SYMMETRY AND PATTERN FORMATION IN COUPLED
CELL NETWORKS

MARTIN GOLUBITSKY* AND IAN STEWART!

Abstract. We describe some basic concepts and techniques from symmetric bifur-
cation theory in the context of coupled systems of cells (‘oscillator networks’). These
include criteria for the existence of symmetry-breaking branches of steady and periodic
states. We emphasize the role of Symmetry as a general framework for such analyses.
As well as overt symmetries of the network we discuss internal symmetries of the cells,
*hidden’ symmetries related to Neumann boundary conditions, and spatio-temporal sym-
metries of periodic states. The methods are applied to a model central pattern generator
for legged animal locomotion.

1. Introduction. The bifurcation theory of nonlinear dynamical sys-
tems with symmetry has grown extensively in recent years, and its impact
has been felt in a variety of fields of applied science. In this survey we
describe the role of Symmetry and symmetry breaking in the context of
networks of coupled cells, a useful halfway house between ODEs, whose
structure is in essence purely temporal, and PDEs, which also possess spa-
tial structure. Here a cell is a unit described by a system of ODEs. Many
authors talk of coupled ‘oscillators’, but we prefer the neutral term ‘cell’
since the units can display many different kinds of dynamics, and even when
the coupled network can oscillate periodically, the individual members may
not be able to oscillate in isolation, see Smale (46]. For example, as an ex-
treme case, the individual cells might have one-dimensional dynamics, so
that they cannot oscillate as isolated individuals, but the coupled system
might have oscillatory states.

A coupled cell network has discrete spatial structure but continuous
temporal structure, and can be modelled as a structured system of ODEs.
Our aim here is to interpret the theory of symmetry-breaking bifurcations
in the context of coupled cell networks. We shall focus on the classical
areas of steady-state and Hopf bifurcation, which deal with equilibria and
periodic states. Our aim is to demonstrate how the explicit use of symmetry
helps to organize the dynamics and the patterns of such networks. We avoid
technicalities whenever possible, including proofs, and refer the reader to
the literature for missing details. Applications to animal locomotion are
included.

2. Coupled cells and ODEs. By a cell we just mean a system of
ODEs defined on a Euclidean space. Interesting dynamical phenomena
occur when cells are coupled by interactions between their state variables.
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A system of ODEs

(2.1) ‘:[_’: = F(z)

is a system of identical coupled cells if z = (z,,...,zn) and

(2.2) ";t = f(z;) + hy(2).

Here z; € R*, f governs the internal dynamics of the each cell, and h;
governs the coupling between cells. We call the h; the coupling terms.
Throughout all vector fields are assumed to be smooth (C>).

As in figures 1 and 2, we can represent the general structure of a cou-
pled cell network by a graph on N nodes (one for each cell) by connecting
cell i to cell j if h; depends explicitly on z;. To refine this schematic de-
scription we can use ‘decorated’ arrows to distinguish the different types of
coupling term. (For example, the arrows may be drawn with light or bold
lines, double or triple lines, fancy arrowheads, and so on.) It is this image
that we have in mind when we speak of a ‘network’ of coupled cells.

EXAMPLE 2.1. Figure I(a) shows a ring of N identical cells with
unidirectional coupling, in the case N = 4. Here the governing equations
are, say,

(23) 2 = 1) + Az,

where indices j are taken modulo N.

EXAMPLE 2.2. Figure 1(b) shows N identical cells coupled in a bidi-
rectional ring, again for N = 4. Here the governing equations are, say,

de
N dt
where indices j are taken modulo N and h(u,v) = h(v,u). Note that the
same coupling function h occurs for each cell, so the cells are identically
coupled, or more properly symmetrically coupled.

EXAMPLE 2.3. Figure 2 shows two coupled rings of four identical cells
with unidirectional coupling. Here the governing equations are, say for cells
C3 and C.\,

dI; d

o = f(@a)+h(zi)+g(zs) and  —= = f(z4)+h(z2)+g(z3),
with similar equations for the other cells. This cell system may be used 65
a model for quadrupedal gaits; see section 4. Note that there are two types
of coupling — the coupling around the rings end the coupling connecting
the rings.

