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Summary. Meandering of a one-armed spiral tip has been noted in chemical reactions
and numerical simulations. Barkley, Kness, and Tuckerman show that meandering can
begin by Hopf bifurcation from a rigidly rotating spiral wave (a point that is verified
in a B-Z reaction by Li, Ouyang, Petrov, and Swinney). At the codimension-two point
where (in an appropriate sense) the frequency at Hopf bifurcation equals the frequency of
the spiral wave, Barkley notes that spiral tip meandering can turn to linearly translating
spiral tip motion.

Barkley also presents a model showing that the linear motion of the spiral tip is a
resonance phenomenon, and this point is verified experimentally by Li et al. and proved
rigorously by Wulff. In this paper we suggest an alternative development of Barkley’s
model extending the center bundle constructions of Krupa from compact groups to
noncompact groups and from finite dimensions to function spaces. Our reduction works
only under certain simplifying assumptions which are not valid for Euclidean group
actions. Recent work of Sandstede, Scheel, and Wulff shows how to overcome these
difficulties.

This approach allows us to consider various bifurcations from a rotating wave. In
particular, we analyze the codimension-two Barkley bifurcation and the codimension-
two Takens-Bogdanov bifurcation from a rotating wave. We also discuss Hopf bifurcation
from a many-armed spiral showing that meandering and resonant linear motion of the
spiral tip donot always occur.
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Fig. 1.Epicycle motion of spiral tip: outward and inward petals.

1. Introduction

Spiral waves have been observed both in experiments [20], [13], [14] and numerical
simulations [13], [4]. See Kapral and Showalter [11] for descriptions of recent work on
spiral waves and for additional references. In our discussion we focus on one particular
aspect of spiral wave theory—the observation by Barkley [3] that linear meandering of
the spiral tip is caused by Euclidean symmetry.

Planar spirals rigidly rotate and, as a result, the tip of the spiral traces out a circle in the
plane. Winfree [20] observed that under certain circumstances the tip of a spiral can me-
ander and create flower-like movements as in Figure 1. These motions are quasi-periodic
two-frequency motions, which can be thought of as an epicycle motion superimposed on
the basic spiral wave circle. When the motion on the epicycle is in the same orientation
as the motion on the circle (either clockwise or counterclockwise), then the petals of the
flowers point in; when the motions have the opposite orientation, the petals point out.
Winfree observed both types of quasi-periodic motions and the possibility of changing
the directions of the petals—which we call a change inpetality—as a system parameter
is varied.

The epicycle motion can be written as

q(t) = eiω1t (z1+ e−iω2t z2), (1.1)

wherez1 ∈ R and z2 ∈ C. In these coordinates the change in petality occurs when
ω1 = ω2. We note that in order to see well-defined petals the ratio of the amplitudes
|z2|/|z1| should be large. Nevertheless, these quasi-periodic states can be formed, as
Barkley et al. [4] observed in numerical simulations of a reaction-diffusion system,
through a Hopf bifurcation from the rotating spiral wave. That observation has been
confirmed in recent chemical wave experiments by Li et al. [14].

In the epicycle motion (1.1), Hopf bifurcation corresponds to the secondary amplitude
z2 = 0. From the standard bifurcation theory point of view, there is nothing significant
about Hopf bifurcation at this critical parameter value whereω1 = ω2. However, in
Barkley’s numerical simulation [1] and in experiments such as those by Li et al. [14]
another phenomenon is observed. As the change in petality is approached, the radius of
the second frequency|z2| grows unboundedly large. In particular, at the point of petality
change, the spiral tip appears to drift in a straight line off to infinity. See Figure 2.
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Fig. 2. Growth of flower near change in petality: path of
∫ t

0
q(s)ds, whereq(t) is as in (1.1) with

ω1 = 1, z1 = 1, z2 = 0.3, andω2 = 0.61, 0.85, 1, 1.11.

Thus, unboundedgrowthof the second frequency amplitude is a feature that seems to
be connected with change in petality.

As we mentioned, for changes in petality to be observed, the amplitude of the epicycle
should be large, while near Hopf bifurcation points, this same amplitude must be small.
This dichotomy suggests that standard Hopf bifurcation by itself cannot provide an
explanation for petality change and unbounded growth. However, Barkley [3] made the
keen observation that Euclidean symmetry coupled with Hopf bifurcation is behind the
unbounded growth that accompanies changes in petality. The basis of his argument turns
out, in retrospect, to be quite simple.

Suppose we consider a reaction-diffusion system on the unbounded plane. Such sys-
tems of equations have Euclidean symmetry. Suppose the system has a spiral wave
solution and that the time-periodic spiral wave undergoes a Hopf bifurcation to a quasi-
periodic motion. At the point of Hopf bifurcation, symmetry forces (at least) five eigen-
values of the linearized system to be on the imaginary axis—two generated from Hopf
bifurcation and three generated by Euclidean symmetry. Assuming that center manifold
ideas hold, the time evolution of the meandering spiral (and hence the time evolution
of the meandering spiral tip) is described by a five-dimensional Euclidean equivariant
system of ODEs. There are three variables of this system representing the Euclidean
group—the translation variablep ∈ R2 ∼= C and the rotation variableϕ ∈ S1—and the
variableq ∈ C representing the amplitude of the eigenfunction of Hopf bifurcation.
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In these variables Barkley [3] assumes that the translation symmetry acts by

Tx(p, ϕ,q) = (p+ x, ϕ,q).

It follows that the ODE vector field is independent ofp and that the(ϕ,q) equations
decouple; see Lemmas 3.5 and 4.1 in this paper. Suppose that a quasi-periodic solution
is found in the(ϕ,q) equations. Thenp is obtained by integration. To understand how
this integration causes unbounded growth inp, rewrite (1.1) as

q(t) = eiω1t z1+ ei (ω1−ω2)t z2.

Then, for some constantC ∈ R,

p(t) =
∫ t

0
q(τ )dτ =


1
i

(
z1
ω1

eiω1t + z2
ω1−ω2

ei (ω1−ω2)t
)
+ C, ω1 6= ω2,

z1
iω1

eiω1t + z2t + C, ω1 = ω2.

It follows that if z2 6= 0, then asω2 approachesω1 a resonant blow-up inp(t) occurs.
In particular, whenω2 − ω1 6= 0 is small the amplitude of the second term is large, the
motion of the second term is on a circle of large radius, and the motion ofp(t) is a small
perturbation of this circular motion. (The center of this circle is determined byC.) Thus,
this blow-up is the source of the unbounded growth of the second frequency mode and
occurs even when the magnitude ofz2 is small.

Barkley [2] performed a numerical linear stability analysis for the basic time-periodic
spiral wave solution and showed that there is a Hopf bifurcation. In particular, a simple
pair of eigenvalues was shown to cross the imaginary axis while three neutral eigenvalues
lie on the imaginary axis and the remainder of the spectrum is bounded into the left-half
plane. Starting from Barkley’s numerical calculation, Wulff [21], in a major mathematical
work on spirals, has given a rigorous proof that resonant unbounded growth occurs in
Hopf bifurcation near the codimension-two point whereω1 = ω2. Wulff approaches the
study of this Hopf bifurcation using Liapunov-Schmidt reduction. Her proof is nontrivial,
as there are technical difficulties, such as the nonsmoothness of the group action, which
must be overcome.

In this paper we suggest an alternative to the methods in [21], which we believe helps
in the understanding of the work of Barkley and Wulff. Our approach to bifurcations from
rotating waves in Euclidean equivariant differential equations extends Krupa’s ideas [12]
of bifurcation from relative equilibria. Krupa’s methods lead to the construction of and
reduction to a center bundle over the critical group orbit. We note that Biktashev et al. [5]
obtain a similar reduction for the case of one-armed spirals by considering an orbit space
reduction. For many-armed spirals, the center bundle reduction has the advantage of not
introducing singularities. Indeed, we obtain new results on bifurcation from many-armed
spirals.

