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Vanderbauwhede and van Gils, Krupa, and Langford studied unfoldings of bifurcations with
purely imaginary eigenvalues and a nonsemisimple linearization, which generically occurs in
codimension three. In networks of identical coupled ODE these nilpotent Hopf bifurcations can
occur in codimension one. Elmhirst and Golubitsky showed that these bifurcations can lead to
surprising branching patterns of periodic solutions, where the type of bifurcation depends in
part on the existence of an invariant subspace corresponding to partial synchrony. We study
the stability of some of these bifurcating solutions. In the absence of partial synchrony the
problem is similar to the generic codimension three problem. In this case we show that the
bifurcating branches are generically unstable. When a synchrony subspace is present we obtain
partial stability results by using only those near identity transformations that leave this subspace
invariant.

Keywords : Networks of coupled cells; Hopf bifurcation; normal form; stability.

1. Introduction

Networks of coupled systems of differential equa-
tions arise naturally in a variety of contexts (see
[Stewart, 2004]) from discretization of partial dif-
ferential equations to models of locomotor cen-
tral pattern generators, [Kopell & Ermentrout,
1988]. The dynamics occurring in such networks
often have properties that are nongeneric if the
special structure of the network is absent. One
such property is the occurrence of Hopf bifurca-
tion with nonsemisimple eigenvalues in codimen-
sion one bifurcations. An example of a network
with this property was given by [Golubitsky et al.,
2004a]. Building on the work of Golubitsky et al.
[2004a], Elmhirst and Golubitsky [2006] analyzed
branching for nilpotent Hopf bifurcations occurring

in three different types of networks, finding branch-
ing patterns of periodic solutions very different
from the single nontrivial branch in generic Hopf
bifurcation.

Nilpotent Hopf bifurcations occur when an
equilibrium has a purely imaginary eigenvalue of
algebraic multiplicity two and a nonsemisimple lin-
earization. Such bifurcations are of codimension
three in the absence of special structure. Branching
patterns were studied by Vanderbauwhede [1986]
using the Liapunov–Schmidt method and by van
Gils et al. [1990] using the normal form approach.
In the context of coupled cells there are degen-
eracies both in the linear and nonlinear parts of
the vector field. Consequently, the results of either
Vanderbauwhede [1986] or van Gils et al. [1990]
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have limited direct application to the coupled cell
problem.

As shown by Cesari and Hale, Liapunov–
Schmidt reduction can be used to study Hopf bifur-
cations (see [Golubitsky & Schaeffer, 1984]) and is
the main tool used in [Elmhirst & Golubitsky, 2006].
This method has the advantage that branches of
periodic solutions can be found by solving for the
zeros of a “reduced” mapping and the disadvantage
that the stability of these solutions is not necessarily
preserved in the reduction. The alternative reduc-
tion method, center manifold plus normal form (see
[Vanderbauwhede, 1989]) has the advantage of pre-
serving stability of solutions, but is often more dif-
ficult to compute. A point of particular importance
for coupled cell networks is that the network struc-
ture leads to degeneracies in the bifurcation equa-
tions obtained using either reduction method and
unlike symmetry these degeneracies are not easy to
keep track of. In either case the relationship between
coefficients in the reduced equations and coefficients
in the original coupled cell vector field is not easy
to establish.

Our goal is to use the normal form approach
to study nilpotent Hopf bifurcations in coupled cell
networks and thereby to compute the stability of
periodic solutions emanating from these bifurca-
tions. In this work we consider specifically two of the
networks studied in [Elmhirst & Golubitsky, 2006],
the three-cell and five-cell networks shown in Fig. 1.
Using normal form theory we are able to recover
the bifurcation equations derived in [Elmhirst &
Golubitsky, 2006] for both of these networks and
obtain complete stability information for the five-
cell network (all periodic solutions are unstable).
We obtain only partial stability results for the three-
cell network.