(2.4) = f(z;) + A(zj-1,Tj51),

(2.5)
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FiG. 1. Rings with four cells: (a) unidirectional and (b) bidirectional.
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FIG. 2. Eight cell network used in animal gait model.

Many aspects of pattern formation in coupled cell systems are con-
sequences of the symmetries of the system, and a systematic approach to
pattern formation can be based upon explicit recognition and exploitation
of the role of symmetry.

Several different types of symmetry can arise in coupled cell systems.
Mathematically, all of these symmetries can be described within the same
abstract framework, but they have distinct physical interpretations. In this
survey we focus on three types of symmetry: Network symmetries, internal
cell symmetries, and temporal phase-shift symmetries.

Network symmetries. These are permutations of the cells that preserve
couplings — that is, automorphisms of the corresponding decorated graph.
Specifically, a permutation o of {1,...,N} acts on the phase space z =
(xll"'lzN) by

o = (rc“(l)’ ‘e ,za—l(N)).
The permutation o is a network symmetry for (2.1) when

F(oz) = oF(z).
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Since the cells are assumed identical, a permutation o is a network sym-
metry if the coupling is symmetric, that is, in (2.2),

h.j(O‘.’l:) = ho(j)(l‘).

In other words, o preserves the decoration of arrows in the graph. The
global symmetry group G is defined to consist of all network symmetries,
and is a finite permutation group. For example, the global symmetry group
in example 2.1 is Zy, the global symmetry group in example 2.2 is Dy,
and the global symmetry group in example 2.3 is Zg x Z,. Visually, a
network symmetry permutes the cells while preserving the arrows.

Internal symmetries. An internal symmetry of cell C; is an orthogonal
matrix § € O(R¥) which satisfies

f(éz;) = 6f(x;).

The group of all internal symmetries £ is called the local symmetry group.
Whether local symmetries are symmetries of the coupled cell system de-
pends on the type of coupling, as we discuss in §7.

Phase-shift symmetries. Suppose that z(t) is a T-periodic solution and
that v is a symmetry of the cell system. Then yz(t) is also a periodic
solution. If the sets {z(¢t)} and {yz(t)} are identical, then uniqueness of
solutions implies that there exists 8 such that

vz(t) = z(t +6),

and (7,0) is a spatio-temporal symmetry, with 8 being the phase-shift sym-
metry.

3. Symmetric bifurcation theory. The general context for a sym-
metry-based analysis of pattern formation in coupled cell networks is sym-
metric (or equivariant) bifurcation theory. This is surveyed in Golubitsky
et al. [32]. We briefly summarize the main ideas and state the simplest
existence theorems. Bifurcations provide two of the simplest mechanisms
for pattern formation: local steady-state and Hopf bifurcation. These lead,
respectively, to the creation of equilibrium patterns and to time-periodic
patterns, in both cases starting from a trivial ‘homogeneous’ or patternless
state.

3.1. General strategy. Let T be a Lie group of linear transforma-
tions of R™. We say that f is [-equivariant if

(3.1) flyz, A) = 1f(z, )
for all v € . Consider a -equivariant ODE
dx
2 -— =
(3.2) T + f(z,A) =0

.

3
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where z € R™, A € R. For simplicity, assume that f(0,)) = 0, so there
exists a ‘trivial branch’ of solutions z = 0. The linearization of f is

Ly= D:flo,,\ .

Local bifurcation at A = 0 occurs when the trivial branch undergoes a
change of linear stability, so that Lo has eigenvalues on the imaginary axis
(often called critical eigenvalues). There are two cases:

« Steady-state bifurcation: Ly has a zero eigenvalue.

o Hopf bifurcation: Lo has a complex conjugate pair of eigenvalues
Fiw.

To study such bifurcations, we look at the critical eigenspace: the real
generalized eigenspace E for the critical eigenvalues. This is the kernel of
(Lo + wI)™, taking w = 0 in the steady-state case. By equivariance, E is
a -invariant subspace of R".

1. Determine the generic possibilities for the action of I on E.

By ‘generic’ we mean ‘unable to be destroyed by a small perturba-
tion of f'.
o For steady-state bifurcation, generically E is absolutely irre-
ducible.
o For Hopf bifurcation, generically E is [-simple. That is, either
E = X & X where X is absolutely irreducible, or E is non-
absolutely irreducible.