The group orbit of the rotating spiral wave is three-dimensional and the center sub-
space corresponding to Hopf bifurcation is two-dimensional, thus leading to a five-
dimensional center bundle. With the construction of this bundle, we recover the action
of the Euclidean group in Barkley’s five-dimensional model. The general equivariant
vector field on the center bundle can then be analyzed.
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It is our contention that center bundle techniques simplify the understanding of more
complicated bifurcations from rotating waves. To illustrate this point, we discuss Hopf
bifurcation from rotating waves recovering the results of Wulff [21] in the case of one-
armed spirals and discovering new phenomena in the case of many-armed spirals. We
also discuss the codimension-two Takens-Bogdanov bifurcation from one-armed spiral
waves.

The center bundle reduction of Krupa [12] is formulated under the assumption that the
total group of symmetries iscompactand hence is not directly applicable to the problem
of meandering spirals. However, it turns out that the main requirement is compactness
of the isotropy subgroups of points on the critical group orbit. In the appendix, we
prove, under certain hypotheses, that Krupa’s theorems are valid even when the group
of symmetries is not compact and acts on an infinite-dimensional function space. In this
theorem, it suffices that the isotropy subgroups are either discrete or compact, which is
the case for spiral solutions since their isotropy subgroups are finite.

The hypotheses for the reduction described in the appendix are not satisfied in our
particular context of Euclidean symmetry due to the nonsmoothness of the group action.
Recent work of Sandstede et al. [17], [18] circumvents these hypotheses and enables the
center bundle reduction for meandering spirals to be carried out rigorously.

2. Center Bundles and Rotating Waves

We begin by describing the relevant results in Krupa [12] on center bundles. Let0 be a
compact Lie group acting orthogonally onRn, and let f : Rn → Rn be a0-equivariant
vector field. A group orbitX is arelative equilibriumif the flow of

ẋ = f (x) (2.1)

leavesX invariant. (Alternatively,X is a relative equilibrium iff is tangent toX along
X.) Note that rotating waves are relative equilibria as time evolution is the same as spatial
rotation.

Suppose that the group orbitX = 0x0 is a relative equilibrium, and let6 ⊂ 0 be the
isotropy subgroup ofx0. Let Tx0 X be the tangent space to the group orbit atx0, and note
thatTx0 X is6-invariant. Write

Rn = Tx0 X ⊕ Nx0,

whereNx0 is the orthogonal complement toTx0 X. We can form the normal bundleN(X)
over X by attachingγ Nx0 to the pointγ x0; sinceNx0 is 6-invariant this construction
makes sense and the bundle is0-invariant. This bundle gives a0-invariant tubular
neighborhood ofX in Rn.

Krupa then shows (see also Vanderbauwhede et al. [19]) thatf may be written as

f = fN + fT

on a neighborhood ofX where

• fN and fT are0-equivariant vector fields,
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• fN preserves normal fibersγ Nx0, and
• fT is tangent to group orbits; that is,fT (x) ∈ Tx0x.

It follows thatg = fN |Nx0 is a6-equivariant vector field. Moreover,g is “generic” in
the sense that any6-equivariant vector fieldg: Nx0→Nx0 extends, in a neighborhood
of X, to a0-equivariant vector fieldf : Rn→Rn.

If X is a relative equilibrium, theng(x0) = 0. The relative equilibriumX is acritical
group orbit if (dg)x0 has eigenvalues on the imaginary axis. (We note that(dg)x0 is
computable; see Proposition A.3 in the appendix.) LetVx0 be the center subspace of
(dg)x0. We callV = ∪{γVx0} thecenter bundle.

Next, Krupa shows that every solutionx(t) to the differential equation (2.1) nearX
can be written as

x(t) = γ (t)y(t), (2.2)

wherey(t) is a solution to the normal vector field equationẏ = g(y) andγ (t) ∈ 0 is a
smooth curve.

Suppose thatWx0 ⊂ Nx0 is a6-invariant center manifold forg. Based on (2.2), Krupa
observes thatW = ∪{γWx0} is a0-invariant flow-invariant center manifold forf in a
neighborhood of the critical group orbit. In particular, if the noncritical eigenvalues of
(dg)x0 all have negative real parts, thenW is attracting for the dynamics off . As is
usually the case with center manifolds, we can projectf |W onto the center bundleV .
Thus, we can understand bifurcations from critical group orbits by studying bifurcations
of the normal vector fieldg from equilibria.

To apply the center bundle reduction to the problem of meandering spirals, it is
necessary to generalize Krupa’s results from compact groups to noncompact groups and
from finite dimensions to infinite dimensions. We carry out this generalization, under
certain natural hypotheses, in the appendix. We note however that there are additional
technical problems coming from the action of the Euclidean group and it is necessary to
appeal to the recent results of [17], [18]. In the remainder of the main body of the paper,
we show how these ideas can be formally applied to bifurcations from spiral waves in
Euclidean equivariant systems.

3. Group Action on the Center Bundle

3.1. Trivialization of Center Bundles

We continue to use the notation from Section 2. In particular,x0 is a point with isotropy
6 and X = 0x0 is a critical relative equilibrium for the0-equivariant vector fieldf
on N(X). Recall that the action of0 on points(x, v) ∈ N(X) is given byγ (x, v) =
(γ x, γ v).

Define the6-equivariant vector fieldg: Nx0→Nx0 as in Section 2 and letV0 = Vx0

denote the6-invariant center subspace forg with corresponding0-invariant center
bundleV = ∪{γV0}. AlthoughN(X) is a trivial bundle, the subbundleV is not neces-
sarily trivial (see Remark 3.4). We now give a sufficient condition forV to be a trivial
bundle.
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Lemma 3.1. Suppose that the actionρ of6 on V0 extends to an actionρ of 0 on V0.
Then there is a trivialization

V ∼= X × V0.

The action of0 on V is given by

γ (x, v) = (γ x, ργ v),

whereγ ∈ 0, x ∈ X, v ∈ V0.

Proof. Let(x, w) ∈ V , sox ∈ X andw ∈ Vx whereVx is the fiber overx. Writex = δx0

whereδ ∈ 0 and observe thatVx = δV0. Henceδ−1w ∈ V0. Define the trivialization
h: V→X × V0 by

h(x, w) = (x, ρδ(δ−1w)).

To show thath is well-defined, suppose thatx = δ1x0 = δ2x0 whereδ1, δ2 ∈ 0. Then
δ−1

2 δ1 = σ ∈ 6. The assumption on the actionρ ensures thatρσv = σv for all v ∈ V0.
We compute that

ρδ2(δ
−1
2 w) = ρδ2ρσ (σ

−1δ−1
2 w) = ρδ2ρδ−1

2 δ1
(δ−1

1 δ2δ
−1
2 w) = ρδ1(δ

−1
1 w);

henceh is well-defined.
Next, we verify the action of0 on X × V0. In other words, we show thath is 0-

equivariant with respect to the actions onV and X × V0. Let (x, w) ∈ V as at the
beginning of the proof. Then

h(γ (x, w)) = h(γ x, γw) = (γ x, ργ δ((γ δ)
−1γw))

= (γ x, ργ ρδ(δ
−1w)) = γ (x, ρδ(δ−1w)) = γh(x, w),

as required.

The next corollary includes the case6 = 1 (one-armed spirals).

Corollary 3.2. Suppose that6 acts trivially on V0. Then V∼= X×V0 is a trivial bundle
and0 acts as(x, v)→(γ x, v).

Next, we prove a general result about Hopf bifurcation from a relative equilibrium
when0 = SO(2).

Proposition 3.3. Suppose that0 = SO(2) and that X= 0x0 is a relative equilibrium.
If X undergoes a Hopf bifurcation, then genericallydim V0 = 2 and the corresponding
center bundle V= X × V0 is a trivial bundle.

Proof. If 6 = SO(2), thenX is a point and the result is immediate. Hence, we may
suppose that6 = Z`, ` ≥ 1, with generatorσ = R2π /` ∈ SO(2). Each irreducible
representation of6 is one-dimensional (and absolutely irreducible) or two-dimensional
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(and nonabsolutely irreducible). It follows from general theory [8] that generically either
V0 is nonabsolutely irreducible orV0 is the sum of two isomorphic absolutely irreducible
representations. Either way, dimV0 = 2. Moreover,σ acts as an orientation-preserving
transformation onV0: σz = e2π im/`z for somem = 0, . . . , [`/2]. To apply Lemma 3.1,
takeρθz= eimθz, θ ∈ SO(2).