In the theory developed in [Stewart et al.,
2003] and [Golubitsky et al., 2004b], graphs such
as those in Fig. 1 correspond to classes of systems

of differential equations. The three-cell network cor-
responds to coupled systems of the form

ẋ1 = f(x1, x1, x3, λ)
ẋ2 = f(x2, x1, x3, λ)
ẋ3 = f(x3, x2, x3, λ)

(1)

where x1, x2, x3 ∈ Rk, λ ∈ R is a bifurcation
parameter, and the overbar indicates that f : Rk ×
R2k × R → Rk satisfies f(a, b, c, λ) = f(a, c, b, λ).
The five-cell network corresponds to systems of the
form

ẋ1 = f(x1, x1, x4, x4, λ)
ẋ2 = f(x2, x1, x2, x5, λ)
ẋ3 = f(x3, x2, x4, x4, λ)
ẋ4 = f(x4, x2, x4, x5, λ)
ẋ5 = f(x5, x1, x2, x3, λ)

(2)

where xj ∈ Rk, f : Rk × R3k × R → Rk, and
the overbar indicates that f(a, b, c, d, λ) is invariant
under permutation of b, c, d.

By the results of Elmhirst and Golubitsky
[2006] the five-cell network has branches of peri-
odic orbits of opposite criticality whose amplitudes
grow at order λ. We prove that these solutions are
generically (within the class (2)) unstable. For the
three-cell network, Elmhirst and Golubitsky [2006]
proved the existence of two or four branches of peri-
odic solutions, each of which grows at order λ1/2.
One of these solutions has partial synchrony (since
x1 = x2 is a flow-invariant subspace). We obtain
complete stability information for this partially syn-
chronous solution. For the other solutions we outline
a possible approach to the stability problem, noting
that, unless there is a new idea, only partial results
can be expected.

The structure of coupled cell networks may
impose restrictions on both the linear and the non-
linear parts of the normal form. The restrictions on
the linear level are present in most networks, but
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Fig. 1. Three-cell and five-cell networks with nilpotent linear parts.
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the degeneracies at nonlinear level in the normal
form may or may not be present. We conjecture
that network architecture must force the presence
of an invariant space of partial synchrony with a
nontrivial intersection with the center subspace in
order for restrictions on the nonlinear terms in the
normal form to be present in a robust way. The five-
cell network in [Elmhirst & Golubitsky, 2006] (Fig. 1
(right)) is an example of a network where there are
no restrictions on the nonlinear level, whereas the
three-cell network in [Elmhirst & Golubitsky, 2006]
(Fig. 1 (left)) gives an example of a network with an
invariant space of partial synchrony, thus providing
an example where restrictions on cubic terms in the
normal form are present. Section 2 of this paper con-
tains the analysis of systems with no restrictions on
the nonlinear level. In Sec. 3 we treat systems with
a flow-invariant synchrony subspace.

2. No Restrictions on Reduction
at Cubic Level

In this section we consider the five-cell network (2)
analyzed by Elmhirst and Golubitsky [2006], who
proved using the Liapunov–Schmidt method that
there exist two branches of solutions with amplitude
O(λ), one supercritical and one subcritical. Here,
we reprove the result of Elmhirst and Golubitsky
[2006] using normal form theory and we show that
both of the bifurcating branches are unstable.

Recall that the Liapunov–Schmidt reduction
preserves the phase shift symmetry, which leads
naturally to S1 symmetry in the bifurcation equa-
tion. The normal form is not unique, but it can be
chosen to be S1 symmetric up to any finite order.
We use the following S1 equivariant normal form
(derived in [Elphick et al., 1987]).(

ż1

ż2

)
=

(
i + λ 1

µ i + λ

)(
z1

z2

)

+ Φ1

(
z1

z2

)
+ Φ2

(
0
z1

)
, (3)

with zi ∈ C, λ ∈ R, µ ∈ C and

Φk ≡ Φk(z1z1, Im (z1z2), λ, µ).

The S1 action is given by

θ(z1, z2) = (eiθz1, e
iθz2).

Since (3) is a normal form for a generic nilpotent
Hopf bifurcation it has one real parameter λ and one
complex parameter µ, which unfold the linear part.

For a certain class of networks, including all the net-
works studied by Elmhirst and Golubitsky [2006],
the network architecture forces the existence of a
nontrivial Jordan block, which implies that µ = 0.
Indeed, since we study only codimension one cou-
pled cell bifurcations, we may assume that Φk is
independent of µ.

The network architecture can also impose con-
straints on the nonlinear terms in the normal
form. In this section we make a nondegeneracy
assumption that holds for (2) but is violated for
any network with an invariant subspace of par-
tial synchrony which has a nontrivial intersection
with the center subspace. Networks of this type will
be considered in Sec. 3. Let a + ib be defined as
follows

a + ib =
∂Φ2

∂z1z1
(0, 0, 0).

