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Summary. Meandering of a one-armed spiral tip has been noted in chemical reactions
and numerical simulations. Barkley, Kness, and Tuckerman show that meandering can
begin by Hopf bifurcation from a rigidly rotating spiral wave (a point that is verified

in a B-Z reaction by Li, Ouyang, Petrov, and Swinney). At the codimension-two point
where (in an appropriate sense) the frequency at Hopf bifurcation equals the frequency of
the spiral wave, Barkley notes that spiral tip meandering can turn to linearly translating
spiral tip motion.

Barkley also presents a model showing that the linear motion of the spiral tip is a
resonance phenomenon, and this point is verified experimentally by Li et al. and proved
rigorously by Wulff. In this paper we suggest an alternative development of Barkley’s
model extending the center bundle constructions of Krupa from compact groups to
noncompact groups and from finite dimensions to function spaces. Our reduction works
only under certain simplifying assumptions which are not valid for Euclidean group
actions. Recent work of Sandstede, Scheel, and Wulff shows how to overcome these
difficulties.

This approach allows us to consider various bifurcations from a rotating wave. In
particular, we analyze the codimension-two Barkley bifurcation and the codimension-
two Takens-Bogdanov bifurcation from a rotating wave. We also discuss Hopf bifurcation
from a many-armed spiral showing that meandering and resonant linear motion of the
spiral tip donot always occur.
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Fig. 1. Epicycle motion of spiral tip: outward and inward petals.

1. Introduction

Spiral waves have been observed both in experiments [20], [13], [14] and numerical
simulations [13], [4]. See Kapral and Showalter [11] for descriptions of recent work on
spiral waves and for additional references. In our discussion we focus on one particular
aspect of spiral wave theory—the observation by Barkley [3] that linear meandering of
the spiral tip is caused by Euclidean symmetry.

Planar spirals rigidly rotate and, as a result, the tip of the spiral traces out a circle in the
plane. Winfree [20] observed that under certain circumstances the tip of a spiral can me-
ander and create flower-like movements as in Figure 1. These motions are quasi-periodic
two-frequency motions, which can be thought of as an epicycle motion superimposed on
the basic spiral wave circle. When the motion on the epicycle is in the same orientation
as the motion on the circle (either clockwise or counterclockwise), then the petals of the
flowers point in; when the motions have the opposite orientation, the petals point out.
Winfree observed both types of quasi-periodic motions and the possibility of changing
the directions of the petals—which we call a changpetality—as a system parameter
is varied.

The epicycle motion can be written as

qt) = €z + e7?'zy), (1.1)

wherez; € R andz, € C. In these coordinates the change in petality occurs when
w1 = wy. We note that in order to see well-defined petals the ratio of the amplitudes
|z2|/|z1] should be large. Nevertheless, these quasi-periodic states can be formed, as
Barkley et al. [4] observed in numerical simulations of a reaction-diffusion system,
through a Hopf bifurcation from the rotating spiral wave. That observation has been
confirmed in recent chemical wave experiments by Li et al. [14].

In the epicycle motion (1.1), Hopf bifurcation corresponds to the secondary amplitude
z, = 0. From the standard bifurcation theory point of view, there is nothing significant
about Hopf bifurcation at this critical parameter value wheie= w,. However, in
Barkley’s numerical simulation [1] and in experiments such as those by Li et al. [14]
another phenomenon is observed. As the change in petality is approached, the radius of
the second frequendy,| grows unboundedly large. In particular, at the point of petality
change, the spiral tip appears to drift in a straight line off to infinity. See Figure 2.
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Fig. 2. Growth of flower near change in petality: pathﬁfq(s)ds, whereq(t) is as in (1.1) with
w1=1,zg=1,2=0.3, andw, = 0.61,0.85,1,1.11.

Thus, unboundedrowth of the second frequency amplitude is a feature that seems to
be connected with change in petality.

As we mentioned, for changes in petality to be observed, the amplitude of the epicycle
should be large, while near Hopf bifurcation points, this same amplitude must be small.
This dichotomy suggests that standard Hopf bifurcation by itself cannot provide an
explanation for petality change and unbounded growth. However, Barkley [3] made the
keen observation that Euclidean symmetry coupled with Hopf bifurcation is behind the
unbounded growth that accompanies changes in petality. The basis of his argument turns
out, in retrospect, to be quite simple.

Suppose we consider a reaction-diffusion system on the unbounded plane. Such sys-
tems of equations have Euclidean symmetry. Suppose the system has a spiral wave
solution and that the time-periodic spiral wave undergoes a Hopf bifurcation to a quasi-
periodic motion. At the point of Hopf bifurcation, symmetry forces (at least) five eigen-
values of the linearized system to be on the imaginary axis—two generated from Hopf
bifurcation and three generated by Euclidean symmetry. Assuming that center manifold
ideas hold, the time evolution of the meandering spiral (and hence the time evolution
of the meandering spiral tip) is described by a five-dimensional Euclidean equivariant
system of ODEs. There are three variables of this system representing the Euclidean
group—the translation variable € R? = C and the rotation variablg € S'—and the
variableg e C representing the amplitude of the eigenfunction of Hopf bifurcation.
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In these variables Barkley [3] assumes that the translation symmetry acts by

TP, @, @) = (P+ X, 0,0).

It follows that the ODE vector field is independent pfand that thge, q) equations
decouple; see Lemmas 3.5 and 4.1 in this paper. Suppose that a quasi-periodic solution
is found in the(p, q) equations. Them is obtained by integration. To understand how

this integration causes unbounded growtlpjmewrite (1.1) as

q) = gt Z + g (et Z3.

Then, for some constafit € R,

t 1 (Aeiwlt + Lei(wl—wz)t> +C, wr#
t) = / (dr =]\t T
p [ d

Z it —
ﬁe’“’l + 2t +C, w1 = W>.

It follows that if z, # 0, then aswv, approaches; a resonant blow-up ip(t) occurs.

In particular, whenw, — w1 # 0 is small the amplitude of the second term is large, the
motion of the second term is on a circle of large radius, and the motip(t pfs a small
perturbation of this circular motion. (The center of this circle is determingd.b¥hus,

this blow-up is the source of the unbounded growth of the second frequency mode and
occurs even when the magnitudezefis small.

Barkley [2] performed a numerical linear stability analysis for the basic time-periodic
spiral wave solution and showed that there is a Hopf bifurcation. In particular, a simple
pair of eigenvalues was shown to cross the imaginary axis while three neutral eigenvalues
lie on the imaginary axis and the remainder of the spectrum is bounded into the left-half
plane. Starting from Barkley’s numerical calculation, Wulff[21], in a major mathematical
work on spirals, has given a rigorous proof that resonant unbounded growth occurs in
Hopf bifurcation near the codimension-two point whexe= w,. Wulff approaches the
study of this Hopf bifurcation using Liapunov-Schmidt reduction. Her proof is hontrivial,
as there are technical difficulties, such as the nonsmoothness of the group action, which
must be overcome.

In this paper we suggest an alternative to the methods in [21], which we believe helps
in the understanding of the work of Barkley and Wulff. Our approach to bifurcations from
rotating waves in Euclidean equivariant differential equations extends Krupa's ideas [12]
of bifurcation from relative equilibria. Krupa’s methods lead to the construction of and
reduction to a center bundle over the critical group orbit. We note that Biktashev et al. [5]
obtain a similar reduction for the case of one-armed spirals by considering an orbit space
reduction. For many-armed spirals, the center bundle reduction has the advantage of not
introducing singularities. Indeed, we obtain new results on bifurcation from many-armed
spirals.