Remark 3.4. (a) We give a simple example of a bifurcation from a relative equilibrium
for which the center bundle is not a trivial bundle. Take0 = SO(2), 6 = Z2, V0

∼= R,
and suppose that6 acts nontrivially onV0. (In other words, we consider a symmetry-
breaking steady-state bifurcation in the normal vector field.) Then the center bundleV
is a Möbius band.

(b) By results of Fiedler et al. [6], the analysis that follows does not depend crucially
on whetherV is a trivial bundle.

3.2. The Center Bundle for Spirals

Now suppose that0 = SE(2), thespecial Euclidean groupconsisting of rotations and
translations. We suppose thatX = SE(2)x0 is a relative equilibrium wherex0 is an
`-armed spiral. In other words the isotropy subgroup6 ∼= Z`. As a manifoldSE(2) is
diffeomorphic toR2× S1. The assumptions on the symmetry ofx0 imply that

X = SE(2)x0
∼= SE(2)/Z` ∼= R2× (S1/Z`) ∼= C× S1;

that is,X is a cylinder with coordinates(p, ϕ).

Lemma 3.4. The action of(x, θ) ∈ SE(2) on (p, ϕ) ∈ X is

(x, θ)(p, ϕ) = (ei θ p+ x, ϕ + `θ). (3.1)

Proof. To verify (3.1), note that the action ofSE(2) on X is just induced by the action of
group multiplication inSE(2). Group multiplication inSE(2) is most easily understood
through the action ofSE(2) onR2 = C. Letw ∈ C; then

(x, θ)w = ei θw + x.

It follows that

(x, θ)(y, ψ)w = (x, θ)(eiψw + y) = ei θ (eiψw + y)+ x = ei (θ+ψ)w + (ei θ y+ x).

Hence, the group multiplication onSE(2) induced by its action onC is

(x, θ)(y, ψ) = (ei θ y+ x, ψ + θ).

Substituting(p, ϕ) for (y, ψ) gives the action ofSE(2) on X when` = 1. For general
`, the angleθ acts onC as in thè = 1 case, butθ acts onS1/Z` as aǹ -fold covering.
That is, we must add̀θ to ϕ.
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Lemma 3.5. Hopf bifurcation from aǹ -armed spiral reduces generically to Hopf bi-
furcation of a five dimensional vector field on a trivial center bundle

V = X × V0

that is equivariant under the action,

Tx(p, ϕ,q) = (p+ x, ϕ,q),

Rθ (p, ϕ,q) = (ei θ p, ϕ + `θ, emiθq),
(3.2)

where0≤ m≤ [`/2].

Proof. Whether or notV is a trivial bundle is independent of theC factor in X. Hence,
it follows from Proposition 3.3 thatV is a trivial bundle. The action ofSE(2) on theX
coordinates follows from (3.1). The action on theV coordinates follows from Lemma 3.1
and the proof of Proposition 3.3.

4. Meandering and Resonant Growth of a One-Armed Spiral

In this section, we analyze Hopf bifurcation from a one-armed spiral. In Subsection 4.1,
we write down the general equivariant vector field on the center bundle. In Subsection 4.2,
we solve these equations and obtain the conditions for resonant growth. Finally, in
Subsection 4.3, we interpret these results in the context of Hopf bifurcation in a partial
differential equation, recovering the results of Barkley and Wulff on the meandering and
resonant growth of spirals.

4.1. Equivariant Vector Fields on the Center Bundle

For a one-armed spiral, we have` = 1, m= 0 in Lemma 3.5.

Lemma 4.1. Let F be a system of differential equations on the center bundle V that is
SE(2)-equivariant with respect to thè= 1, m= 0 action. Then F has the form

(a) ṗ = eiϕ f (q),

(b) ϕ̇ = Fϕ(q),

(c) q̇ = Fq(q).

(4.1)

Proof. Symmetry invariance of a system of differential equations means that solutions
are transformed to solutions by that symmetry. Thus, translation invariance implies that
if

z(t) = (p(t), ϕ(t),q(t))
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is a solution to (4.1), then so is

y(t) = (p(t)+ x, ϕ(t),q(t))

for anyx ∈ C. Sinceż(t) = ẏ(t), it follows that

F(z(t)) = F(y(t)),

for all solutionsz(t). In particular,

F(p+ x, ϕ,q) = F(p, ϕ,q),

for all x. HenceF is independent ofp and the differential equations have the form

ṗ = F p(ϕ,q),

ϕ̇ = Fϕ(ϕ,q),

q̇ = Fq(ϕ,q).

(4.2)

Similarly, the rotational invariance of (4.2) implies that

F p(ϕ + θ,q) = ei θ F p(ϕ,q),

Fϕ(ϕ + θ,q) = Fϕ(ϕ,q),

Fq(ϕ + θ,q) = Fq(ϕ,q).

Thus,Fϕ andFq are independent ofϕ, which verifies (4.1)(b,c).
To complete this proof we must verify (4.1)(a). Define

H(ϕ,q) = e−iϕF p(ϕ,q),

and note that

H(ϕ + θ,q) = e−i (ϕ+θ)F p(ϕ + θ,q) = e−iϕe−i θei θ F p(ϕ,q) = H(ϕ,q).

It follows that H(ϕ,q) = f (q) is independent ofϕ and that (4.1)(a) is valid.

4.2. Periodic Solutions and Resonant Growth

Suppose thatq(t) is a 2π /ω2 periodic solution to

q̇ = Fq(q)

in the center bundle equations (4.1). We defineω1 = Fϕ(q(0)). (These frequencies are
related to, but not identical to, the frequenciesω1 andω2 that appear in the introduction,
see equation (4.7).)

We can solve

ϕ̇ = Fϕ(q(t))
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for ϕ(t) and

ṗ = eiϕ(t) f (q(t))

for p(t) to obtain a solution(p(t), ϕ(t),q(t)) to (4.1). In the next theorem we recover
the resonance conditions of Barkley and Wulff for these solutions.

Theorem 4.2. Let (p(t), ϕ(t),q(t)) be a solution to (4.1). Then

ϕ(t) = ω1t + ϕ̃(t), (4.3)

whereϕ̃(t) is 2π /ω2 periodic. If

ω1+ kω2 = 0

for some integer k, then generically p(t) undergoes unbounded resonant growth.

Proof. The functionFϕ(q(t)) is 2π /ω2 periodic sinceq(t) is. Therefore, we can write
Fϕ(q(t)) as a Fourier series int obtaining

ϕ̇ =
∞∑

n=−∞
Bneinω2t ,

whereBn ∈ C and B−n = Bn. Every term exceptn = 0 in the Fourier series yields a
periodic function on integration and henceϕ(t) has the form in (4.3) whereω1 = B0 =
Fϕ(q(0)).

Next, consider the differential equation

ṗ = eiϕ(t) f (q(t)) = eiω1t H(t), (4.4)

whereH(t) is smooth and 2π /ω2 periodic. We may writeH(t) as the uniformly conver-
gent Fourier series

H(t) =
∞∑

n=−∞
Dneinω2t ,

whereDn ∈ C.
Suppose thatω1+ kω2 is close to zero for some nonzero integerk. Then integration

of (4.4) yields

p(t) =
Dkt + P(t)eiω1t , ω1+ kω2 = 0,

Dk
i (ω1+kω2)

ei (ω1+kω2)t + P(t)eiω1t , ω1+ kω2 6= 0,

whereP(t) is a smooth bounded 2π /ω2 periodic function. Generically,Dk 6= 0. Hence,
by varyingω2 so thatω1+ kω2 goes through zero, the first summand inp(t) undergoes
unbounded resonant growth, whileP(t) remains uniformly bounded for these values
of ω2.
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4.3. Hopf Bifurcation from a One-Armed Spiral

LetH be a space of functions with domainR2 on which the Euclidean groupE(2) acts
as

γu(z) = u(γ−1z),

whereu ∈ H andγ ∈ E(2). Consider a partial differential equation

ut = F(u, λ), (4.5)

whereF : H 7→ H is E(2)-equivariant andλ is a real bifurcation parameter. LetRθ
denote rotation of the plane through angleθ . Suppose that

u(t) = Rω1t x0 (4.6)

is a rotating wave solution to (4.5) with period 2π /ω1.
Let X = SE(2)x0 be the connected component of the group orbit ofu(t) in phase space

under the action ofE(2). As noted by Rand [15], Renardy [16], and others, it is possible to
study bifurcation from rotating waves by transferring the problem to the rotating frame.
Substituting (4.6) into (4.5) yields thatx0 is an equilibrium for the equation

ut = F̃(u, λ) = F(u, λ)− ω1ξu,

where

ξu = d

dt
Rtu

∣∣∣∣
t=0

.