The nondegeneracy assumption is

b �= 0. (4)

The following result is proved using MAPLE.

Proposition 2.1. The condition (4) holds generi-
cally for the five-cell network (2).

In this section we prove the following results.

Proposition 2.2. If b �= 0, then there exist two
branches of periodic solutions with amplitude O(λ);
one of the branches is supercritical and one is
subcritical.

Proposition 2.3. Periodic solutions on both
branches are unstable.

Proposition 2.2 is proved in Sec. 2.1 and Propo-
sition 2.3 is proved in Sec. 2.2.

2.1. Proof of Proposition 2.2

Recall that periodic orbits near a Hopf bifurcation
correspond to relative equilibria of the S1 symmet-
ric normal form. We define new variables (w1, w2),
suitable for the analysis of relative equilibria, as
follows:

z1 = w1e
i(1−τ)t, z2 = w2e

i(1−τ)t. (5)

After transforming to the new variables, we observe
that in both equations there is a factor ei(1−τ)t. We
cancel this factor and obtain the following

ẇ1 = (λ + iτ)w1 + w2 + Φ1w1

ẇ2 = (λ + iτ)w2 + Φ2w1 + Φ1w2.
(6)
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We will carry out the analysis for (6) truncated at
lowest order:

ẇ1 = (λ + iτ)w1 + w2

ẇ2 = (λ + iτ)w2 + (a + bi)w2
1w1.

(7)

By finding the equilibria of (7) near 0 with λ and
τ small we obtain all the first order approximations
of small amplitude periodic solutions of the origi-
nal problem. The result can be extended to (6) by
standard perturbation theory.

We need to solve:
0 = (λ + iτ)w1 + w2

0 = (λ + iτ)w2 + (a + ib)w2
1w1.

(8)

We solve the first equation in (8) for w2 as function
of w1 and substitute the result into the second equa-
tion. Subsequently we cancel the factor w1, obtain-
ing the bifurcation equation:

0 = −(λ + iτ)2 + (a + ib)w1w1. (9)

Equation (9) is S1 invariant, so when finding solu-
tions we can assume that w1 = x > 0. We substitute
this choice into (9) and replace the complex equa-
tion by two real ones, obtaining:

0 = τ2 − λ2 + ax2

0 = −2τλ + bx2.
(10)

We now prove a result which implies Proposi-
tion 2.2.

Proposition 2.4. Assume b �= 0 and let ∆ =√
a2 + b2−a. Then the solutions of (10) are given by

τ =
λ

b
∆, x =

√
2
(

λ

b

)2

∆. (11)

Proof. Solving the second equation in (10) for x2

we obtain

x2 =
2τλ

b
. (12)

Consequently we reduce (10) to the quadratic
equation:

bτ2 + 2aλτ − bλ2 = 0.

One choice of the solution is

τ =
λ

b
∆. (13)

Combining with (12) we conclude that

x2 = 2
(

λ

b

)2

∆,

which is the positive solution. The other choice
of the solution for τ gives x2 < 0, which is
impossible. �

2.2. Proof of Proposition 2.3

We first note that the Floquet exponents of the
small amplitude periodic solutions of the normal
form system (3) are just the eigenvalues of the lin-
earization of (6) at zeroes of that system.

The proof of Proposition 2.3 proceeds as fol-
lows. We compute the eigenvalues of the lineariza-
tion of the truncated system (7) at the solutions
(10). The characteristic polynomial is of degree four,
but it has a 0 root corresponding to the eigenvector
along the orbit of the normal form S1 symmetry.
We show below that the three nonzero roots of this
characteristic polynomial correspond to the roots of

q̂(µ) = µ̂3 − 4µ̂2 + 2(1 + 3K)µ̂ + 4(1 + K) (14)

in the scaled variable µ̂ = µ/λ, where K =
∆2/b2 > 0 is a constant depending on a and b.
More precisely, we show that a root µ̂ of (14) corre-
sponds to an eigenvalue of the linearization of the
truncated system (7) at a solution for some λ �= 0,
where µ = λµ̂ and τ =

√
Kλ.

Rather than trying to find the roots of q̂ explic-
itly, which would result in lengthy formulas, we
prove that q̂ always has at least one root with posi-
tive real part and at least one root with negative real
part, which proves Proposition 2.3 covering both
the cases of λ > 0 and λ < 0. The proof divides
into two parts: the derivation of (14) and the exis-
tence of a positive real part eigenvalue.