2. Use Liapunov-Schmidt or center manifold reduction to reduce the
problem to one posed on the £. With sensible choices in the re-
duction procedure, the reduced problem is [-equivariant. See Gol-
ubitsky et al. [32].

3. In Hopf bifurcation, recognize the existence of an extra symmetry
in the reduced problem, given by an action of the circle group. The
reduced problem becomes I' x S'-equivariant.

4. Apply the“equivariant branching lemma and the Equivariant
Hopf theorem to show existence of symmetry-breaking solutions.

5. Study the stability of bifurcating solutions.

3.2. Basic existence theorems. Suppose that ' acts on R". If
z € R", then the orbit of = under I is
Fz={yz:y€Tl}.

If f: V = V is [-equivariant, then the zero-set of f is a union of [-orbits,

for if f(z) = 0 then f(yz) = 7f(z) = 70 = 0. It is convenient to consider

solutions in the same I-orbit as being ‘the same solution’ up to symmetry.
The isotropy subgroupof x € V' is

;={0c€l:0z =z}

Isotropy subgroups of points on the same orbit are conjugate. Indeed T,; =
4Z.7~!. We therefore tend not to distinguish between isotropy subgroups
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and their conjugates. The isotropy lattice is the partially ordered set formed
by all conjugacy classes of isotropy subgroups, with ordering induced by
inclusion. It is a finite partially ordered set but, despite its name, it is not
always a lattice in the strict algebraic sense.

If H C T is any subgroup, we define the fired-point subspace

Fix(H)y={reV:yz=z Vy€ H}.

We have Fix(yHvy™!) = qFix(H). A crucial feature of fixed-point sub-
spaces is that they are dynamically invariant:

ProprosiTiON 3.1. [f f is [C-equivariant and H C T' then f leaves
Fix(H) invariant.

Proof. Let v € H, z € Fix(H). Then vf(z) = f(vz) = f(z) so
f(z) € Fix(H). O

Despite its trivial proof, the above fact is very useful. For suppose we
are seeking a branch of solutions to a I'-equivariant bifurcation problem
f(z, A) =0, breaking symmetry to #. Then z € Fix(H), and it suffices to

solve leix(H) =0.

3.3. The equivariant branching lemma. An ezia! subgroup is an
isotropy subgroup I for which dim Fix(Z) = 1. For such isotropy subgroups
we have the following basic existence theorem of Vanderbauwhede {48] and
Cicogna (7]: )

THEOREM 3.2. (equivariant branching lemma). Let f(z,A) =0
be a '-equivariant bifurcation problem where Fix([') = 0. Let T be an arial
subgroup. Then generically there exists @ branch of solutions to f(z,\) =0
emanating from the origin with symmetry group L.

3.4. The equivariant Hopf theorem. The situation for Hopf bi-
furcation is closely analogous to that for static bifurcation, but with the
symmetry group [ replaced by [' x S'. The main hypothesis of the classical
Hopf bifurcation theorem is that D f|go should have a pair of purely imag-
inary eigenvalues. In the equivariant case we may assume generically that
the entire imaginary eigenspace is [-simple. By reduction methods, we can
further assume, without loss of generality, that R" itself is [-simple. From
now on we work in this context. We also scale time so that the imaginary
eigenvalues are +i, and the period of oscillations is therefore near 2.

The analogue for Hopf bifurcation of an axial subgroup is a C-azidl
subgroup, which is a subgroup of I’ x S! acting on R" for which dim Fix(Z)
= 2.

Unless a periodic state has nontrivial temporal symmetry, which means
that its period is an integer divisor of the assumed period, its isotrop¥
subgroup meets S! trivially. This implies that it must be a twisted subgrovh
that is, a subgroup of the form

H? = {(h,o(h)): he H}
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where H is a subgroupof"and ¢ : H — S'isa group homomorphism. The
image of ¢ is either trivial, a nontrivial finite cyclic group, or the whole of
S!. In these cases we say that the solution is, respectively, purely spatial, a
discrete rotating wave, and a rotating wave. The rotating wave case cannot
occur for finite ', hence cannot arise for network symmetries, but it may
occur for internal symmetries of individual cells if the internal symmetry
group is continuous.