The group orbit of the rotating spiral wave is three-dimensional and the center sub-
space corresponding to Hopf bifurcation is two-dimensional, thus leading to a five-
dimensional center bundle. With the construction of this bundle, we recover the action
of the Euclidean group in Barkley’s five-dimensional model. The general equivariant
vector field on the center bundle can then be analyzed.
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It is our contention that center bundle techniques simplify the understanding of more
complicated bifurcations from rotating waves. To illustrate this point, we discuss Hopf
bifurcation from rotating waves recovering the results of Wulff [21] in the case of one-
armed spirals and discovering new phenomena in the case of many-armed spirals. We
also discuss the codimension-two Takens-Bogdanov bifurcation from one-armed spiral
waves.

The center bundle reduction of Krupa [12] is formulated under the assumption that the
total group of symmetries isompactand hence is not directly applicable to the problem
of meandering spirals. However, it turns out that the main requirement is compactness
of the isotropy subgroups of points on the critical group orbit. In the appendix, we
prove, under certain hypotheses, that Krupa’s theorems are valid even when the group
of symmetries is not compact and acts on an infinite-dimensional function space. In this
theorem, it suffices that the isotropy subgroups are either discrete or compact, which is
the case for spiral solutions since their isotropy subgroups are finite.

The hypotheses for the reduction described in the appendix are not satisfied in our
particular context of Euclidean symmetry due to the nonsmoothness of the group action.
Recent work of Sandstede et al. [17], [18] circumvents these hypotheses and enables the
center bundle reduction for meandering spirals to be carried out rigorously.

2. Center Bundles and Rotating Waves

We begin by describing the relevant results in Krupa [12] on center bundleE. het
compact Lie group acting orthogonally &%, and letf: R" — R" be al'-equivariant
vector field. A group orbiX is arelative equilibriumif the flow of

X = fXx) (2.1)

leavesX invariant. (Alternatively X is a relative equilibrium iff is tangent taX along
X.) Note that rotating waves are relative equilibria as time evolution is the same as spatial
rotation.

Suppose that the group orbdt= I'xg is a relative equilibrium, and I& c T be the
isotropy subgroup af. Let Ty, X be the tangent space to the group orbit@iand note
that Ty, X is X-invariant. Write

R" = T, X @ Ny,

whereN,, is the orthogonal complement g, X. We can form the normal bundi(X)
over X by attachingy Ny, to the pointy xo; since Ny, is X-invariant this construction
makes sense and the bundlelisnvariant. This bundle gives &-invariant tubular
neighborhood oK in R".

Krupa then shows (see also Vanderbauwhede et al. [19])ftihady be written as

f=1fn+ fr

on a neighborhood oX where

e fy and fr arel’-equivariant vector fields,
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e fy preserves normal fibegsN,,, and
e fr is tangent to group orbits; that i$r (x) € T<I'X.

It follows thatg = fn|Ny, iS a £-equivariant vector field. Moreoveg, is “generic” in
the sense that any-equivariant vector field): Ny,— Ny, extends, in a neighborhood
of X, to aI"-equivariant vector field : R"—R".

If Xis arelative equilibrium, theg(xg) = 0. The relative equilibriunX is acritical
group orbitif (dg)x, has eigenvalues on the imaginary axis. (We note ¢tgiy, is
computable; see Proposition A.3 in the appendix.) \{gtbe the center subspace of
(dg)x,- We callV = U{y Vy,} thecenter bundle

Next, Krupa shows that every solutiotit) to the differential equation (2.1) nexr
can be written as

X(t) =y Oy, (2.2)

wherey(t) is a solution to the normal vector field equatipr= g(y) andy (t) e 'is a
smooth curve.

Suppose thatVy, C Ny, is aX-invariant center manifold fay. Based on (2.2), Krupa
observes tha¥V = U{y W, } is aTl'-invariant flow-invariant center manifold fof in a
neighborhood of the critical group orbit. In particular, if the noncritical eigenvalues of
(dg)x, all have negative real parts, th&¥ is attracting for the dynamics of. As is
usually the case with center manifolds, we can profg®¥ onto the center bundi€.

Thus, we can understand bifurcations from critical group orbits by studying bifurcations
of the normal vector field) from equilibria.

To apply the center bundle reduction to the problem of meandering spirals, it is
necessary to generalize Krupa's results from compact groups to noncompact groups and
from finite dimensions to infinite dimensions. We carry out this generalization, under
certain natural hypotheses, in the appendix. We note however that there are additional
technical problems coming from the action of the Euclidean group and it is necessary to
appeal to the recent results of [17], [18]. In the remainder of the main body of the paper,
we show how these ideas can be formally applied to bifurcations from spiral waves in
Euclidean equivariant systems.

3. Group Action on the Center Bundle

3.1. Trivialization of Center Bundles

We continue to use the notation from Section 2. In particulgis a point with isotropy
¥ and X = I'xg is a critical relative equilibrium for th&-equivariant vector fieldf
on N(X). Recall that the action df on points(x, v) € N(X) is given byy (X, v) =
(yX, yv).

Define theX-equivariant vector field): Ny,— Ny, as in Section 2 and l&fy = Vj,
denote theX-invariant center subspace fgrwith corresponding’-invariant center
bundleV = U{y Vy}. Although N (X) is a trivial bundle, the subbund¥ is not neces-
sarily trivial (see Remark 3.4). We now give a sufficient condition\foto be a trivial
bundle.
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Lemma 3.1. Suppose that the actignof X on \4 extends to an actiop of I" on \%.
Then there is a trivialization

V=X x V.

The action of” on V is given by

Y (X, v) = (YX, pyv),
wherey e ', x € X,v € V.
Proof. Let(x, w) € V,sox € Xandw € V, whereV, isthe fiber ovek. Writex = §xg

wheres e T" and observe that, = §V,. Hences 1w e Vy. Define the trivialization
h: V— X x Vg by

h(x, w) = (X, ps (6" w)).

To show that is well-defined, suppose that= §1Xg = 82X wheresy, §, € T'. Then
82‘181 = o € X. The assumption on the actigrensures thagb,v = ov for all v € V.
We compute that

P38 W) = p3,p5 (0185 W) = i, 0515, (87828, w) = s, (87 1 w);

henceh is well-defined.

Next, we verify the action of” on X x V. In other words, we show thditis I'-
equivariant with respect to the actions ¥hand X x V. Let (x, w) € V as at the
beginning of the proof. Then

h(y (x, w)) = h(yx, yw) = (¥X, p,s((¥8) yw))
= (X, pyps(d 7 w)) = y(X, ps( 7 w)) = yh(x, w),

as required. O

The next corollary includes the caSe= 1 (one-armed spirals).

Corollary 3.2. Suppose thaX acts trivially on \§. Then V= X x Vyis a trivial bundle
andr acts as(x, v)— (X, v).

Next, we prove a general result about Hopf bifurcation from a relative equilibrium
whenl’ = SO(2).

Proposition 3.3. Suppose that = SO(2) and that X= I'xg is a relative equilibrium.
If X undergoes a Hopf bifurcation, then genericaliyn V; = 2 and the corresponding
center bundle V= X x Vj is a trivial bundle.