The operator(dF̃)x0,λ has three eigenvalues on the imaginary axis corresponding to the
continuous group orbitSE(2). Barkley [2] showed numerically that the rotating wave
u(t) could undergo a Hopf bifurcation as an additional simple pair of eigenvalues cross
the imaginary axis. We suppose that this bifurcation occurs atλ = 0. LetV0

∼= C be the
corresponding center subspace.

Theorem 4.3([17], [18]). There exists a reduction of (4.5) to the center bundle V=
X × V0. The reduced equations have the form

ẏ = F(y, λ),

where y= (p, ϕ,q) ∈ V and F has the form in equations (4.1).

It follows from the reduction procedure that

Fϕ(0, 0) = ω1, Fq(0, 0) = 0, and f (0, 0) = 0.

Note that in equation (4.1), the original rotating wave solution corresponds to the equi-
librium q = 0. Also, the critical eigenvalues generically cross the imaginary axis trans-
versely on variation ofλ. Consequently, the vector fieldFq(q, λ) on V0 satisfies

dq Fq(0, 0) = iω2 and Redq Fq
λ (0, 0) 6= 0.
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Thus, there is a Hopf bifurcation in thėq equation of (4.1) to an approximately 2π /ω2

periodic solutionq(t). We suppose that the Hopf bifurcation is supercritical.
The amplitude and frequency of the periodic solutionq(t, λ) vary as functions ofλ.

To leading order, the amplitude varies asa
√
λ and the frequency varies asω2+bλwhere

a andb are real coefficients. We setω1(λ) = Fϕ(q(0, λ)) and defineω2(λ) to be the
frequency ofq(t, λ). Thus

ω1(λ) = ω1+O(
√
λ), ω2(λ) = ω2+O(λ). (4.7)

Note thatωj (0) coincides withωj as defined in this subsection and in the introduction
for each j = 1, 2. On the other hand, theωj ’s in Subsection 4.2 correspond toωj (λ)

evaluated at a specific value ofλ.
It follows from Theorem 4.2 that linear meandering occurs atλ = λ0 if

ω1(λ0)+ kω2(λ0) = 0,

for some integerk. We call this resonance ak-resonance. In particular, resonant growth
occurs whenω1(0)+kω2(0) is close to zero for some integerk. We can expect unbounded
growth in p(t) asλ approaches the resonance point, and linear drifting inp(t) at the
resonance point. However, by inspection of pictures, only whenk = ±1 or k = ±2 do
the concepts of petality and changes in petality appear to be relevant.

Visualization of Hopf Bifurcation from a One-Armed Spiral. To illustrate resonance
and petality issues, we have numerically integrated equations (4.1). Specifically, we
consider the equations

ṗ = eiϕ(0.2− 0.6i )q,

ϕ̇ = 1,

q̇ = (λ− 0.95i )q − (1− 0.1i )q|q|2.
(4.8)

Figure 3 shows plots of( f1, f2) for six values ofλ, where

f1 = cosϕ(t)+ Re p(t) and f2 = sinϕ(t)+ Im p(t).

These coordinates approximate the movements of the spiral tip in the lab frame. Theq̇
equation in (4.8) undergoes a supercritical Hopf bifurcation atλ = 0, and the frequency
of the corresponding periodic solution isω2(λ) = −0.95−0.1λ. Sinceω1(λ) ≡ 1, there
is a resonance atλ = 0.5.

As previously mentioned, in order to see well-defined petals in the simple epicycle
motion described by (1.1), the amplitude of the second frequency must be larger than
the amplitude of the primary frequency. That is, in order to see well-defined petals, we
must have

|z2|
|z1| > M, (4.9)
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Fig. 3.Numerical simulation of (4.8) forλ = 0.1, 0.3, 0.4, 0.5, 0.6, and 0.8.

for some real positive numberM . Suppose that the secondary motion arises via a Hopf
bifurcation and that|z1| ≈ 1. Then near a point ofk-resonance, we have

|z2|
|z1| ≈

√
λ|Dk|

ω1

(
1+ kω2

ω1

) ,
whereDk is a Fourier coefficient and we have suppressed the dependence ofω1, ω2 on
λ. Thus, if we defineτ = ω2/ω1, then (4.9) becomes

λ >
M2ω2

1

|Dk|2 (1+ kτ)2. (4.10)

This defines a sequence of “resonance tongues” in theτλ plane in which changes of
petality can be observed in addition to unbounded growth of the flower near the resonance.
See Figure 4. Since limk→∞ |Dk| = 0, the tongues eventually narrow ask→∞.

If the point (τ, λ) is in exactly one tongue (as is the point labeled A in Figure 4),
then an epicycle motion with well-defined petals will be observed. A change in petality
occurs as the resonance is crossed. If the point is in a tongue corresponding to ak
resonance, then each petal will be (approximately) traced outk times before a new petal
is formed. However, in the case where the point is in more than one tongue (as is point B
in Figure 4), then the motion involves multiple harmonics and petality is an ill-defined
concept for these points. However, we will still observe unbounded growth of the flower
as the resonance is crossed.
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Fig. 4.Resonance tongues described by (4.10).

5. Hopf Bifurcation from `-Armed Spirals

In this section we discuss Hopf bifurcation from̀-armed spirals wherè> 1. Suppose
that an`-armed spiral wave undergoes a simple Hopf bifurcation with frequencyω2.
Let V0 be the center subspace of the bifurcation in the normal directions toX at x0. The
SE(2) action is given as in (3.2):

(p, ϕ,q) 7→ (ei θ p+ x, ϕ + `θ, eimθq),

for somem= 0, . . . , [`/2].
The isotropy subgroup inSE(2) of the`-armed spiral isZ`. Note that the action of

Z` on V0 is faithful (in other words, the kernel of the action is trivial) precisely when`

andm are coprime. For example, if the eigenfunction associated with Hopf bifurcation
from a two-armed spiral (̀= 2) is invariant under rotation byπ , thenm= 0, and` and
m are not coprime.

For all` andm, the solutions arising from Hopf bifurcation are quasi-periodic. How-
ever, there are differences in the resulting motions in physical space depending on whether
` andm are coprime. In particular,

• When` andm are not coprime, the spiral tip does not meander and the codimension-
two bifurcation to resonant growth does not occur. What does occur is that (approxi-
mately) the spiral rigidly rotates at a rate that depends quasi-periodically on time.
• When` andmare coprime, Hopf bifurcation leads to meandering and to codimension-

two resonant growth. The points where resonance occurs depend on both` andm.

In the remainder of this section, we give the precise statements and proofs of these results.

5.1. Hopf Bifurcations without Meandering

First, we analyze the equations on the center bundle when` andm are not coprime. We
prove:
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Theorem 5.1. Let F be anSE(2)-equivariant system of differential equations on the
center bundle V corresponding to an`-armed spiral wherè > 1. If ` and m are not
coprime, then Fp = 0 and p(t) is constant. In particular, there is no resonant growth.

Moreover, the spiral in the physical plane does not meander. Rather, the motion is a
rigid rotation by Rϕ(t), whereϕ(t) is quasi-periodic in t.

Proof. As in the proof of Lemma 4.1, the action of translations onV implies thatF is
independent ofp. The main difference comes in the equation

ṗ = F p(ϕ,q).

Here the action of rotations implies that

ei θ F p(ϕ,q) = F p(ϕ + `θ, emiθq), (5.1)

for all θ . Since` andm are not coprime there is an integerj ≥ 2 such that̀ = j `′ and
m= jm′. Settingθ = 2π / j in (5.1) yields

e2π i / j F p(ϕ,q) = F p(ϕ + 2`′π, e2m′π i q) = F p(ϕ,q).

Sincej > 1 it follows thatF p = 0. In particular,p(t) is constant and there is no resonant
growth and no meandering.