THEOREM 3.3. (equivariant Hopf theorem [28]). With the above
notation, let T be a C-azial subgroup of T x S'. Then generically there
exists a branch of periodic solutions to ‘;—f = f(z,A), emanating from the
origin, with spatio-temporal symmetry group ¥.

Note that when interpreting the symmetries T for a given solution, we
think of the S'-action as phase shift; but when calculating the dimension

of the fixed-point subspace Fix(E) we think of it as the action by e=%¢.

3.5. Unidirectional and bidirectional rings. As a warm-up prob-
lem, we apply the Equivariant branching lemma and the equivariant Hopf
theorem to rings of four cells. There are two standard cases: unidirectional
coupling and bidirectional coupling (figure 1). Everything that we describe
here extends, with minor modifications, to rings with V cells, for all finite
N.

Consider first the unidirectional case, and for simplicity assume that
the internal dynamic of each cell is 1-dimensional, & = 1. (In fact by
Liapunov-Schmidt reduction, general k reduces to this case.) The sym-
metry group is Zy = (p) acting on RY = R*, where pTj = Ijiy, with
subscripts taken mod 4 as usual. This action decomposes into three irre-
ducible representations:

R4 = ”.0 S ”"l ‘5 ”"3

where Vo is spanned by [1,1,1,1), IV, is spanned by [1,-1,1, —1], and W>
is spanned by (1,0, ~1,0] and (0,1,0, —1]. Of these, ¥, is non-absolutely
irreducible (it is isomorphic to the standard action of Z» on C = R? in
which p acts as multiplication by i). Therefore Wa does not occur as a
critical eigenspace in generic steady-state bifurcation. The components
Wo, W, are absolutely irreducible. Since the dimensions of these spaces
are both 1, the equivariant branching lemma applies in both cases. For
Wo, the corresponding axial subgroup is the whole of Z4 since the action
is trivial, and on the bifurcating branch all four cells have identical states.
For Wy, however, the axial subgroup is Z» = (p?), so the states of cells are
unchanged by p®. In other words, the states are of the form (4, B, A, B),
with an alternating pattern round the ring.

The analysis for the bidirectional cases follows similar lines, but leads
to rather different results. This time the symmetry group is Dy = (p, &),
where p acts as above and xz; = z_;. The state space R again decom-
poses into the same three irreducibles W;, but now all three are absolutely
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irreducible (since x acts on Wz = C as complex conjugation). Thus Wa can
occur in generic bifurcation, with a more interesting isotropy lattice which
contains two non-conjugate axial subgroups Z5; = (k) and Z5° = (kp).
Solutions with isotropy 24 are invariant under reflection of the network
graph in the diagonal line joining cells Cp and C2, whereas solutions with
isotropy Z3” are invariant under reflection of the network graph in the hori-
zontal line joining the midpoint of the arrow from Cjp to Cy to the midpoint
of the arrow from C; to C3. So states with isotropy Z5 are of the form
(A, B,C, B), whereas states with isotropy Z3” are of the form (A, A, B, B).
Note that both of these branches bifurcate simultaneously, but they may
have different stabilities and branch in different directions, depending on
the precise form of the vector field.

Table 3.5 summarizes these generic steady-state bifurcation patterns,
and also includes patterns for Hopf bifurcation. The analysis of symmetric
Hopf bifurcation in these two systems is similar to the above, but slightly
more complicated, and can be found in Golubitsky and Stewart [29]. We
omit the computations and merely state the results. In the table A, B,C
are constant vectors, and A(t), B(t) are T-periodic functions for some T.

The crucial point to observe is the occurrence of patterns, that is, the
same dynamics may occur in more than one cell, possibly subject to a fixed
phase shift that is a simple fraction of T.