Proof. If ¥ = SO(2), thenX is a point and the result is immediate. Hence, we may
suppose thak = Z,, ¢ > 1, with generatos = Ry, € SO(2). Each irreducible
representation of is one-dimensional (and absolutely irreducible) or two-dimensional
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(and nonabsolutely irreducible). It follows from general theory [8] that generically either
\ is nonabsolutely irreducible &f is the sum of two isomorphic absolutely irreducible
representations. Either way, dvg = 2. Moreoverg acts as an orientation-preserving
transformation oiVg: 0z = €¥"™*z for somem = 0, . .., [¢/2]. To apply Lemma 3.1,
takepyz = €Mz, 0 € SO(2). O

Remark 3.4. (a) We give a simple example of a bifurcation from a relative equilibrium
for which the center bundle is not a trivial bundle. Tdke= SO(2), ¥ = Z,, Vp = R,
and suppose that acts nontrivially onVy. (In other words, we consider a symmetry-
breaking steady-state bifurcation in the normal vector field.) Then the center Béindle
is a Mdbius band.

(b) By results of Fiedler et al. [6], the analysis that follows does not depend crucially
on whetheV is a trivial bundle.
3.2. The Center Bundle for Spirals

Now suppose thaf = SE(2), thespecial Euclidean grouponsisting of rotations and
translations. We suppose thdt = SE(2)x, is a relative equilibrium whereg is an
¢-armed spiral. In other words the isotropy subgraugE Z,. As a manifoldSE(2) is
diffeomorphic toR? x St. The assumptions on the symmetryxgfimply that

X = SE(2)xg = SE(2)/Z, = R? x (SY/Z;,) = C x S!;
that is, X is a cylinder with coordinate®, ¢).
Lemma 3.4. The action ofx, #) € SE(2) on(p, ¢) € X is

(X, 0)(p,¢) = (€'p+ X, ¢+ £0). (3.1)

Proof. To verify (3.1), note that the action 8E(2) on X is justinduced by the action of
group multiplication inSE(2). Group multiplication irSE(2) is most easily understood
through the action 08E(2) onR? = C. Letw € C; then
X, 0w = €%w + x.
It follows that
X, )Y, Y)w = (X, 0w +y) =@ w+y) +x=w+ €y +x.
Hence, the group multiplication dBE(2) induced by its action oft is
X, (Y, ¥) = €y + X, ¥ +06).
Substituting(p, ¢) for (y, ¥) gives the action 08E(2) on X when¢ = 1. For general

¢, the angle? acts onC as in the? = 1 case, buf acts onS'/Z, as an¢-fold covering.
That is, we must adéd to ¢. O
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Lemma 3.5. Hopf bifurcation from ar/-armed spiral reduces generically to Hopf bi-
furcation of a five dimensional vector field on a trivial center bundle

V =XxVW

that is equivariant under the action,

TP, @) = (P+X 0,0d,
(3.2)

Ro(p,9,q) = (€7p, ¢+ 10,eM0q),

where0 < m < [£/2].

Proof. Whether or noV is a trivial bundle is independent of tiiefactor in X. Hence,
it follows from Proposition 3.3 thaV¥ is a trivial bundle. The action #E(2) on theX
coordinates follows from (3.1). The action on ¥Meoordinates follows from Lemma 3.1
and the proof of Proposition 3.3. O

4. Meandering and Resonant Growth of a One-Armed Spiral

In this section, we analyze Hopf bifurcation from a one-armed spiral. In Subsection 4.1,

we write down the general equivariant vector field on the center bundle. In Subsection 4.2,
we solve these equations and obtain the conditions for resonant growth. Finally, in
Subsection 4.3, we interpret these results in the context of Hopf bifurcation in a partial

differential equation, recovering the results of Barkley and Wulff on the meandering and

resonant growth of spirals.

4.1. Equivariant Vector Fields on the Center Bundle

For a one-armed spiral, we hate= 1, m = 0 in Lemma 3.5.

Lemma 4.1. Let F be a system of differential equations on the center bundle V that is
SE(2)-equivariant with respect to the= 1, m = 0 action. Then F has the form

@ p=¢€vf,
(b) ¢ = F¥(q), (4.1)
(© q = Fi@.
Proof. Symmetry invariance of a system of differential equations means that solutions

are transformed to solutions by that symmetry. Thus, translation invariance implies that
if

z(t) = (p(t), (b), q(t))
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is a solution to (4.1), then so is
y(t) = (p) + X, ¢(V), q(t)
for anyx € C. Sincez(t) = y(t), it follows that
F(z(t) = F(y®),
for all solutionsz(t). In particular,

F(P+X, 0,0 =F(p, ¢, q),

for all x. HenceF is independent op and the differential equations have the form

q = Fi(g. ).

Similarly, the rotational invariance of (4.2) implies that

FP(p +6,q) = €°FP(p,q),
F+0,9) = F?(p,q),
Fldlp+6,0) = Flp, 0).

Thus,F¢ andF9 are independent af, which verifies (4.1)(b,c).
To complete this proof we must verify (4.1)(a). Define

H(p,q) = e '“FP(g,q),
and note that
H+6,q) =" “TFP(p+6,q) =e?e"d’FP(p,q) = H(p, q).

It follows thatH (¢, q) = f(q) is independent op and that (4.1)(a) is valid. O

4.2. Periodic Solutions and Resonant Growth
Suppose tha(t) is a 2r/w, periodic solution to
q="F0Q)

in the center bundle equations (4.1). We detine= F¥(q(0)). (These frequencies are
related to, but not identical to, the frequencigsandw;, that appear in the introduction,
see equation (4.7).)

We can solve

¢ =F?(@q)
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for ¢(t) and
p=¢€*Cf@q)
for p(t) to obtain a solutior{p(t), ¢(t), q(t)) to (4.1). In the next theorem we recover
the resonance conditions of Barkley and Wulff for these solutions.
Theorem 4.2. Let(p(t), ¢(t), q(t)) be a solution to (4.1). Then
o) = w1t + o), 4.3
whereg(t) is 2r/w, periodic. If
w1+ Kkwy, =0

for some integer k, then generically(tp undergoes unbounded resonant growth.

Proof. The functionF¢(q(t)) is 2w /w, periodic sincey(t) is. Therefore, we can write
F¢(q(t)) as a Fourier series inobtaining

S .
¢: Z Bnelna)zt’

nN=—00

whereB, € C andB_, = B,. Every term exceph = 0 in the Fourier series yields a
periodic function on integration and hengé) has the form in (4.3) wher@; = By =
F(q(0)).

Next, consider the differential equation

p=¢€*Df(qt) =€ H(), (4.4)

whereH (t) is smooth and 2/w, periodic. We may writéH (t) as the uniformly conver-
gent Fourier series

[o¢]
Ht)= )  Dne™?,
n=—o0
whereD, € C.
Suppose thab; + kw; is close to zero for some nonzero integeil hen integration
of (4.4) yields

Dt + P(t)eet, w1 + Kwy =0,
p(t) =

@@kt L Pyt oy 4 kap # 0,

whereP(t) is a smooth boundedw, periodic function. Generical\Dy # 0. Hence,
by varyingw, so thatw; + kw, goes through zero, the first summandoift) undergoes
unbounded resonant growth, whi(t) remains uniformly bounded for these values
of wo. [l
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4.3. Hopf Bifurcation from a One-Armed Spiral

Let H be a space of functions with doma®* on which the Euclidean group(2) acts
as

yu@ =u(y 2.
whereu € H andy € E(2). Consider a partial differential equation

U = F(u, 1), (4.5

whereF: H — H is E(2)-equivariant and. is a real bifurcation parameter. L&,
denote rotation of the plane through angle&suppose that

u(t) = RoytXo (4.6)

is a rotating wave solution to (4.5) with period 2v1.