Derivation of q̂. We begin by obtaining the lin-
earization and its determinant. We transform (7) to
real coordinates:

w1 = x1 + iy1, w2 = x2 + iy2.

The system (7) in the real coordinates becomes:

ẋ1 = λx1 − τy1 + x2

ẏ1 = τx1 + λy1 + y2

ẋ2 = λx2 − τy2 + (x2
1 + y2

1)(ax1 − by1)
ẏ2 = τx2 + λy2 + (x2

1 + y2
1)(bx1 + ay1)

(15)

Recall that we have found equilibria of the form
(x, 0), where x satisfies (10). Linearizing (15) at
such an equilibrium we get the matrix:

A =




λ −τ 1 0
τ λ 0 1

3ax2 −bx2 λ −τ

3bx2 ax2 τ λ



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Let

B =
(

λ −τ

τ λ

)
and C =

(
3ax2 −bx2

3bx2 ax2

)
.

Note that det A = det(B2 − C) and similarly

p(µ) = det(A − µI) = det((B − µI)2 − C).

Using (10) it follows that

(B − µI)2 − C =
(

(λ − µ)2 − τ2 − 3ax2 −2(λ − µ)τ + bx2

2(λ − µ)τ − 3bx2 (λ − µ)2 − τ2 − ax2

)
=

(
µ2 − 2λµ − 2ax2 2τµ

−2τµ − 2bx2 µ2 − 2λµ

)

Note that when µ = 0 we see that det A = 0, as
expected. We now have p(µ) = µq(µ), where:

q(µ) =
det((B − µI)2 − C)

µ

= µ3 − 4λµ2 + (2λ2 + 6τ2)µ + 4λ(λ2 + τ2).

Next recall from (11) that τ = λ∆/b. Then

q(µ) = µ3 − 4λµ2 + 2(1 + 3K)λ2µ + 4(1 + K)λ3.

Finally, we divide q by λ3 and obtain the
polynomial (14).

Verification of a real part positive root. As
mentioned at the beginning of the section, the roots
of q cannot be expressed in simple form for general
a and b. We can however show that the roots of q
are never purely imaginary, and then prove Propo-
sition 2.3 by verifying the root structure of q for a
single choice of a and b. The basic tool that we use
is the fact that a cubic polynomial

µ3 + a2µ
2 + a1µ + a0

has purely imaginary roots if and only if

a0 − a1a2 = 0. (16)

Clearly q̂ cannot have a 0 root. We also prove
that it can never have a root on the imaginary axis.
In the case of q̂, we have

a0 − a1a2 = 4(3 + 7K),

which is nonzero for any choice of a and b �= 0.
We can easily find a specific choice of a and b (for
example K = 1) for which q̂ has both a root with
positive real part and a root with negative real part.
The result must hold by continuous dependence of
the roots of q̂ on a and b.

3. Equations with Synchrony
Subspace

Consider a three-cell system of the form (1). Then
there is a synchrony subspace defined by x1 = x2.

We assume for simplicity that the internal dynam-
ics is two-dimensional, which implies that the syn-
chrony subspace is four-dimensional. We assume
that there is a Hopf bifurcation from a synchronous
equilibrium and that the generalized eigenspace
of the critical eigenvalue is not contained in the
synchrony subspace. The following is proved in
[Elmhirst & Golubitsky, 2006].

Lemma 3.1. The eigenspace of the critical eigen-
value is contained in the synchrony subspace. The
intersection of the center subspace with the syn-
chrony subspace is the eigenspace.

We now perform a center manifold reduction
to a four-dimensional center manifold. Clearly the
intersection of the center manifold with the syn-
chrony subspace is a two-dimensional invariant
manifold tangent to the critical eigenspace. More-
over, [Leite & Golubitsky, 2006, Lemma 4.12] lets
us choose coordinates (z1, z2) on the center mani-
fold in such a way that the two-dimensional plane
z2 = 0 is both the critical eigenspace and is flow
invariant. General theory of Elphick et al. [1987]
tells us that there is an S1 symmetric normal form.
We prove that there is such a normal form for
which the space z2 = 0 is flow invariant. The ques-
tion centers on how the invariant space z2 = 0
transforms when the system is brought to normal
form.

More precisely, consider

ż1 = iz1 + z2 + f1(z1, z2)
ż2 = iz2 + f2(z1, z2).