Double frequency cell motions. One curious implication of spatio-tem-
poral symmetry occurs in the solutions of the form (A(t), B(¢), A(t + T/2),
B(t)), namely, the frequency of B(t) is double that of A(t). We briefly
explain how this fact is deduced from symumetry. The C-axial subgroup
corresponding to this solution is the subgroup of Dy X S! generated by
((x,0),(p 7)) where the period is 2. Invariance under this subgroup
implies that cells C, and C; are identical and that Cj is m out of phase
with Cy42. Therefore C, is identical to C3 but also 7 out of phase with C3.
This implies that Cj is 7 out of phase with itself, which is equivalent to it
having twice the frequency, that is, period 7 instead of 2. This type of
forced frequency-division is associated with any isotropy subgroup in which
some cells are fixed by a spatial group element but their phase is shifted
by a temporal element.

The interpretation of an isotropy subgroup depends upon the ac
tual network, not just its symmetry type. For example, consider ai-
other C-axial subgroup for the four-cell bidirectional ring, the twisted
group Zy = {(p, =T/4)). This yields the pattern (A(), A(t + T/4), Alt ¥
T/2), A(t + 3t/4)) for the ring network. However, suppose there is & fifth
cell at the center, coupled identically to the other four (figure 3.5)-_ Then
the symmetries are unchanged, but now the solution with isotropy Z4 is of
the form (A(t), A(t +T/4), A(t+T/2), A(t +3t/4), B(t)) where B has fouf
times the frequency of A.
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TABLE 1
Po'sszble patterns in a four-cell ring. (U stands for unidirectional and B stands for
bidirectional.)

ﬁype Co c Cs Cs Ring Type
l?teady A A A A UorB
A A B B B
A B C B B
A B A B UorB
Periodic || A(¢) A(t) A(e) A(t) Uor B

A(t) [ A(t+T/4) A(t+T/2) | At +3T/4) UorB
A(t) B(t) A(t+T/2) B(t)

A(t) A(t) A+T/2) | Ae+T/2) | B
A(t) | At +T/2) Al) A(¢+T/2)f UorB

OO
e
O—-G

Fic:. 3. Another network with D, symmetry.

™

4. Application to animal locomotion. In this section we apply
the above techniques to a class of networks arising in the theory of central
pattern generators for animal locomotion. For further details, both mathe-
matical and biological, see (10, 11,12, 13, 14, 44, 52, 53] for legged animals,
and (8, 38, 39, 40, 42] for legless creatures such as the lamprey.

Collins and Stewart (11, 12, 13, 14] have shown that the phase rela-
tionships of many quadruped and hexapod gaits can be obtained naturally
via Hopf bifurcation in small networks of identical cells. Golubitsky et
al. [30] overcame certain difficulties in the results of Collins and Stewart by
introducing a class of networks that models the gait of a 2n-legged organ-
ism with a network of 4n cells. This network is modular, in the sense that
it naturally provides models of gaits in quadrupeds, hexapods, centipedes,
and millipedes. The analysis of models for many-legged animals shows
that wave-like motions, similar to those obtained by Kopell and Ermen-
trout (38, 39, 40] also arise. The network leads to a number of predictions

12
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about the wavelength of the wave motion and about secondary gaits such
as gallops and the canter.

It is now well established (Grillner (34, 35, 36}, Shik and Orlovsky [45],
Stein [47], and Pearson [41]) that animal locomotion is generated and con-
trolled, in part, by a central pattern generator (CPG), which is a network
of neurons in the central nervous system capable of producing rhythmic
output. Kopell and Ermentrout {38, 39, 40] show that a linear network con-
sisting of many coupled identical cells can generate traveling wave motions
similar to those observed in the lamprey, and some biological predictions
made by this model have been confirmed [49).

The crucial observation, explained in Golubitsky et al. [30], is that
in order for a symmetric network of identical cells to reproduce the phase
relationships found in gaits of a 4-legged animal, the number of cells should
be (at least) eight. The network generalizes to a coupled cell CPG model
for 2n-legged animals consisting of 4n cells, as is shown in figure 4.

front @
e s
/ \%O v N

= @ back

FIG. 4. (a) Schematic dn-cell network for gaits in 2n-legged animals. Only cells
1,....2n are connected to legs. (b) Folding up the network to eliminate long-rong¢
connections creates a structure with repeated modules, differing slightly at the two ends.