Let X = SE(2)xo be the connected component of the group orhitibfin phase space
under the action d&(2). As noted by Rand [15], Renardy [16], and others, itis possible to
study bifurcation from rotating waves by transferring the problem to the rotating frame.
Substituting (4.6) into (4.5) yields thag is an equilibrium for the equation

Uy = F(U, &) = F(U, 1) — wéu,

where
d

Eu= aR{ut:O.

The operato(df)xofk has three eigenvalues on the imaginary axis corresponding to the
continuous group orbiSE(2). Barkley [2] showed numerically that the rotating wave
u(t) could undergo a Hopf bifurcation as an additional simple pair of eigenvalues cross
the imaginary axis. We suppose that this bifurcation occuks-a). LetVy = C be the
corresponding center subspace.

Theorem 4.3([17], [18]). There exists a reduction of (4.5) to the center bundle-V
X x Vo. The reduced equations have the form

y=F(y,2),
where y= (p, ¢, q) € V and F has the form in equations (4.1).
It follows from the reduction procedure that
F?(0,0) = w1, F9(0,0) =0, and f(0,0)=0.

Note that in equation (4.1), the original rotating wave solution corresponds to the equi-
librium g = 0. Also, the critical eigenvalues generically cross the imaginary axis trans-
versely on variation ok. Consequently, the vector fiekf (g, 1) onV; satisfies

dyF%0,0) =iw, and RedqF1(0, 0) # 0.
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Thus, there is a Hopf bifurcation in tlieequation of (4.1) to an approximately 2o,
periodic solutiorg(t). We suppose that the Hopf bifurcation is supercritical.

The amplitude and frequency of the periodic solutigh A) vary as functions of..
To leading order, the amplitude variesaagx and the frequency varies as+ bx where
a andb are real coefficients. We set (1) = F?(q(0, 1)) and definew,(1) to be the
frequency ofq(t, A). Thus

w1(A) =01+ OWL),  @0) = w2+ OM). 4.7

Note thatw; (0) coincides withw; as defined in this subsection and in the introduction
for eachj = 1, 2. On the other hand, the;’s in Subsection 4.2 correspond d¢g(1)
evaluated at a specific value of

It follows from Theorem 4.2 that linear meandering occurs &t Ag if

w1(ho) + kw2(ro) =0,

for some integek. We call this resonancelaresonanceln particular, resonant growth
occurs whem; (0)+kw,(0) is close to zero for some integetWe can expect unbounded
growth in p(t) asA approaches the resonance point, and linear drifting(in at the
resonance point. However, by inspection of pictures, only when+1 ork = +2 do
the concepts of petality and changes in petality appear to be relevant.

Visualization of Hopf Bifurcation from a One-Armed Spiral. Toillustrate resonance
and petality issues, we have numerically integrated equations (4.1). Specifically, we
consider the equations

p = €¢(0.2—0.6i)q,
¢ =1, (4.8)
g = (r—0.95)g— (1L—-0.1i)qlql°

Figure 3 shows plots aff;, f,) for six values ofz, where
f1 = cosp(t) + Re p(t) and f, = sing(t) 4+ Im p(t).

These coordinates approximate the movements of the spiral tip in the lab framé. The
equation in (4.8) undergoes a supercritical Hopf bifurcation-at0, and the frequency

of the corresponding periodic solutiorug()) = —0.95— 0.1A. Sincew; (1) = 1, there

is a resonance at= 0.5.

As previously mentioned, in order to see well-defined petals in the simple epicycle
motion described by (1.1), the amplitude of the second frequency must be larger than
the amplitude of the primary frequency. That is, in order to see well-defined petals, we
must have

1Z2]

1zl (4.9)
|Z1]
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30 40 35

60 55 40

20 40 -50 10 -10 50
fl f1 ft

Fig. 3. Numerical simulation of (4.8) fox = 0.1, 0.3, 0.4, 0.5, 0.6, and 08.

for some real positive numbeéd. Suppose that the secondary motion arises via a Hopf
bifurcation and thatz;| ~ 1. Then near a point &-resonance, we have

122l VD
V4 o)’
pal w1 (1 + kw—i)
whereDy is a Fourier coefficient and we have suppressed the dependengewfon
A. Thus, if we defineg = w,/w1, then (4.9) becomes
2, 2

M<w3

A >
| Dk|?

(1+ko)2. (4.10)

This defines a sequence of “resonance tongues” irrthplane in which changes of
petality can be observed in addition to unbounded growth of the flower near the resonance.
See Figure 4. Since lim, o |Dx| = 0, the tongues eventually narrowlas> oo.

If the point(z, 1) is in exactly one tongue (as is the point labeled A in Figure 4),
then an epicycle motion with well-defined petals will be observed. A change in petality
occurs as the resonance is crossed. If the point is in a tongue corresponditkg to a
resonance, then each petal will be (approximately) tracell tiotes before a new petal
is formed. However, in the case where the point is in more than one tongue (as is point B
in Figure 4), then the motion involves multiple harmonics and petality is an ill-defined
concept for these points. However, we will still observe unbounded growth of the flower
as the resonance is crossed.
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Fig. 4. Resonance tongues described by (4.10).

5. Hopf Bifurcation from ¢-Armed Spirals

In this section we discuss Hopf bifurcation fratvarmed spirals wheré > 1. Suppose
that an¢-armed spiral wave undergoes a simple Hopf bifurcation with frequency
Let V be the center subspace of the bifurcation in the normal directioksatixg. The
SE(2) action is given as in (3.2):

(P, Q) > E°p+x, ¢+ 0,™q),

forsomem =0, ..., [¢/2].

The isotropy subgroup iBE(2) of the ¢-armed spiral iZ,. Note that the action of
Z, onVj is faithful (in other words, the kernel of the action is trivial) precisely wiien
andm are coprime. For example, if the eigenfunction associated with Hopf bifurcation
from a two-armed spirak(= 2) is invariant under rotation by, thenm = 0, and¢ and
m are not coprime.

For all ¢ andm, the solutions arising from Hopf bifurcation are quasi-periodic. How-
ever, there are differences in the resulting motions in physical space depending on whether
¢ andm are coprime. In particular,

e When¢ andm are not coprime, the spiral tip does not meander and the codimension-
two bifurcation to resonant growth does not occur. What does occur is that (approxi-
mately) the spiral rigidly rotates at a rate that depends quasi-periodically on time.

e When? andm are coprime, Hopf bifurcation leads to meandering and to codimension-
two resonant growth. The points where resonance occurs depend ohdudim.

Inthe remainder of this section, we give the precise statements and proofs of these results.

5.1. Hopf Bifurcations without Meandering

First, we analyze the equations on the center bundle Wiewim are not coprime. We
prove:
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Theorem 5.1. Let F be anSE(2)-equivariant system of differential equations on the
center bundle V corresponding to @rarmed spiral where > 1. If £ and m are not
coprime, then P = 0 and p(t) is constant. In particular, there is no resonant growth.

Moreover, the spiral in the physical plane does not meander. Rather, the motion is a
rigid rotation by R,), wherep(t) is quasi-periodic in t.