The remaining components of the system on the five-dimensional center bundle have
the form

ϕ̇ = Fϕ(ϕ,q),

q̇ = Fq(ϕ,q).

This can be viewed as anSO(2)-equivariant system on the three-dimensional center
bundleSO(2)x0 × V0. In these equations we have a Hopf bifurcation in the normal (q)
directions leading to a periodic solution, and there is drift along theSO(2) group orbit
leading to a quasi-periodicϕ(t)—just as in the case of one-armed spirals.

The interpretation ofϕ(t) in physical space is that the plane is rigidly rotating byRϕ(t).
(In the case of one-armed spirals, the plane also translates sincep(t) is not constant.) In
the corresponding quasi-periodically varying rotating frame, the spiral is approximately
stationary. In fact, this spiral also varies quasi-periodically (as a function ofq(t)), but
close to the point of Hopf bifurcation, this fluctuation is negligible.

Remark. There is an alternative abstract explanation of the failure of the spiral tip to
meander or undergo resonant growth when`andmare not coprime, based on ideas in [7],
[12]. Since the kernel of the action ofZ` on V0 is nontrivial, the bifurcating periodic
solutions are fixed pointwise by the kernelZk of the action. (Herek divides` andk > 1
by assumption.) Hence the bifurcation takes place in the fixed-point subspace Fix(Zk).
As usual, this is a flow-invariant subspace for the underlyingSE(2)-equivariant vector
field. Moreover, the largest subgroup ofSE(2) that preserves Fix(Zk) is the normalizer
SO(2) of Zk. Hence the flow on Fix(Zk) is anSO(2)-equivariant flow and all drifts take
place insideSO(2). In particular, the translation coordinate on the center bundle remains
constant.
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5.2. Hopf Bifurcations with Meandering

Now assume that̀andm are coprime. As usual, letω1 denote the frequency of the basic
`-armed spiral solution and letω2 be the frequency coming from Hopf bifurcation. Our
main result is that the conditions for resonant growth depend on both` andm in the
following manner.

Theorem 5.2. Assume that̀ and m are coprime and let m0 be the smallest positive
integer such that

mm0 ≡ 1 (mod`).

Then codimension-two resonant growth occurs when

ω2 ∼ 1

`

(
m− 1

j `+m0

)
ω1, (5.2)

where j is an integer.

For example, wheǹ = 2 andm= 1, the resonance condition becomes

ω2 ∼ j

2 j + 1
ω1,

where j is an integer.
The proof of Theorem 5.2 is organized as follows.

• First, we calculate the equivariant vector field on the center bundle. To make the anal-
ysis of this vector field tractable, we consider a pull-back to a vector field on the group.
This step is a special case of the more general approach of Fiedler et al. [6]. Indeed,
we wish to thank B. Fiedler for showing us that certain computational difficulties can
be circumvented by pulling the differential equation from the center bundle over the
group orbit back to a differential equation on a bundle over the group itself.
• Second, we compute necessary and sufficient conditions for resonant growth in the

pull-back equations.
• Finally, we reinterpret these results for the original vector field on the center bundle.

The action ofSE(2) on the center bundleV is given in Lemma 3.5. Unlike thè= 1
case, thėϕ andq̇ equations depend onϕ. In fact, the generalSE(2)-equivariant system
of differential equations onV when` > 1 has the form

ṗ = F p(ϕ,q),

ϕ̇ = Fϕ(ϕ,q),

q̇ = Fq(ϕ,q),

(5.3)

where

F p(ϕ + `θ, emiθq) = ei θ F p(ϕ,q),

Fϕ(ϕ + `θ, emiθq) = Fϕ(ϕ,q),

Fq(ϕ + `θ, emiθq) = emiθ Fq(ϕ,q).

(5.4)



574 M. Golubitsky, V. G. LeBlanc, and I. Melbourne

The techniques which were used in the` = 1 case to study resonances will not work
for equations (5.3) because of the dependence of the equations onϕ. To circumvent this
difficulty, define the local diffeomorphism

ρ: SE(2)× V0 −→ V,

ρ(y, ψ, v) = (y, `ψ,emiψv),

where 0≤ ψ < 2π . Define an action ofSE(2) on the bundleSE(2)× V0 by

(x, θ)(y, ψ, v) = (ei θ y+ x, ψ + θ, v), (x, θ) ∈ SE(2). (5.5)

With this action,ρ is SE(2) equivariant. To verify this point, calculate

ρ((x, θ)(y, ψ, v)) = ρ(ei θ y+ x, ψ + θ, v) = (ei θ y+ x, `(ψ + θ), emi(ψ+θ)v),

and, using (3.2), calculate

(x, θ)ρ(y, ψ, v) = (x, θ)(y, `ψ,emiψv) = (ei θ y+ x, `ψ + `θ, emiθemiψv).

Usingρ, the differential equation (5.3) pulls back to a differential equation onSE(2)×
V0 that is equivariant under the action (5.5) ofSE(2). Since this action is identical to
the` = 1, m = 0 action encountered in Section 4, it follows from Lemma 4.1 that the
pull-back has the form

ẏ = eiψg(v),

ψ̇ = Gψ(v),

v̇ = Gv(v).

(5.6)

Proposition 5.3. The pull-back equations on the group are related to the original equa-
tions on the group orbit as follows:

g(v) = F p(0, v),

Gψ(v) = 1
`
Fϕ(0, v),

Gv(v) = Fq(0, v)− mi
`
vFϕ(0, v).

Proof. The function(y(t), ψ(t), v(t)) is a solution to the pull-back differential equation
(5.6) if and only ifρ(y(t), ψ(t), v(t)) = (y(t), `ψ(t), emiψ(t)v(t)) is a solution to (5.3).
Thus, differentiation leads to

ẏ = F p(`ψ, emiψv),

`ψ̇ = Fϕ(`ψ, emiψv),

miemiψvψ̇ + emiψ v̇ = Fq(`ψ, emiψv).
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Comparing they-component with they-component in (5.6), we have

e−iψF p(`ψ, emiψv) = g(v),

independent ofψ . Settingψ = 0 yields the relationg(v) = F p(0, v). The remaining
relations are verified similarly.

Not every system of equations of the form (5.6) arises as the pull-back of a system (5.3)
on the center bundle: The pull-back equations are additionally equivariant with respect
to an action of the isotropy subgroupZ`. It follows from the following lemma that the
full group of symmetries of the pull-back equations is a semidirect product ofSE(2)
andZ`.

Lemma 5.4. The pull-back equations are equivariant under the action (5.5) ofSE(2)
and under the following action ofZ`:

(y, ψ, v) 7→ (e2π i /`y, ψ,e2π im/`v). (5.7)

There are no further restrictions on the pull-back equations.

Proof. We have already established that the pull-back equations areSE(2)-equivariant
under the action (5.5) and hence have the form (5.6). Next, we verify theZ`-equivariance
for theGv-component,

Gv(v) = Fq(0, v)− mi
`
vFϕ(0, v) = Fq(2π, v)− mi

`
vFϕ(2π, v)

= e−2πmi/`Fq(0, e2πmi/`v)− mi
`
vFϕ(0, e2πmi/`v) (by (5.4))

= e−2πmi/`Gv(e2πmi/`v).

The verification of (5.7) for the remaining components is similar.
Conversely, suppose that we are given a system of equations onSE(2) × V0 that

is equivariant under the actions (5.5), (5.7). BySE(2)-equivariance, we can write the
equations in the form (5.6) whereg, Gψ , Gv depend onv. Define

F p(ϕ,q) = eiϕ/`g(e−imϕ/`q),

Fϕ(ϕ,q) = `Gψ(e−imϕ/`q),

Fq(ϕ,q) = eimϕ/`Gv(e−imϕ/`v)+mivGψ(e−inϕ/`v).

(5.8)

Then the system onSE(2) × V0 is the pull-back of the system defined by (5.8). It
remains to show that (5.8) is well-defined and equivariant under the action (3.2). Again
concentrating on the third component, note thatFq is well-defined if and only if

Fq(ϕ + 2π,q) = Fq(ϕ,q).