(17)

We assume that f and g are C∞ smooth functions
whose constant and linear terms vanish. We prove
the following.

Theorem 3.2. Assume z2 = 0 is an invariant space
for (17 ), that is, f2(z1, 0) = 0. Then, for any N > 0,

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

7.
17

:2
59

5-
26

03
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 S

E
R

IA
L

S 
&

 E
L

E
C

T
R

O
N

IC
 R

E
SO

U
R

C
E

S 
on

 1
1/

07
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



2600 M. Golubitsky & M. Krupa

(17) can be transformed to the normal form

ż1 = iz1 + z2 + g1(z1, z2) + O(|z|N+1)
ż2 = iz2 + g2(z1, z2) + O(|z|N+1)

(18)

where g1 and g2 are S1-equivariant polynomial map-
pings of degree N, and (18) has an invariant space
z2 = 0.

The next subsection is devoted to the proof of
Theorem 3.2. Note that S1 symmetric normal forms
are not unique and that Theorem 3.2 does not hold
for every such normal form, including the normal
form of Elphick et al. [1987].

In the sequel we consider the truncated and
unfolded normal forms:

ż1 = (λ + i)z1 + z2 + g1(z1, z2)
ż2 = (λ + i)z2 + g2(z1, z2)

(19)

where g1, g2 are S1-equivariant polynomial map-
pings homogeneous of degree 3, and λ is a bifur-
cation parameter.

3.1. Proof of Theorem 3.2

Suppose that a vector field F has a flow-invariant
subspace W and that ϕ is a diffeomorphism that
leaves W invariant. Then the change of coordinates
of F by ϕ is a vector field that leaves W invariant.
For each 2 ≤ n ≤ N we carry out the proof of The-
orem 3.2 in two steps, each of which preserves the
invariant plane z2 = 0.

Step 1. Use a transformation of the form(
z1

z2

)
=

(
w1

w2 + q(w1, w2)

)
, (20)

where q is a homogeneous polynomial of degree n
satisfying q(w1, 0) = 0. We show that we can choose
q so that the terms of order n in the resulting ẇ2

equation are S1-equivariant and the space w2 = 0
remains flow-invariant.

Step 2. We use the transformation(
z1

z2

)
=

(
w1 + p(w1, w2)

w2

)
(21)

so that the terms of order n in the resulting ẇ1 equa-
tion are S1-equivariant, the RHS of the w2 equation
remains unchanged up to order n, and the space
w2 = 0 remains flow-invariant.

Let

L =
(

i 1
0 i

)
.

Define the adjoint operator adL by

adL(q) = iq − (qz1(iz1 + z2) + qz2(iz2)
− qz̄1(iz̄1 − z̄2) − qz̄2(iz̄2)). (22)

Let Pn be the space of homogeneous polynomials
of degree n in z1, z̄1, z2, z̄2. It follows that, for every
n > 1, adL is a linear transformation of Pn into
itself.

Suppose a change of coordinates of the form
(20) is applied to (17), with q ∈ Pn. Then the trans-
formed system has the form

ẇ1 = iw1 + w2 + q + f1(w1, w2) + O(|z|n+1)
ẇ2 = iw2 + f2(w1, w2) + adL(q) + O(|z|n+1)

(23)

Note that for any n > 1, adL can be used to
remove terms of order n from the RHS of (17). The
following two lemmas specify which terms can be
removed.

Lemma 3.3. The subspace Pn can be decomposed
into adL invariant subspaces Vk, where k = 0, . . . , n,
with

Vk = span{zk1
1 z̄l1

1 zk2
2 z̄l2

2 : k1 + k2 = k;
l1 + l2 = n − k}

Moreover, the spaces Vk,0 ⊂ Vk defined by

Vk,0 = span{zk1
1 z̄l1

1 zk2
2 z̄l2

2 : k2 + l2 > 0, k1 + k2 = k;
l1 + l2 = n − k}

are also invariant for adL.

Proof. Follows by inspection from the definition
of adL. �

Lemma 3.4. If k �= (n + 1)/2 then adL restricted
to either Vk or Vk,0 is an isomorphism.