Proof. As in the proof of Lemma 4.1, the action of translations\oimplies thatF is
independent op. The main difference comes in the equation

p=FP(p, Q).
Here the action of rotations implies that
¢’FP(p,q) = FP(p + 6, ™), (5.1)

for all 6. Since¢ andm are not coprime there is an integer 2 such that = j¢ and
m = jm’. Settingd = 27/j in (5.1) yields

e"IFP(p,q) = FP(p + 207, €™ q) = FP(p, Q).

Sincej > 1litfollows thatFP = 0. In particular,p(t) is constant and there is no resonant
growth and no meandering.

The remaining components of the system on the five-dimensional center bundle have
the form

¢ = F¢p, ),
q = Fi.q).

This can be viewed as a®0O(2)-equivariant system on the three-dimensional center
bundleSO(2)x, x Vo. In these equations we have a Hopf bifurcation in the norigpal (
directions leading to a periodic solution, and there is drift along3®¢€2) group orbit
leading to a quasi-periodig(t)—just as in the case of one-armed spirals.

The interpretation ap(t) in physical space is that the plane is rigidly rotatingR, .
(In the case of one-armed spirals, the plane also translatesggiryds not constant.) In
the corresponding quasi-periodically varying rotating frame, the spiral is approximately
stationary. In fact, this spiral also varies quasi-periodically (as a functioyitof, but
close to the point of Hopf bifurcation, this fluctuation is negligible. O

Remark. There is an alternative abstract explanation of the failure of the spiral tip to
meander or undergo resonant growth whandmare not coprime, based onideasin 7],
[12]. Since the kernel of the action &f, on Vjy is nontrivial, the bifurcating periodic
solutions are fixed pointwise by the kerizg] of the action. (Heré divides¢ andk > 1

by assumption.) Hence the bifurcation takes place in the fixed-point subspaZeg)Fix

As usual, this is a flow-invariant subspace for the underl\B&g2)-equivariant vector
field. Moreover, the largest subgroup®iE(2) that preserves FiZy) is the normalizer
SO(2) of Zx. Hence the flow on FigZ ) is anSO(2)-equivariant flow and all drifts take
place insidé&SO(2). In particular, the translation coordinate on the center bundle remains
constant.
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5.2. Hopf Bifurcations with Meandering

Now assume thatandm are coprime. As usual, let; denote the frequency of the basic
¢-armed spiral solution and let, be the frequency coming from Hopf bifurcation. Our
main result is that the conditions for resonant growth depend onbatidm in the
following manner.

Theorem 5.2. Assume that and m are coprime and let grbe the smallest positive
integer such that

mm =1 (mode).
Then codimension-two resonant growth occurs when

1 1
~—lm-— 52
w3 Z( J'ﬁ-l-mo)wl’ (5.2

where j is an integer.
For example, wheidi = 2 andm = 1, the resonance condition becomes

w2 1,

T 2i+1”
wherej is an integer.
The proof of Theorem 5.2 is organized as follows.

o First, we calculate the equivariant vector field on the center bundle. To make the anal-
ysis of this vector field tractable, we consider a pull-back to a vector field on the group.
This step is a special case of the more general approach of Fiedler et al. [6]. Indeed,
we wish to thank B. Fiedler for showing us that certain computational difficulties can
be circumvented by pulling the differential equation from the center bundle over the
group orbit back to a differential equation on a bundle over the group itself.

e Second, we compute necessary and sufficient conditions for resonant growth in the
pull-back equations.

o Finally, we reinterpret these results for the original vector field on the center bundle.

The action ofSE(2) on the center bundl¥ is given in Lemma 3.5. Unlike the= 1
case, the and(q equations depend gn In fact, the generadbE(2)-equivariant system
of differential equations oW when¢ > 1 has the form

where
FP(p +0,€™q) = €°FP(p, q),
Fe(p +6,e"'q) = F¥(p,q), 4
Fi(p + €0, eMq) = e"?F(p, Q).
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The techniques which were used in the: 1 case to study resonances will not work
for equations (5.3) because of the dependence of the equatigndortircumvent this
difficulty, define the local diffeomorphism

0. SE(2) x Vg — V,

p(y. ¥, v) = (Y, £y, €M),
where 0< ¢ < 27. Define an action 08E(2) on the bundl&SE(2) x Vg by

X, 0, ¥, v) = (€Y + X, ¥ +60,v),  (X,0) e SEQ). (5.5)
With this action,p is SE(2) equivariant. To verify this point, calculate
p((X, )Y, ¥, v) = p€°y + X, ¥ +6,v) = (€°y + X, (¥ +6), "V ),
and, using (3.2), calculate
X, 0)p(Y, ¥, v) = (X, O)(Y, £y, €"Vv) = (€7y + X, Ly + €6, €™MV v).

Usingp, the differential equation (5.3) pulls back to a differential equatio8B(2) x
Vo that is equivariant under the action (5.5)®k(2). Since this action is identical to
the¢ = 1, m = 0 action encountered in Section 4, it follows from Lemma 4.1 that the
pull-back has the form

y = €Vg(v),
v = GV (v), (5.6)
v = GY(v).

Proposition 5.3. The pull-back equations on the group are related to the original equa-
tions on the group orbit as follows:
g(v) = FPO,v),
G¥(v) = ;F*(0,v),
G'(v) = F90,v) — TvF?(0, v).
Proof. The function(y(t), ¥ (t), v(t)) is a solution to the pull-back differential equation
(5.6) ifand only ifo (y(t), ¥ (1), v(t)) = (y(t), £y (1), €MV Oy(t)) is a solution to (5.3).
Thus, differentiation leads to
y = FP(ty, e"Vy),
) = Foy, €M),
mie"Vuy + ey = FILy, eMVy).
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Comparing they-component with the;-component in (5.6), we have
eV FP(ey, €M) = g(v),
independent of)y. Settingyr = 0 yields the relatiom(v) = FP(0, v). The remaining

relations are verified similarly. O

Not every system of equations of the form (5.6) arises as the pull-back of a system (5.3)
on the center bundle: The pull-back equations are additionally equivariant with respect
to an action of the isotropy subgroip. It follows from the following lemma that the
full group of symmetries of the pull-back equations is a semidirect produSEe2)
andZ,.

Lemma 5.4. The pull-back equations are equivariant under the action (5.5 ER)
and under the following action &,:

Y, ¥, v) > (", g, @My, (5.7)

There are no further restrictions on the pull-back equations.

Proof. We have already established that the pull-back equationSEE-equivariant
under the action (5.5) and hence have the form (5.6). Next, we veri teguivariance
for the G’-component,

G"(v)

F9(0,v) — BoF?(0,v) = FI(2r, v) — DvF* (27, v)
= e ZmitEa(Q, g2rMilty) — MyFe(0, e#™Mity)  (by (5.4))
— efznmi/(Gv(eani/Kv)-
The verification of (5.7) for the remaining components is similar.
Conversely, suppose that we are given a system of equatio®E@) x Vp that

is equivariant under the actions (5.5), (5.7). 8¥(2)-equivariance, we can write the
equations in the form (5.6) whegg G, G¥ depend on. Define

FP(p,q) = €¥g(e”'™q),
Fe(p,q) = LGY(e7'M/q), 5.8
Fi(p,q) = €™/G (e ™" ) + mivGY (e v).

Then the system o8E(2) x Vy is the pull-back of the system defined by (5.8). It
remains to show that (5.8) is well-defined and equivariant under the action (3.2). Again
concentrating on the third component, note thatis well-defined if and only if

Fip +2m,0) = Fi(p. ).