But this equality follows from theZ` equivariance ofGψ andGv. Similarly, it is easily
checked from definition (5.8) thatFq satisfies the requiredSE(2)-equivariance condi-
tion.
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This completes the first stage of the proof of Theorem 5.2. Next, we analyze the
pull-back equations, emulating Theorem 4.2. Letv(t) be a 2π /ω̃2 periodic solution to
v̇ = Gv(v). We suppose that this periodic solution is a result of Hopf bifurcation in the
v̇ equation. Definẽω1 = Gψ(v(0)). As in Subsection 4.2, we solvėψ = Gψ(v(t)) for
ψ(t) and ẏ = eiψ(t)g(v(t)) for y(t) to obtain a solution(y(t), ψ(t), v(t)).

Theorem 5.5. Let(y(t), ψ(t), v(t)) be the solution constructed above for the pull-back
equations (5.6). Generically, y(t) undergoes unbounded resonant growth if and only if

ω̃1+ kω̃2 = 0, (5.9)

for some integer k satisfying

km≡ 1 (mod `). (5.10)

Proof. The condition (5.9) is immediate from Theorem 4.2. We show that the additional
condition (5.10) is a consequence of theZ`-equivariance (5.7) and, furthermore, that these
are the only restrictions onk.

Since` andm are coprime,Z`-equivariance is equivalent to the conditions

(a) g(e2πmi/`v) = e2π i /`g(v),

(b) Gψ(e2π i /`v) = Gψ(v),

(c) Gv(e2π i /`v) = e2π i /`Gv(v).

(5.11)

It follows from (5.11)(c) and the uniqueness of periodic solutions in (generic) Hopf
bifurcation that the periodic solution to thev̇ equation satisfies

v

(
t + 2π

`w̃2

)
= e2π i /`v(t). (5.12)

This observation is a special case of the spatio-temporal symmetries of symmetric Hopf
bifurcation discussed in [8].

It follows from (5.12) and (5.11)(b) that solutions to theψ̇ equation have the form

ψ(t) = ω̃1t + ψ̃(t),

whereψ̃ is
2π

`w̃2
periodic. Finally, using (5.11)(a), we can rewrite theẏ equation as

ẏ = ei w̃1t h(t),

whereh is 2π /w̃2 periodic and

h

(
t + 2mπ

`ω̃2

)
= e2π i /`h(t). (5.13)

Write h as a Fourier series

h(t) =
∑

k

hkeikω̃2t .
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It follows from (5.13) thathk = 0 unlessk satisfies condition (5.10). In particular, these
are the only values ofk for which the resonance (5.9) is possible.

Finally, we write down pull-back equations that exhibit the required resonances. Set
Gψ(v) = ω̃1 andGv(v) = i ω̃2v. These functions clearly satisfy conditions (5.11)(b,c)
and yield a 2π /ω̃2 periodic solutionv(t). The functiong(v) = vk satisfies condi-
tions (5.11)(a) providedk satisfies condition (5.10) and yields those resonances (5.9)
for whichk ≥ 0. To obtain the remaining resonances, considerg(v) = vk.

The third stage of the proof of Theorem 5.2 is to relate the frequenciesω̃j in the
pull-back equations with the frequenciesωj in the original equations on the center
bundle. Recall that the periodic solutions in thev̇ equations arise via Hopf bifurcation
and hence the frequenciesω̃j (λ) vary smoothly with the bifurcation parameterλ. As in
Subsection 4.3, we redefineω̃j = ω̃j (0). Then Theorem 5.5 implies that resonant growth
occurs when

ω̃2 ∼ −1

k
ω̃1, (5.14)

for some integerk satisfying condition (5.10).
It follows from Proposition 5.3 that the frequenciesω̃j andωj are related as follows:

ω̃1 = Gψ(0) = 1

`
Fϕ(0, 0) = 1

`
ω1,

and

i ω̃2 = (dGv)0 = (dq Fq)0,0− mi

`
Fϕ(0, 0) = iω2− mi

`
ω1.

Substituting these expressions into condition (5.14) yields the resonance criterion

ω2 ∼ km− 1

`k
ω1, (5.15)

wherek satisfies (5.10).
Finally, we observe that equation (5.10) always has solutions for` andm coprime.

If we let m0 be the smallest positive integerk satisfying (5.10), then, sincèandm are
coprime, all solutions to (5.10) have the formk = j ` + m0 for some integerj . This
completes the proof of Theorem 5.2.

6. Takens-Bogdanov Bifurcation

As mentioned previously, our approach can be applied to study other bifurcations from
spiral waves. To illustrate this point, we consider two other bifurcations from one-armed
spirals: steady-state bifurcation and the codimension-two Takens-Bogdanov bifurcation.
By Corollary 3.2, the associated center bundle will be a trivial bundle (this is not neces-
sarily the case for these bifurcations from a many-armed spiral).

Steady-state bifurcation leads to a saddle-node (or limit point) bifurcation of rotating
wave spiral solutions with frequency close toω1. We omit the details and pass to the
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more interesting Takens-Bogdanov bifurcation. In this case, the operator(dF̃)x0,0 in
Subsection 4.3 has a nonsemisimple double zero eigenvalue and the corresponding center
subspaceV0 is identified withR2. Let q = (x, y) ∈ R2 = V0. In normal form, theq̇
equation in (4.1) can be written as

ẋ = y,

ẏ = µ1+ µ2y+ x2+ bxy,
(6.1)

whereµ1 andµ2 are unfolding parameters andb = ±1 (cf. [9]). We consider the case
b = −1, since it leads to stable limit cycles in (6.1).

A schematic of the phase portraits corresponding to regions in the unfolding space
is given in Figure 5. Of particular interest is region A which is bounded by a curve of
Hopf bifurcations and a curve of homoclinic bifurcations. Consider a pathP1 through
this region. AsP1 crosses into region A, there is a Hopf bifurcation from one of the
equilibria. The resulting periodic solution of (6.1) generates quasi-periodic motion for
the full system (4.1). As the homoclinic bifurcation curve is approached, the period of the
periodic solution gets larger and tends to infinity (that is, its frequency gets smaller and
tends to zero). HenceP1 crosses an infinite number of resonance points. Consequently,
in parameter space,p(t) will experience unbounded growth for an infinite number of
parameter values alongP1. However, as mentioned in the previous section, only the first
one or two resonances should exhibit a well-defined change in petality in addition to
unbounded growth.

Finally, consider a pathP2 through the saddle-node varietyµ1 = 0. The interpretation
of this bifurcation is the following. In region B, a spiral wave is observed. AsP2 crosses
into region C, the spiral wave disappears and the dynamics enters a part of phase space
not modeled by the center manifold equations.

A. Appendix

In recent work, Sandstede et al. [17], [18] have generalized the center bundle construction
of Krupa [12], described in Section 2, from compact groups to noncompact groups and
from finite dimensions to infinite dimensions. In particular, they prove Conjecture 4.3
and provide a rigorous justification of the techniques in this paper. A major technical
difficulty overcome in the work of [21], [17], [18] is the lack of smoothness of the action
of SE(2) on functionsu: R2→R.

Independently, we have obtained a simplified reduction under the assumption (S1)—
see below—that the action of the Lie algebra of the group is “smoother” than the lin-
earized vector field defining the dynamical system. This assumption fails for actions of
SE(2) but is satisfied in many important cases. Examples include the groupSO(2) acting
on L2(Ä) for a circular bounded domainÄ, and the noncompact group of translations
T(2) ∼= R2 inside ofSE(2) acting onL2(R2); see Example A.1. Hence our reduction,
which is presented in this appendix, can be viewed as a rigorous and nontrivial exten-
sion of the methods of [12]. At the same time, our reduction hints at the full picture for
noncompact group actions without addressing the technical difficulties resolved by [21],
[17], [18].



Meandering of the Spiral Tip: An Alternative Approach 579

m
1

P1

P2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

 y

 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

 x

 y

 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

 x

 y

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

 y

 

m
2

D

C

B

Hopf

A
Homoclinic

Fig. 5.Unfolding of Takens-Bogdanov singularity in (6.1).

Under assumption (S1), we obtain the required decompositionf = fN+ fT into nor-
mal and tangent vector fields and we obtain the factorization (2.2) into normal dynamics
coupled with drift along group orbits. To obtain a smooth center bundle, it is necessary
that the critical eigenfunctions for the normal vector field are acted upon smoothly by the
group; see assumption (S2). (It turns out that assumption (S2) is automatically satisfied
for reaction-diffusion equations; see Sandstede et al. [17], [18].)

