor-
dinate of £. Of course, a change of sign of fu(O) amounts to
changing the sign of € in (26); i.e., changing from supercrit-
ical bifurcation to subcritical bifurcation. The appropriate
perturbed diagram which matches Young's data is shown schemat-
ically in Fig. 15 where nonaxisymmetric solutions are again
shown by dashed lines. (These lines do not lie in the plane
Im z = 0.)

The organizing center of this problem appears to be
(Jz]* - Mz + c(re 2922 = 0

By the organizing center, we mean the bifurcation problem which
results if the external parameters are adjusted so that all
singular points on the bifurcation diagram coalesce into a

FIG. 15. Bifurcation diagram conjectured to explain Young's
numerical results.
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single, highly degenerate point. The universal unfolding of
the organizing center provides a convenient representation of
all bifurcation problems which can result from perturbations.
This is rigorously true in a sufficiently small neighborhood,
but on a pragmatic level the representation is often valid in
a far larger domain than can be a priori justified.

A more detailed analysis of this problem will be pub-
lished elsewhere [9].
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