Proof. Suppose zk1
1 z̄l1

1 zk2
2 z̄l2

2 is an element of Pn.
Then

adL(zk1
1 z̄l1

1 zk2
2 z̄l2

2 ) = i(n + 1 − 2k)zk1
1 z̄l1

1 zk2
2 z̄l2

2

+ k1z
k1−1
1 z̄l1

1 zk2+1
2 z̄l2

2

+ l1z
k1
1 z̄l1−1

1 zk2
2 z̄l2+1

2

It follows that

adL = (n + 1 − 2k)I + N

where N is nilpotent. The claim about Vk follows.
The claim about Vk,0 is proved analogously. �
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Corollary 3.5. Terms in Vk can be removed pro-
vided that k �= (n + 1)/2. When n is odd and
k = (n + 1)/2 the terms in Vk are S1-equivariant.

Proof of Theorem 3.2. Suppose we apply a trans-
formation of the form (21), with p homogeneous of
order n, to a system of the form (17). Then the
transformed system has the form

ẇ1 = iw1 + f1(w1, w2) + adL(p) + O(|z|n+1)
ẇ2 = iw2 + f2(w1 + p,w2).

(24)

Note that (24) still has an invariant space
w2 = 0, regardless of the form of p, since f2(w1 +
p, 0) = 0. Also, the w2 equation in (24) can be
rewritten in the form

ẇ2 = iw2 + f2(w1, w2) + O(|z|n+1)

which means that the equivariance of f2 up to order
n is preserved. It now follows that we can bring (17)
to the form (18) by successively applying transfor-
mations of the form (20) and (21). At any order
n ≥ 2 we first carry out (20) and then (21), bring-
ing the system to the normal form of order n and
preserving the invariance of w2 = 0. �

3.2. Branching

Suppose a normal form system of equations of the
form (19) is given. Transforming to the variables (5)
we obtain the equations

ẇ1 = (λ + τi)w1 + w2 + g1(w1, w2)
ẇ2 = (λ + τi)w2 + g2(w1, w2)

(25)

where τ is a small parameter corresponding to the
deviation of the period from 2π. Recall that periodic
orbits of (1) near a Hopf bifurcation correspond to
equilibria of (25). We look for synchronous periodic
orbits which correspond to equilibria of (25) with
w2 = 0. We can assume, due to S1 symmetry, that
w1 = x ∈ R. Consequently, we obtain the branching
equations:

λ + p(x2) = 0
τ + q(x2) = 0.

(26)

where p and q are such that g1(x, 0) = x(p(x2) +
iq(x2)). Expanding:

p(x2) = ARx2 + O(x4), q(x2) = AIx
2 + O(x4)

we obtain that (26) at lowest order have the form:

λ + ARx2 = 0
τ + AIx

2 = 0.
(27)

3.3. Stability of the synchronous
solution

We assume that x is a solution of (26). We now com-
pute the Jacobian of (25) at the solution w1 = x,
w2 = 0. The Jacobian of (25) is given in 2× 2 block
form as

J =
(

Dw1g1(x, 0) Dw2g1(x, 0)
0 Dw2g2(x, 0)

)
,

where 0 denotes the 2 × 2 zero matrix and Dwigj

are 2 × 2 real matrices. Using complex notation

(Dwg)p(u) =
∂g

∂w
(p)u +

∂g

∂w̄
(p)ū.

Since J is upper block diagonal, its eigenvalues
are given by the eigenvalues of Dw1g1(x, 0) and
the eigenvalues of Dw2g2(x, 0). It follows also that
Dw1g1(x, 0) has an eigenvalue 0, corresponding to
translation along the S1 group orbit, and an eigen-
value 2p(x2) (for the definition of p see the sentence
following (26)). Hence the branch can only be stable
if it is supercritical.

The condition for the other two eigenvalues to
both have negative real parts is

tr Dw2g2(x, 0) < 0 and det Dw2g2(x, 0) > 0,

which is equivalent to

Re
∂g2

∂w2
(x, 0) < 0 and

∣∣∣∣ ∂g2

∂w2
(x, 0)

∣∣∣∣
2

−
∣∣∣∣ ∂g2

∂w̄2
(x, 0)

∣∣∣∣
2

> 0.