Throughout the appendix, smooth meansCk for k sufficiently large. We do not re-
quire that the group acts smoothly (or even continuously) on the whole of the infinite-
dimensional space.

A.1. The Generalized Center Bundle Reduction

Let 0 be a finite-dimensional Lie group (not necessarily compact) acting by unitary
transformations on a Hilbert spaceH. Let x0 ∈ H. We assume that the group orbit
X = 0x0 is a smoothly embedded submanifold ofH. Let π : N(X)→X denote the
normal bundle inH, with fibersNx = (Tx X)⊥. Write points inN(X) as(x, v), where
x ∈ X andv ∈ Nx. The mapβ: N(X)→H, β(x, v) = x+ v is a local diffeomorphism.

Since the action of0 is unitary,N(X) is invariant under the action(x, v)→(γ x, γ v)
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andβ: N(X)→H is0-equivariant. Sinceβ is one-to-one on the homogeneous spaceX,
it follows thatβ restricts to a diffeomorphism on some0-invariant neighborhood ofX.

The dynamical system.We suppose thatf : H→H is a0-equivariant “infinite-dimen-
sional vector field” onH (a nonlinear partial differential operator, say). Suppose that
f satisfies the usual technical conditions so as to generate a smooth local semiflow on
H. That is, f = A + N where the linearityA is sectorial and the nonlinearityN is
sufficiently smooth on the domainHα of a fractional powerAα of A for someα ∈ [0, 1);
see Henry [10] for the precise definitions. We note thatHα is a dense and0-invariant
subspace ofH. The graph norm‖u‖α = ‖u‖ + ‖Aαu‖ makesHα into a Hilbert space
and f is smooth when regarded as an operatorf : Hα→H.

We suppose from now on thatα has been chosen with these properties. Roughly
speaking,α quantifies the “semilinearity” off where the nonlinearityN is strictly
smoother thanA (soα is required to be strictly less than 1).

The Lie algebra. The Lie algebraL(0) consists of linear operatorsξ : H→H defined
by ξu = d

dtγt u|t=0 whereγt ∈ 0 is a curve at the identity. Typically, the operatorsξ are
unbounded and hence are not defined on the whole ofH. We letH̃ denote the common
domain of the elements ofL(0) and note that̃H is 0-invariant. It follows from our
assumption onX that X ⊂ H̃.

Recall thatα ∈ [0, 1) is chosen so thatf : Hα→H is smooth. It is natural to make
the simplifying assumption,

(S1) Hα ⊂ H̃.

In particular, each infinitesimal generatorξ ∈ L(0) is bounded as an operatorξ : Hα→H.
(Roughly speaking, the Lie algebra elements are strictly smoother than the linear vector
field A.)

Under assumption (S1), we obtain a complete generalization of the results in [12].
Theorems A.2 and A.5 correspond to [12, Theorems 2.1 and 2.2].

Example A.1. Suppose thatH = L2(R2) consists of functionsu: R2→R and that the
group0 = SE(2) acts byu(x) 7→ u(γ−1x). A calculation shows thatL(SE(2)) is
generated by

ξ1u = ∂u

∂x1
, ξ2u = ∂u

∂x2
, ξ3u = x1

∂u

∂x2
− x2

∂u

∂x1
.

Suppose that the linear partA of the evolution operatorf is the LaplacianA = 1. The
generatorsξ1, ξ2 corresponding to translation have fewer derivatives thanA and are rela-
tively bounded with respect toA. In particular, we can chooseα ∈ [1/2, 1) in assumption
(S1). However, the generatorξ3 corresponding to rotation includes multiplication by the
unbounded functionsx1 andx2, and hence violates assumption (S1) for allα.

Note that the group of translationsT(2) ∼= R2 satisfies assumption (S1). In addition,
the rotation groupSO(2) satisfies (S1) provided we restrict toL2(Ä) for Ä a bounded
circularly symmetric subset ofR2.
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In the remainder of this subsection we suppose thatx0 has discrete isotropy subgroup
6. (This assumption is relaxed in Subsection A.2 below.)

Theorem A.2. Suppose that assumption (S1) is valid. Suppose further that X= 0x0

is a submanifold ofH and that the isotropy subgroup6 of x0 is discrete. There is a
0-invariant neighborhood U of X= 0x0 in DA and smooth0-equivariant nonlinear
operators fN, fT : U→H such that

(i) f |U = fN + fT ,
(ii) f N(u) ∈ Nπ(u) for all u ∈ U, and
(iii) f T (u) ∈ Tu0u.

Proof. For u ∈ X we trivially haveH = Nπ(u) ⊕ Tu0u. Observe that this splitting
remains valid foru close toX in the graph norm sinceTu0u = L(0)u varies smoothly
with respect to this norm. Now definefN(u) and fT (u) by projecting f (u) onto Nπ(u)
andTu0u, respectively. Again, the subspacesNπ(u) andTu0u vary smoothly withu, and
hence the associated projections are smooth.

The operatorsfN andfT are called thenormalandtangentcomponents off . Note that
fT is tangent to group orbits everywhere butfN is normal to group orbits only when
restricted toX. Let g = f |Nx0∩U denote the restriction of the normal operator to the
normal fiber overx0. Observe thatg is6-equivariant.

The standard results relating(dg)x0 with (d f )x0 are valid in this general setting, as we
now describe. Suppose thatX is a relative equilibrium, sof (x0) = ξx0 whereξ ∈ L(0).
Define f̃ (u) = f (u) − ξu, so thatx0 is an equilibrium for f̃ . Then(d f̃ )x0 is a linear
operator onTx0 N(X) = Nx0⊕Tx0 X ∼= Nx0⊕ L(0). Moreover,(d f̃ )x0 is sectorial, since
(d f )x0 is sectorial andξ is defined on the domain of a fractional power.

Proposition A.3. Regarded as an operator on Nx0 ⊕ L(0), (d f̃ )x0 has the form

(d f̃ )x0 =
(
(dg)x0 0

? −ad(ξ)

)
. (A.1)

Proof. Restricting to the dense subspaceH̃ ⊂ H ensures that the mappingsf , g, and
so on are smooth. Recall thatf has the decompositionf = fN + fT into normal and
tangent components, sõf has the corresponding decompositionf̃ = fN + f̃T where
f̃T (u) = fT (u)− ξu. We show first that

(d fN)x0 =
(
(dg)x0 ?

? ?

)
, (d f̃T )x0 =

(
0 0

? ?

)
,

thus verifying the entries in the first column of(d f̃ )x0.
The form of(d fN)x0 follows from the definitiong = fN |Nx0

. Now recall thatfT (u) =
Q(u) f (u) whereQ(u): H→H is the projection ontoTu0u with kernel Nπ(u). Since
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ξu ∈ Tu0u, we have f̃T (u) = Q(u) f̃ (u). For allw ∈ Tx0 N(X), we compute that

(d f̃T )x0w = ((d Q)x0w) f̃ (x0)+ Q(x0)(d f̃ )x0w = Q(x0)(d f̃ )x0w ∈ Tx0 X,

since f̃ (x0) = 0. Hence(d f̃T )x0 has the required form.
It remains to verify the entries in the second column of(d f̃ )x0. Letηx0 = d

dsγ (s)x0|s=0 ∈
Tx0 X, and observe that

(d f )x0ηx0 = (d f )x0

d

ds
γ (s)x0

∣∣∣∣
s=0

= d

ds
f (γ (s)x0)

∣∣∣∣
s=0

= d

ds
γ (s) f (x0)

∣∣∣∣
s=0

= η f (x0) = ηξx0.

Hence,

(d f̃ )x0ηx0 =
(
(d f )x0 − ξ

)
ηx0 = (ηξ − ξη)x0 = −ad(ξ)(η)x0.

Identifying Tx0 X with L(0), we have(d f̃ )x0η = −ad(ξ)η as required.

Remark. It follows that, modulo the eigenvalues of−ad(ξ), the spectrum of(dg)x0 co-
incides with the (relatively computable) spectrum of(d f̃ )x0. The eigenvalues of−ad(ξ)
are viewed asneutral. Indeed, when0 is abelian we have ad(ξ) ≡ 0.