The structure of this network respects the natural bilateral symmetry:
and also possesses a 2n-fold cyclic ‘translational’ symmetry from back to
front. The symmetry group of the network is ' & Za,, X Z2. The subgrov?
Z2n cycles corresponding pairs of cells around their respective loops, 28

R
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the subgroup Z; interchanges left and right cells in corresponding positions.
The graph of this network is the ‘direct product’ of a unidirectional 4-cycle
with a bidirectional 2-cycle, and the bifurcation analysis follows a very
similar pattern. In each 4-cycle ring we find discrete travelling waves of
various kinds, and the two rings are either synchronized or half a period
out of phase with each other.

For quadrupeda! gaits, we list the patterns for primary bifurcations,
corresponding to C-axial subgroups. We denote them by an array of phase
shifts corresponding to cells numbered in figure 2.3. For simplicity of ex-
position, we assume that only cells 1-4 drive the legs, so that C; drives the
left rear leg, C> drives the right rear leg, C3 drives the left front leg, and C,
drives the right front leg. Thus in this exposition the phases of cells Cs-Cs
are ignored and are present in order to propagate the dynamics correctly.
Collins and Stewart {13] obtain similar results for hexapodal gaits using a
12-cell network.

TaBLE 2
Quadrupedal gaits. In jump and walk choose either + or — throughout.

pronk pace jump= walk* bound trot

)} 3 3 1 1
00 10 3 =3 23 | =7 £F |3 5| § 0]
00 o0 ¥ 4 3 0] 00| o0}

1 1
001 0 3 | £ £ | +f £} | 3 4| 10
00| o0} 0 o0 0 3100 |0}

A similar analysis applies to networks of the kind that might be asso-
ciated with many-legged animals such as centipedes and millipedes — and
also legless animals such as eels, snakes, and lamprey, for which ‘leg’ should
be interpreted as ‘muscular unit’. The range of primary gait patterns is
considerable, but they all have the same fundamental characteristics. First,
select some divisor d of 2n; then group the cells on the left side into n
clumps, each spaced d cells apart. The phase relationships along that side
of the network are like those of a ‘%‘-cell network of the same kind, but re-
peated d times in the ‘forward’ direction. The left-right pairs of cells either
are in phase throughout the cycle, or half a period out of phase throughout
the cycle.

Because the network has twice as many cells as the animal has legs,
the analysis leads to the prediction that the number of waves that fits into
the ‘directly observable’ half of the network, cells 1 through 2n, is either
an integer or half an odd integer. It may therefore be significant that
Alexander [2] provides drawings of several gaits in a centipede. In all cases
the number of waves appears to be very close either to an integer (4, 3, 2)
or half an odd integer (2). In particular, the half odd integer pattern does
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occur; for example, the popular tripod gait of hexapods is a % gait.

It is possible to study secondary bifurcations in this network, analyzing
‘mixed mode’ solutions that are in a sense a nonlinear interaction between
primary gaits. This framework provides an explanation of quadruped gaits
such as rotary and transverse gallops; it also makes predictions about the
transitions to secondary gaits. For details, see Golubitsky et al. (30] and
Buono [§).

5. All-to-all coupling. A network of identical cells has all-to-all cou-
pling if each cell is coupled in the same manner to every other cell. The
symmetry group is then Sy, the symmetric group comprising all permuta-
tions of {1,...,N}.

Steady state bifurcation for Sy-equivariant systems is studied in Wood
(50). A dynamically more complex analogue, ‘half way between’ steady
and Hopf bifurcation, is treated by Aronson et al. [3]: this is the period-
doubling case. We shall not discuss period-doubling here, but there is a
theory analogous to Hopf bifurcation in which the group S! is replaced by
Z3. Indeed further generalizations are possible, see Brown (4]

Here we focus on Hopf bifurcation in all-to-all coupled cell networks.
First we state the classification of the C-axial subgroups of the symmetric
group Sy. The appropriate action of Sy x S! is the ‘natural’ action on

cNo = {(z1,...,2n) € CN|:1 + .-+ zy =0}

in which ¢ € Sy acts by permutations of cooedinates-and § € S! acts as
multiplication by el

(51) (0',9): =ew(:‘,(”,...,2,“v)).

The permutation representation of Sy on RV is absolutely irre-
ducible, and the representation (5.1) is isomorphic to RV 9 C and is
Sa-simple.