But this equality follows from th&, equivariance olG¥ andG®. Similarly, it is easily
checked from definition (5.8) thdt? satisfies the require8E(2)-equivariance condi-
tion. O
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This completes the first stage of the proof of Theorem 5.2. Next, we analyze the
pull-back equations, emulating Theorem 4.2. Léf) be a Z/w, periodic solution to
v = GY(v). We suppose that this periodic solution is a result of Hopf bifurcation in the
v equation. Definé, = G¥ (v(0)). As in Subsection 4.2, we solve = G¥ (v(t)) for
Y (t) andy = €¥Og(u(t)) for y(t) to obtain a solutiory(t), ¥ (t), v(t)).

Theorem 5.5. Let(y(t), ¥ (1), v(t)) be the solution constructed above for the pull-back
equations (5.6). Generically,() undergoes unbounded resonant growth if and only if
@1+ kap, =0, (5.9
for some integer k satisfying
km=1 (mod?). (5.10

Proof. The condition (5.9) is immediate from Theorem 4.2. We show that the additional
condition (5.10) is aconsequence of heequivariance (5.7) and, furthermore, thatthese
are the only restrictions ok
Since? andm are coprimeZ,-equivariance is equivalent to the conditions
@ g™ = & g),
(b) GV (e#ty) = G¥ (v), (5.11)
(C) Gv(eZNi/ZU) — e2ﬂi/ZGv(v).

It follows from (5.11)(c) and the uniqueness of periodic solutions in (generic) Hopf
bifurcation that the periodic solution to thieequation satisfies

2 ;

v (t + —) =&y (t). (5.12)
ng

This observation is a special case of the spatio-temporal symmetries of symmetric Hopf

bifurcation discussed in [8]. .
It follows from (5.12) and (5.11)(b) that solutions to tifeequation have the form

Y(t) = ot + ¥ (1),

2w

wherey is 0 periodic. Finally, using (5.11)(a), we can rewrite hequation as
w2
y =™ h),
whereh is 2/, periodic and
2 .
h (t + ﬂ) = Miln ). (5.13)
Ea)z

Write h as a Fourier series

h(t) = Z [CAC
k
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It follows from (5.13) thahy = 0 unlessk satisfies condition (5.10). In particular, these
are the only values df for which the resonance (5.9) is possible.

Finally, we write down pull-back equations that exhibit the required resonances. Set
GY (v) = @1 andG? (v) = i@yv. These functions clearly satisfy conditions (5.11)(b,c)
and yield a 2/@, periodic solutionu(t). The functiong(v) = v* satisfies condi-
tions (5.11)(a) provided satisfies condition (5.10) and yields those resonances (5.9)
for whichk > 0. To obtain the remaining resonances, consigey = v~. O

The third stage of the proof of Theorem 5.2 is to relate the frequeiagiés the
pull-back equations with the frequencies in the original equations on the center
bundle. Recall that the periodic solutions in thequations arise via Hopf bifurcation
and hence the frequenciés(i) vary smoothly with the bifurcation parameterAs in
Subsection 4.3, we redefiag = «; (0). Then Theorem 5.5 implies that resonant growth
occurs when

1
Wy ~ —ECZ)]_, (5.19

for some integek satisfying condition (5.10).
It follows from Proposition 5.3 that the frequencigsandw; are related as follows:

1 1
w1 = GW(O) = ZF(/)(O, 0 = Zwl’

and
.. mi . mi
lwy = (de)o = (dq Fq)o_o — TF(/)(O, 0)=iwy— 7601.
Substituting these expressions into condition (5.14) yields the resonance criterion

km—-1
£k

wy ~ w1, (5.15)
wherek satisfies (5.10).

Finally, we observe that equation (5.10) always has solutiong &dm coprime.
If we let mg be the smallest positive integksatisfying (5.10), then, sincdeandm are
coprime, all solutions to (5.10) have the fokm= j¢ + mg for some integetj. This
completes the proof of Theorem 5.2.

6. Takens-Bogdanov Bifurcation

As mentioned previously, our approach can be applied to study other bifurcations from
spiral waves. To illustrate this point, we consider two other bifurcations from one-armed
spirals: steady-state bifurcation and the codimension-two Takens-Bogdanov bifurcation.
By Corollary 3.2, the associated center bundle will be a trivial bundle (this is not neces-
sarily the case for these bifurcations from a many-armed spiral).

Steady-state bifurcation leads to a saddle-node (or limit point) bifurcation of rotating
wave spiral solutions with frequency closedg. We omit the details and pass to the
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more interesting Takens-Bogdanov bifurcation. In this case, the ope{mﬁ)&o_o in
Subsection 4.3 has a nonsemisimple double zero eigenvalue and the corresponding center
subspacdy, is identified withR?. Letq = (x,y) € R? = V. In normal form, thej
equation in (4.1) can be written as

X =Y,
Y = u1+ p2y + X2+ bxy,

(6.1)

wherepn; andu, are unfolding parameters abd= +1 (cf. [9]). We consider the case
b = —1, since it leads to stable limit cycles in (6.1).

A schematic of the phase portraits corresponding to regions in the unfolding space
is given in Figure 5. Of particular interest is region A which is bounded by a curve of
Hopf bifurcations and a curve of homoclinic bifurcations. Consider a patthrough
this region. AsP; crosses into region A, there is a Hopf bifurcation from one of the
equilibria. The resulting periodic solution of (6.1) generates quasi-periodic motion for
the full system (4.1). As the homoclinic bifurcation curve is approached, the period of the
periodic solution gets larger and tends to infinity (that is, its frequency gets smaller and
tends to zero). HencB; crosses an infinite number of resonance points. Consequently,
in parameter spacey(t) will experience unbounded growth for an infinite number of
parameter values alorfgj. However, as mentioned in the previous section, only the first
one or two resonances should exhibit a well-defined change in petality in addition to
unbounded growth.

Finally, consider a patR, through the saddle-node varigty = 0. The interpretation
of this bifurcation is the following. In region B, a spiral wave is observedPAsrosses
into region C, the spiral wave disappears and the dynamics enters a part of phase space
not modeled by the center manifold equations.

A. Appendix

Inrecentwork, Sandstede et al. [17], [18] have generalized the center bundle construction
of Krupa [12], described in Section 2, from compact groups to noncompact groups and
from finite dimensions to infinite dimensions. In particular, they prove Conjecture 4.3
and provide a rigorous justification of the techniques in this paper. A major technical
difficulty overcome in the work of [21], [17], [18] is the lack of smoothness of the action

of SE(2) on functionsu: R?>—R.

Independently, we have obtained a simplified reduction under the assumption (S1)—
see below—that the action of the Lie algebra of the group is “smoother” than the lin-
earized vector field defining the dynamical system. This assumption fails for actions of
SE(2) butis satisfied in many important cases. Examples include the O acting
on L2() for a circular bounded domai2, and the noncompact group of translations
T(2) = R? inside of SE(2) acting onL?(R?); see Example A.1. Hence our reduction,
which is presented in this appendix, can be viewed as a rigorous and nontrivial exten-
sion of the methods of [12]. At the same time, our reduction hints at the full picture for
noncompact group actions without addressing the technical difficulties resolved by [21],
[17], [18].
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Fig. 5. Unfolding of Takens-Bogdanov singularity in (6.1).