When0 is compact, the adjoint action of0 preserves an inner product and it follows
that ad(ξ) is a skew-symmetric matrix. In particular, the eigenvalues of−ad(ξ)are purely
imaginary. This is the case also for noncompact groups, provided that the trajectory
throughx0 is compact (in other words, the closure of{exptξ, t ∈ R} is a compact
subgroup of0).

In general, however, the eigenvalues of−ad(ξ) need not be purely imaginary. A
somewhat hypothetical example is provided by the group of matrices

0 =
{(

a b

0 0

)
, a, b ∈ R, a 6= 0

}
.

A basis for the Lie algebra is given by

ξ1 =
(

1 0

0 0

)
, ξ2 =

(
0 1

0 0

)
,

and we calculate that ad(ξ1) has eigenvalues 0 and 1.

Corollary A.4. The normal vector field g generates a smooth local semiflow on Nx0.

Proof. Recall that(d f̃ )x0 is sectorial. By Proposition A.3, the spectra of(d f̃ )x0 and
(dg)x0 differ by finitely many eigenvalues of finite multiplicity. Substituting vectors of
the form(?, 0) into the formula (A.1), we obtain the estimate

‖((dg)x0 − µ)−1‖ ≤ ‖((d f̃ )x0 − µ)−1‖,
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for all µ in the resolvent of(d f̃ )x0. Hence, sectoriality of(d f̃ )x0 implies sectoriality of
(dg)x0 [10, Definition 1.3.1]. The domainD(dg)x0

is given byD(dg)x0
= D(d f )x0

∩ Nx0

and the nonlinearities ing are as smooth as those inf ; henceg generates a smooth local
semiflow.

Theorem A.5. Suppose that the hypotheses of Theorem A.2 and Corollary A.4 are valid.
Let u(t) andv(t) be the solution trajectories for the initial value problems defined by
the vector fields f and g with initial conditionv0 ∈ Nx0. Then, there is a smooth curve
at the identityγ (t) ∈ 0, such that

u(t) = γ (t)v(t).

Proof. Since fT (v(t)) ∈ L(0)v(t) and6 is discrete, we can uniquely writefT (v(t)) =
ξ(t)v(t) for a smooth curveξ(t) ∈ L(0). Let γ (t) be the solution to the initial value
problem d

dtγ = γ ξ , γ (0) = e. Thenγ (t) is a smooth curve at the identity as required.
Define ũ(t) = γ (t)v(t). We show that̃u(t) is a solution for the vector fieldf . It

follows by uniqueness of solutions thatũ = u and hence thatu = γ v.
The solutionv(t) lies insideHα ∩ Nx0 for t > 0 and is smooth as a function

(0,∞)→Hα where defined (see [10, Sections 3.3 and 3.4]). It follows from assumption
(S1) thatũ(t) is a priori at least once differentiable as anH-valued map fort > 0. (A
posteriori,ũ(t) = u(t) is smooth as anHα-valued map.) Applying the chain rule, we
compute that

d

dt
ũ(t) = d

dt
γ (t)v(t) = γ (t)

d

dt
v(t)+ d

ds
γ (t + s)v(t)

∣∣∣∣
s=0

= γ (t)g(v(t))+ γ (t)ξ(t)v(t)
= γ (t) fN(v(t))+ γ (t) fT (v(t))

= γ (t) f (v(t)) = f (ũ(t)).

It follows from Theorem A.5 that bifurcation from a relative equilibrium can be
understood abstractly in terms of bifurcation from an equilibrium for the6-equivariant
evolution operatorg coupled with drifts along the group.

If the spectrum of the linearization(dg)x0 of the normal vector field intersects the
imaginary axis, and the remainder of the spectrum is bounded away from the imaginary
axis, then the center manifold theorem applies onNx0. Since the action of0 is unitary,
the norm onH is smooth and0-invariant. Hence, we can choose a smooth0-invariant
“cut-off” function χ : H→R and we can construct a unique smooth6x-invariant center
manifoldWx for the cut-off normal vector fieldχ fN |Nx on each fiberNx ∩Hα, x ∈ X.
By construction,Wγ x = γWx and hence the resultingcenter bundle W= ∪x∈XWx is
0-invariant and at least once differentiable since0 acts differentiably onHα. In addition,
eachWx is a local center manifold forf |Nx , so thatW is a local center bundle forf . In
order to proceed as in the main part of the paper, we require that

(S2) 0 acts smoothly on elements in the center manifoldWx0 for the normal vector
field g.
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It follows from assumption (S2) thatW is a smooth bundle and that0 acts smoothly
on W. (Again, we note that [17], [18] have recently shown that assumption (S2) is
automatically satisfied for reaction-diffusion equations.)

A.2. Reductive Isotropy Subgroups

In this subsection, we show that the results of Section A.1, in particular Theorems A.2
and A.5, are valid for more general classes of isotropy subgroup6. We continue to
assume that0 is a finite-dimensional Lie group acting by unitary transformations onH,
that assumption (S1) is valid, and thatX = 0x0 is a smooth submanifold ofH.

The proof of Theorem A.2 breaks down whenx0 has isotropy subgroup6 of positive
dimension. For example, there may be pointsu of lower dimensional isotropy nearx0

in which case dimTu0u is not constant. This difficulty is present even for compact Lie
groups acting onRn and is the main technical difficulty overcome in Krupa [12]. We now
use the ideas in [12] to enlarge the class of isotropy subgroups6 for which Theorems A.2
and A.5 are valid.

Recall that6 is reductiveif 6 has a faithful finite dimensional representation and
every finite dimensional representation of6 is completely reducible (every6-invariant
subspace has a6-invariant complement). In particular, compact groups are reductive.
The next result generalizes [12, Lemma 2.3].

Lemma A.6. Suppose that assumption (S1) is valid, that X= 0x0 is a submanifold of
H, and that the isotropy subgroup6 of x0 is reductive. There exists a smooth0-invariant
subbundle K⊂ T N(X)|Hα such that for all u in a0-invariant neighborhood U⊂ Hα
of X,

(i) Ku ⊂ Tu0u, and
(ii) Nπ(u) ⊕ Ku = H.

Proof. The subspaceL(6) ⊂ L(0) is invariant under the adjoint action of6 and hence,
by reductivity, there is an invariant subspaceY ⊂ L(0) such that

L(0) = L(6)⊕ Y.

Let u = (γ x0, v) ∈ Hα ⊂ N(X) and define

Ku = (AdγY)u.

Note thatKu is well-defined due to the invariance ofY. To verify this point, suppose
thatγ1x0 = γ2x0. Thenγ−1

2 γ1 ∈ 6, and so Adγ1Y = Adγ2Y. HenceK is a subbundle of
N(X) satisfying condition (i). In contrast to the tangent spacesTu0u, the subspacesKu

are of constant dimension nearX and condition (ii) is satisfied.
To show thatK is 0-invariant, we prove thatKγu = γ Ku. Indeed, ifu = (δx0, v),

then

Kγu = (Adγ δY)γu = (AdγAdδY)γu = γ (AdδY)u = γ Ku.

Finally, smoothness of the bundle is proved as in [12].
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It is now straightforward to extend Theorem A.2 from discrete isotropy subgroups
to reductive isotropy subgroups. Simply projectf (u) onto Nπ(u) andKu. Similarly, the
curveξ(t) in the proof of Theorem A.5 is chosen to lie inKv(t). The remaining proofs
in Section A.1 are unchanged.

Remark. The assumptions underlying our generalization of Krupa’s center bundle re-
duction can be summarized as follows. The simplifying assumption (S1) ensures that
the generalization from finite dimensions to infinite dimensions runs smoothly. We re-
quire that the relative equilibriumX = 0x0 is a smooth embedded submanifold of
H. Assumption (S2) guarantees that the center bundle is smooth and not merely once
differentiable.

Our results are proved for two classes of isotropy subgroups ofx0: 6 discrete and6
reductive. Actually, we require only that there is an invariant complement forL(6) ⊂
L(0)under the adjoint action of6 (this is trivially the case when6 is discrete even if6 is
not reductive). An example where this property is violated is provided by the subgroup
6 = T(2) of translations in0 = SE(2). We conjecture that there is no analogue of
Theorems A.2 and A.5 in such cases.
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