THEOREM 5.1. Suppose that N' > 2. Then the azes of Sy x S' acting
on C¥ have orbit representatives as follows:

Type I: .
Let N =qk+p where2 <k < N,g>1,p>0. Let { = e271/%, and sel

z=(1,...,5;¢,...,C;C3, ..., Lok, k=1.0,...,0).
( ¢ ¢ ¢ ¢ ¢ ¢ )
q 1 q a p

Type II: ,
Let N=q+p1<qg< %, and set

z=(1,...,1a,...,a)
S—— ——
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where a = —q/p.
Next we consider the corresponding isotropy subgroups. For type I we
have

—

2:=quzkap

where ! denotes the wreath product and the tilde indicates that Z, is
twisted into S'. In more explicit terms, let K = ker(6) = S2 x...x S§xS,,
where 5 is the symmetric group on Bi={(G-1)g+1,...,5¢} and S, is
the symmetric group on B, = {kg+1,..., N}. Define a to be the k-cycle

a=(l,q+l,‘2q+l,...,(k—1)q+1).

Then . = (K, (e, ()). The interpretation is that the solution comprises
k clumps of ¢ synchronized cells. The oscillations of the cells in distinct
clumps are identical except for phase shifts by ¥ wherem =0,..., k-1
and T is the period. Moreover, there is one further clump of p synchronized
cells with period T'/k.

In type II the isotropy subgroup is

S;:S,,XS,,

where the respective factors are the symmetric groups on {1,....,q} and
{qg + 1,...,N}. This corresponds to two clumps consisting of ¢ and p
synchronized cells.

6. Linear arrays of cells. Symmetry methods sometimes apply in
circumstances where the appropriate symmetries are not immediately ap-
parent. An instructive example occurs in linear arrays of cells, see Ep-
stein and Golubitsky [23]. Consider a linear array of ¥V identical cells,

Ci,...,Cwn, with bidirectional coupling between C; and Cj41 for j =
l,...,N —1asin figure 5(a). Then the model equations take the form

Sy

d.t[
dt
dz; ,
(61) d—;=f(xj—ltzjrxj+l) ]=2,...,A’-1

= f(xlyzlyzz)

dz
—dtﬁ =f(zN—l7vazN)

where f(z,y,2) = f(z,y,z) indicating bidirectional coupling. The form of
the equations for z,, Zn satisfies a discrete analogue of ‘Neumann boundary
conditions’, and the subsequent analysis is based on methods that were
originally developed for partial differential equations with symmetry (see
Gomes et al. [33)).

The only Symmetry evident in the network is the flip z; — TN41—5
However, the equations can be extended to a ring of 2V identical cells, with
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(a) (b)

FIG. 5. (a) Bidirectional linear array; (b) doubled bidirectional array in a ring.

D:ny symmetry, by the ‘reflection trick’. Introduce N new cells, labelled
C_1,...,Cy, arranged as in figure 5(b) and observe that any solution to
(6.1) can be extended to the ring by setting z_n = z,. This is true in both
the steady-state and the Hopf case. Such solutions lie in the fixed-point
space of the flip A : 5 = z_x. In short: solutions for the equations of
a linear array are in one-to-one correspondence with solutions for a Doy-
symmetric ring that lie in Fix(x).

Using these methods, Epstein and Golubitsky [23] classify steady-state
and Hopf bifurcations in linear arrays. The results are nontrivial: for
example in a 10-cell linear array the methods predict patterns of shape
ABCBAABCBA and ABBAABBAAB. They observe such patterns nu-
merically in linear arrays of Brusselators. S o

These ideas have been developed further for square arrays of coupled
cells by Gillis and Golubitsky (27]. Rectangular arrays could also be inves-
tigated by these methods.

There is also an analogue of Dirichlet boundary conditions if the oscil-
lators have internal Z, symmetry whose fixed-point space comprises states
that are identically zero. The reflection trick for PDEs can be extended
to Dirichlet boundary conditions, see Castro (6], Gomes et al. (33], and it
seems clear that a similar idea will work for linear or rectangular arrays of
cells.

Finally, the reflection trick can no doubt be developed for cells that
possess internal symmetries, see below. However, this has not yet been
done.