Under assumption (S1), we obtain the required decompositienfy + fr into nor-
mal and tangent vector fields and we obtain the factorization (2.2) into normal dynamics
coupled with drift along group orbits. To obtain a smooth center bundle, it is necessary
that the critical eigenfunctions for the normal vector field are acted upon smoothly by the
group; see assumption (S2). (It turns out that assumption (S2) is automatically satisfied
for reaction-diffusion equations; see Sandstede et al. [17], [18].)

Throughout the appendix, smooth meaBisfor k sufficiently large. We do not re-
quire that the group acts smoothly (or even continuously) on the whole of the infinite-
dimensional space.

A.1. The Generalized Center Bundle Reduction

Let I be a finite-dimensional Lie group (not necessarily compact) acting by unitary

transformations on a Hilbert spaéé. Let X, € H. We assume that the group orbit

X = I'xg is a smoothly embedded submanifold%f Let 7: N(X)— X denote the

normal bundle ir, with fibersN, = (T, X)+. Write points inN(X) as(x, v), where

x € X andv € Ny. The map3: N(X)—H, B(X, v) = X+ v is alocal diffeomorphism.
Since the action of is unitary,N(X) is invariant under the actiofx, v)— (y X, yv)
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andg: N(X)—H isT-equivariant. Sincg is one-to-one on the homogeneous spéce
it follows that g8 restricts to a diffeomorphism on sorfieinvariant neighborhood oX.

The dynamical system.We suppose that: H—H is al'-equivariant “infinite-dimen-
sional vector field” or{ (a nonlinear partial differential operator, say). Suppose that
f satisfies the usual technical conditions so as to generate a smooth local semiflow on
H. Thatis, f = A+ N where the linearityA is sectorial and the nonlinearity is
sufficiently smooth on the domai® of a fractional powe” of Afor somex € [0, 1);
see Henry [10] for the precise definitions. We note thétis a dense and'-invariant
subspace oH. The graph nornmju|l, = |lu|l + ||A%u|| makesH* into a Hilbert space
and f is smooth when regarded as an operdtofH*—H.

We suppose from now on that has been chosen with these properties. Roughly
speaking,« quantifies the “semilinearity” off where the nonlinearityN is strictly
smoother tharA (sow is required to be strictly less than 1).

The Lie algebra. The Lie algebra. (I") consists of linear operatoés H— H defined
by&u = %ytuh:o wherey; € I' is a curve at the identity. Typically, the operatérare
unbounded and hence are not defined on the whaié. ate let{ denote the common
domain of the elements df(I") and note that{ is I'-invariant. It follows from our
assumption orX that X C H.

Recall thatx € [0, 1) is chosen so that: H*—H is smooth. It is natural to make
the simplifying assumption,

(S1) H* C H.

In particular, each infinitesimal generatoe L (I") isbounded as an operatorH* —H.
(Roughly speaking, the Lie algebra elements are strictly smoother than the linear vector
field A)

Under assumption (S1), we obtain a complete generalization of the results in [12].
Theorems A.2 and A.5 correspond to [12, Theorems 2.1 and 2.2].

Example A.1. Suppose that{ = L2(R?) consists of functiona: R>—R and that the
groupI’ = SE(2) acts byu(x) — u(y~1x). A calculation shows thak (SE(2)) is
generated by

au au au au
U= —, U= —, E3U=X1— — Xo——

90X dX2 0Xo X1 '

Suppose that the linear paktof the evolution operatof is the LaplaciamA = A. The
generatorg, & corresponding to translation have fewer derivatives thamd are rela-
tively bounded with respect tA. In particular, we can choosee [1/2, 1) in assumption
(S1). However, the generatgy corresponding to rotation includes multiplication by the
unbounded functiong; andx,, and hence violates assumption (S1) forall

Note that the group of translatioi§2) = R? satisfies assumption (S1). In addition,
the rotation grouBO(2) satisfies (S1) provided we restrict k3 () for Q a bounded
circularly symmetric subset &t
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In the remainder of this subsection we supposexhhags discrete isotropy subgroup
3. (This assumption is relaxed in Subsection A.2 below.)

Theorem A.2. Suppose that assumption (S1) is valid. Suppose further thatXg
is a submanifold of{ and that the isotropy subgroup of X, is discrete. There is a
[-invariant neighborhood U of X= I'xg in D and smooth -equivariant nonlinear
operators f, fr: U—"H such that

(i) flu=fn+ fr,
(i) fn(u) € Ny forallueU, and
(i) fr(u) e TyCu.

Proof. Foru € X we trivially haveH = N« @ Ty['u. Observe that this splitting
remains valid fou close toX in the graph norm sinc&,I'u = L (I")u varies smoothly
with respect to this norm. Now definig (u) and fr (u) by projecting f (u) onto N,
andT,I"u, respectively. Again, the subspadég,, andT,I"u vary smoothly withu, and
hence the associated projections are smooth. O

The operatordy andft are called theormalandtangentcomponents off . Note that

fr is tangent to group orbits everywhere bt is normal to group orbits only when
restricted toX. Letg = f|NxomU denote the restriction of the normal operator to the
normal fiber ovey. Observe thaty is X-equivariant.

The standard results relatindg)x, with (d ), are valid in this general setting, as we
now describe. Suppose théts a relative equilibrium, sd (Xg) = Exowhereg € L(T).
Define f(u) = f(u) — £u, so thatx, is an equilibrium forf. Then(d f),, is a linear
operator ory, N (X) = Ny, @ Ty, X = Ny, @ L(T"). Moreover,(d f~)x0 is sectorial, since
(df)y, is sectorial and is defined on the domain of a fractional power.

Proposition A.3. Regarded as an operator on, N L(T"), (d f~)x0 has the form

% (dg)Xo O
df Xo = . A.l
@df) ( L ek ) (A1)

Proof. Restricting to the dense subspd&ec ‘H ensures that the mappinds g, and
so on are smooth. Recall thathas the decompositioh = fy + fr into normal and
tangent components, sb has the corresponding decompositibn= fy + fr where
fr(u) = fr(u) — £u. We show first that

do)x ~ 00
(d fN)Xo = < ( g) ° * ) ) (d fT)XO = ( ) )
* * *x  *

thus verifying the entries in the first column @ffN)Xo.
The form of(d f ), follows from the definitiorg = fn|n, . Now recall thatfr (u) =
Q(u) f (u) whereQ(u): H—H is the projection ontd,I"'u with kernelN,,. Since
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£u € T,Tu, we havefr (u) = Q(u) f (u). For allw € Ty,N(X), we compute that
(d fr)gw = (dQ)xw) f (X0) + Q(X0)(d Fyw = Q(Xo)(d )yyw € Ty X,

since f (xo) = 0. Hence(d fr)y, has the required form.
Itremains to verify the entries in the second columedoff), . Letnxo = d%y(s)xo|szo €
Ty, X, and observe that

d
= — f(y(s)x0)

d
(df)nXo = (df)y, gs’ (9%

so ds s=0
d
= d—SV(S) f(Xo0) . = nf (X)) = néXo.
Hence,
(d Dxon¥o = ((d)x, = §) nXo = (1§ — §m)%0 = —adE) (M.
Identifying Ty, X with L(I"), we have(d f~)x077 = —ad&)n as required. O

Remark. It follows that, modulo the eigenvalues ebd(£), the spectrum ofdg)y, co-
incides with the (relatively computable) spectrum@f ),,. The eigenvalues ofad(¢)
are viewed aseutral Indeed, when is abelian we have &g) = 0.