(28)

Writing:

∂g2

∂w2
(x, 0) = Bx2 + O(x4) and

∂g2

∂w̄2
(x, 0) = Cx2 + O(x4)

we obtain that (28) is given, up to O(x2), by

ReB < 0 and |B|2 − |C|2 > 0. (29)

It is clear that conditions (29) can be satis-
fied. Figure 2 shows a stable synchronous solution,
computed for a network of type (1) with f given as
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Fig. 2. Synchronous periodic solution — transient on left and no transient on right. Simulation with f in (30), λ = 0.1,
αR = −0.5, βR = −0.5, αI = −1 and βI = 0.75.

follows:

f(a, b, c) = λa + Ka − b − c +
1
2
|a|2(βRa + βIKa)

+
1
4
(βRLa − βILKa)(b2

1 − b2
2 + c2

1 − c2
2)

− 1
2
(βRLKa + βILa)(b1b2 + c1c2)

+
1
2
(|b|2 + |c|2)(αRa + αIKa) (30)

where λ ∈ R, α, β ∈ C,

K =
(

0 −1
1 0

)
and L =

(−1 0
0 1

)

3.4. Remarks on stability of
asynchronous solutions

In this section we consider a truncation of (25) of
the form

ẇ1 = (λ + iτ)w1 + w2 + Aw2
1w1

ẇ2 = (λ + iτ)w2 + Bw2w1w1
(31)

For (31) we can easily find explicit expression for
an asynchronous solution and we can derive a suffi-
cient condition for stability, which can be satisfied.
Thus we prove that asynchronous solutions can be
stable.

The branching equations for (31) are

0 = (λ + iτ)w1 + w2 + Aw2
1w1

0 = (λ + iτ)w2 + Bw2w1w1
(32)

Due to the S1 action there exists a solution of
(32) of the form (x,w2), where x is real. We
can now easily solve (32), obtaining the branching
equations

λ + BRx2 = 0
τ + BIx

2 = 0
w2 = (B − A)x3.

(33)

Remark. By the results of Elmhirst and Golubitsky
[2006] a network of the form (1) has two or four
branches of solutions. For C = 0 we are in the
case of two branches of solutions, rather than
four.

We prove the following result on stability of
solutions given by (33).

Proposition 3.6. The branch given by (33) can only
be stable if it is supercritical. Moreover, there exists
an open region in the space of coefficients (A,B),
where this solution is stable.

Proof. Rewriting (31) in real form we obtain

ẋ1 = λx1 − τy1 + x2 + (x2
1 + y2

1)(ARx1 − AIy1)
ẏ1 = τx1 + λy1 + y2 + (x2

1 + y2
1)(AIx1 + ARy1)

ẋ2 = λx2 − τy2 + (BRx2 − BIy2)(x2
1 + y2

1)
ẏ2 = τx2 + λy2 + (BRy2 + BIx2)(x2

1 + y2
1)

(34)
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Linearizing (34) about the solution (33) yields the following Jacobian matrix:


(3AR − BR)x2 (BI − AI)x2 1 0
(3AI − BI)x2 (AR − BR)x2 0 1

2x4(BR(BR − AR) − BI(BI − AI)) 0 0 0
2x4(BR(BI − AR) + BI(BR − AR)) 0 0 0


 , (35)

where x2 is determined by the first equation in (33).
The characteristic polynomial for (35) has the form

p(µ) = µ(a0x
6 + a1x

4µ + a2x
2µ2 + µ3)

with
a0 = −2BR((BI − AI)2 + (BR − AR)2)
a1 = (AR − BR)2 + 2(AR + BR)(AR − BR)

+ 3(AI − BI)2

a2 = 4AR − 2BR

We can now introduce a polynomial q:

q(ν) = a0 + a1ν + a2ν
2 + ν3.

The roots of p and q are in 1-1 correspondence (if
x �= 0), namely if ν0 is a root of q then ν0x

2 is a
root of p. The coefficients a0 and a2 correspond to
the product and the sum of the roots, respectively,
so a0 < 0 and a2 < 0 are necessary for stability.
Since a0 < 0 is equivalent to BR < 0, AI �= BI

and AR �= BR the branch can only be stable if it is
supercritical. If a0 = 0, a1 > 0 and a2 < 0 then q
has a 0 eigenvalue and two eigenvalues with nega-
tive real parts. It follows that the conditions a0 < 0,
a1 > 0 and a2 < 0 imply stability provided that a0

is sufficiently close to 0. �
Figure 3 shows a stable asynchronous solution

computed for a network of type (1).

-0.4
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0
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0 5 10 15 20 25 30 35 40

Fig. 3. Asynchronous periodic solution obtained by simula-
tion with f in (30), λ = 0.1, αR = −1.5, βR = 0.5, αI = −1,
and βI = 0.75.
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