7. Internal symmetries. We end this survey with a quick introduf'
tion to an area that is extremely rich both in algebraic structure and in
dynamical behavior. This is the possibility of combining internal synv
metries of individual cells with network symmetries of the coupled system-
The theory developed for such systems currently concentrates on two t.‘:Pes
of coupling, known as direct product coupling and wreath product coupling:
These names are taken from group theory and describe the structure of tb¢
associated symmetry groups. For full details see Golubitsky et al. [31] 3
Dionne et al. (21, 22].
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We suppose that individual cells possess a local or internal symmetry
group £ C O(k). Here an element ¢ € £ is an internal symmetry if

f(ez;) = Lf(z;).

In other words, £ € £ acts as a symmetry of cell 7, ignoring all other cells
and any coupling effects.

Whether such internal symmetries are symmetries of the whole coupled
cell system depends on the coupling k. One reasonable requirement is that
when £ acts simultaneously on each cell, then it is a symmetry of the entire
coupled cell system. This boils down to the condition

(7.1) h(lz;, 8z;) = Ch(z;, z;).
If we define
bz = (bx,,...,Llzy),
then
F(lz) = ¢F(z)

and { is a symmetry of (2.2). It follows that £ x G are symmetries of (2.2)
where £ is viewed as the diagonal subgroup of £LV. In particular if the
coupling h is diagonal and linear, that is,

h(zi,z;) = z; - zj,

then the direct product £L x G is a symmetry group of (2.2).

However, we may also consider another natural case: systems for which
the action of € on each cell individually is a symmetry of the entire system
(2.2). To achieve this, we suppose that

(7,2) h(:c,-, te) = Eh(x;,::j)
(73) h(el';',xj) = h(.’L’,’,IJ‘)-

Any two of equations (7.1,7.2,7.3) imply the third. In this case, the group
LY isa symmetry group of (2.2); moreover, so is G. The wreath product
LG is the symmetry group generated by LV and G. Under the above
assumptions, L1 is a symmetry group of (2.2). The algebraic structure of
wreath products, which are perhaps less familiar than direct products, but
equally natural both physically and algebraically, is discussed in [43]. If G is
nontrivial, then the wreath product £16 is larger than the direct product
L x G. This implies that the system has more symmetry in the wreath
product case, so that wreath product coupling is likely to be more tractable
than direct product coupling, not less tractable. (The more symmetry there
is, the tighter the constraints on the system, and therefore the more you
can hope to prove about it.)
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EXAMPLE 7.1. An ezample of wreath product coupling is given by
(7.4) h(zi,z5) = |zil’z;.

The ezact form of such a system is:

N
Li = fle) + 3 Clidlinlss
i=1

In summary: if £ denotes the internal symmetries and G denotes the
global symmetries, then there are (at least) two natural types of coupling
leading to two different symmetry groups I'. The first type of coupling
leads to the direct product T' = L x G, whereas the second type of coupling
leads to the wreath product ' = L1G.

For information on stabilities in Hopf bifurcation for systems with
D; x D3 symmetry see Dangelmayr et al. [15], and for an application to
neural nets see Dangelmayr et al. [16]. For S}-symmetric systems with
internal Z» symmetry in the direct product case see Wood [51]. Dionne et
al. {22] classify Hopf bifurcations for Dy x O(2).

One characteristic feature of the wreath product case is that the cells
may divide into active and quiescent clumps, see Dionne et al. [21]. An-
other characteristic feature of the dynamics in wreath product coupled cell
systems is intermittency associated with heteroclinic cycles. See Field 25,
26, 17).

Motivation for both types of coupling, and examples where they are
physically realized, are given in Golubitsky et al. (31]. Analyses of steady-
state and Hopf bifurcation. setting up the necessary machinery for applying
the equivariant branching lemma and the equivariant Hopf theorem, can
be found in Dionne et al. [21] for wreath products, and in Dionne e al.
(22] for direct ptoducts. An error in the classification of C-axial subgroups
for wreath products is noted and corrected in Dias (18]. Information on
stability calculations in the wreath product case can be found in Dias and
Stewart [19], and observations on the associated invariant theory in Dias
and Stewart [20]. :
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