WhenT is compact, the adjoint action df preserves an inner product and it follows
thatad¢) is a skew-symmetric matrix. In particular, the eigenvaluesad(&) are purely
imaginary. This is the case also for noncompact groups, provided that the trajectory
throughxg is compact (in other words, the closure {@kpté, t € R} is a compact
subgroup of).

In general, however, the eigenvalues-edd&) need not be purely imaginary. A
somewhat hypothetical example is provided by the group of matrices

a b
F:[(O 0), a,beR, a;éO].

A basis for the Lie algebra is given by

1 0 0 1
El=<0 O)’ §2=<O 0>,

and we calculate that &) has eigenvalues 0 and 1.
Corollary A.4. The normal vector field g generates a smooth local semiflow,gn N

Proof. Recall that(d f~)x0 is sectorial. By Proposition A.3, the spectra(dffﬂ)xo and
(dg)y, differ by finitely many eigenvalues of finite multiplicity. Substituting vectors of
the form(x, 0) into the formula (A.1), we obtain the estimate

(P, — )2 < 1A gy — )71,
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for all  in the resolvent ofd f~)x0- Hence, sectoriality ofd f~)x0 implies sectoriality of
(dg)x, [10, Definition 1.3.1]. The domail qg),, is given by Dg),, = Dr),, N Ny
and the nonlinearities ig are as smooth as thosefinhenceg generates a smooth local
semiflow. O

Theorem A.5. Suppose thatthe hypotheses of Theorem A.2 and Corollary A.4 are valid.
Let u(t) andv(t) be the solution trajectories for the initial value problems defined by
the vector fields f and g with initial conditiomy € Ny,. Then, there is a smooth curve

at the identityy (t) € T, such that

u®) =y ®uv().

Proof. Sincefr(v(t)) € L(I')v(t) andX is discrete, we can uniquely writlg (v(t)) =
&(tv(t) for a smooth curveé(t) € L(I"). Let y(t) be the solution to the initial value
problem%y = y&, y(0) = e. Theny(t) is a smooth curve at the identity as required.

Defined(t) = y(t)v(t). We show thafi(t) is a solution for the vector field. It
follows by unigueness of solutions that= u and hence that = yv.

The solutionv(t) lies inside H* N Ny, for t > 0 and is smooth as a function
(0, c0)—H“ where defined (see [10, Sections 3.3 and 3.4]). It follows from assumption
(S1) thatdi(t) is a priori at least once differentiable as Havalued map fot > 0. (A
posteriori,li(t) = u(t) is smooth as af{“-valued map.) Applying the chain rule, we
compute that

Elj(t) _d Hv) = (t)E (t)+E (t+s)v(t)
TR A TR T34 ",

= y(Og®) +yOEMDVD)
= y® fne®) + O frw®)
= y® f ) = f ). O

It follows from Theorem A.5 that bifurcation from a relative equilibrium can be
understood abstractly in terms of bifurcation from an equilibrium forfhequivariant
evolution operatog coupled with drifts along the group.

If the spectrum of the linearizatiofg)y, of the normal vector field intersects the

imaginary axis, and the remainder of the spectrum is bounded away from the imaginary
axis, then the center manifold theorem applied\gn Since the action of is unitary,
the norm orH is smooth and -invariant. Hence, we can choose a smaddtmvariant
“cut-off” function x: H—R and we can construct a unique smoatfrinvariant center
manifold W for the cut-off normal vector fielgt fy|n, on each fibeN, N HY, x € X.
By constructionW, x = y Wy and hence the resultingenter bundle W= Uyex Wy is
I-invariant and at least once differentiable sificacts differentiably ofi{*. In addition,
eachw is a local center manifold fof |, , So thatW is a local center bundle fof. In
order to proceed as in the main part of the paper, we require that

(S2) T acts smoothly on elements in the center manifélg for the normal vector
field g.
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It follows from assumption (S2) thal is a smooth bundle and th&tacts smoothly
on W. (Again, we note that [17], [18] have recently shown that assumption (S2) is
automatically satisfied for reaction-diffusion equations.)

A.2. Reductive Isotropy Subgroups

In this subsection, we show that the results of Section A.1, in particular Theorems A.2
and A.5, are valid for more general classes of isotropy subgBug/e continue to
assume thaf is a finite-dimensional Lie group acting by unitary transformationg{on
that assumption (S1) is valid, and thét= I'xg is a smooth submanifold 6f.

The proof of Theorem A.2 breaks down wheyhas isotropy subgroup of positive
dimension. For example, there may be pountsf lower dimensional isotropy neap
in which case dinT,I"u is not constant. This difficulty is present even for compact Lie
groups acting oR" and is the main technical difficulty overcome in Krupa [12]. We now
usethe ideasin [12] to enlarge the class of isotropy subgrBudpswhich Theorems A.2
and A.5 are valid.

Recall thatX is reductiveif X has a faithful finite dimensional representation and
every finite dimensional representation’®is completely reducible (every-invariant
subspace has 3-invariant complement). In particular, compact groups are reductive.
The next result generalizes [12, Lemma 2.3].

Lemma A.6. Suppose that assumption (S1) is valid, that=X"xg is a submanifold of
'H, and that the isotropy subgrop of xg is reductive. There exists a smodthnvariant
subbundle KC T N(X)|x« such that for all u in a-invariant neighborhood Uc H“
of X,

() Ky c Tyl'u, and

Proof. The subspack(X) c L(I') isinvariant under the adjoint action Bfand hence,
by reductivity, there is an invariant subspace- L (I") such that

LOD)=LXE)aY.
Letu = (yXo, v) € H* C N(X) and define
Ku = (Ad, Y)u.

Note thatK, is well-defined due to the invariance Wt To verify this point, suppose
thaty1Xo = y2Xo. Theny, 'yy € =, and so Ag,Y = Ad,,Y. HenceK is a subbundle of
N (X) satisfying condition (i). In contrast to the tangent spaGdau, the subspaces,,
are of constant dimension nedrand condition (ii) is satisfied.

To show thatK is I'-invariant, we prove thakK,, = y K. Indeed, ifu = (§Xo, v),
then

K,u = (Ad,sY)yu = (Ad, AdsY)yu = y (AdsY)u = y K.

Finally, smoothness of the bundle is proved as in [12]. O
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It is now straightforward to extend Theorem A.2 from discrete isotropy subgroups
to reductive isotropy subgroups. Simply projécu) onto N, andK,. Similarly, the
curveé&(t) in the proof of Theorem A.5 is chosen to lie i,). The remaining proofs
in Section A.1 are unchanged.

Remark. The assumptions underlying our generalization of Krupa’'s center bundle re-
duction can be summarized as follows. The simplifying assumption (S1) ensures that
the generalization from finite dimensions to infinite dimensions runs smoothly. We re-
quire that the relative equilibriunX = I'xy is a smooth embedded submanifold of
‘H. Assumption (S2) guarantees that the center bundle is smooth and not merely once
differentiable.

Our results are proved for two classes of isotropy subgrougs. & discrete ancc
reductive. Actually, we require only that there is an invariant complemerit &) c
L (T") under the adjoint action &t (this is trivially the case wheR is discrete even iE is
not reductive). An example where this property is violated is provided by the subgroup
¥ = T(2) of translations in = SE(2). We conjecture that there is no analogue of
Theorems A.2 and A.5 in such cases.
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