
1 23

Dynamic Games and Applications
 
ISSN 2153-0785
Volume 5
Number 2
 
Dyn Games Appl (2015) 5:180-213
DOI 10.1007/s13235-014-0116-0

Normal Forms and Unfoldings of Singular
Strategy Functions

Amit Vutha & Martin Golubitsky



1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.



Dyn Games Appl (2015) 5:180–213
DOI 10.1007/s13235-014-0116-0

Normal Forms and Unfoldings of Singular Strategy
Functions

Amit Vutha · Martin Golubitsky

Published online: 28 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We study adaptive dynamics strategy functions by defining a form of equivalence
that preserves key properties of these functions near singular points (such as whether or not a
singularity is an evolutionary or a convergent stable strategy). Specifically, we compute and
classify normal forms and low codimension universal unfoldings of these functions. These
calculations lead to a classification of local pairwise invasibility plots that can be expected in
systems with two parameters. This problem is complicated because the allowable coordinate
changes at such points are restricted by the specific nature of strategy functions; hence the
needed singularity theory is not the standard one. We also show how to use the singularity
theory results to help study a specific adaptive game: a generalized hawk—dove game studied
previously by Dieckmann and Metz.

Keywords singularity theory · Adaptive dynamics · Hawk-dove game

1 Introduction and Overview of Results

Theadaptive dynamics approach for studying evolution of phenotypic traits has been explored
by various authors such as Dieckmann and Law [4], Dercole and Rinaldi [6], Geritz et al. [8],
McGill and Brown [15], and Waxman and Gavrilets [20]. We describe some of the previous
work and introduce preliminary concepts before describing our results.

1.1 Evolutionary Game Theory

Adaptive dynamics uses a game theoretic approach to study the evolution of phenotypes
or heritable traits, such as the beak lengths of birds belonging to the same species. For a
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given fixed trait, the values of the trait are referred to as strategies. A fixed strategy value
x represents all individuals or groups whose trait has value x . Generally strategies can be
represented as vectors in Rn , where n can be thought of as the number of traits (though there
are other interpretations); our discussion is restricted to one trait, that is n = 1, as in [1,8,20].

The evolution of strategies is modeled using evolutionary interactions coming from a
two-player game. A game is defined using a real-valued function f (x, y) representing the
advantage for strategy y when playing against strategy x . We use the word advantage gen-
erally, with the only restriction being that if f (x, y) is positive (resp. negative, zero), then
y has an advantage (has a disadvantage, is unaffected) through the interaction. For a fixed
strategy x , adaptive dynamics assumes that there is no advantage for x in an interaction with
x . In other words, f (x, x) = 0 for all x .

Definition 1.1 The smooth function f : R × R → R is a strategy function if f (x, x) = 0
for all x .

There are many names used to describe strategy functions in the literature including
invasion fitness, invasion exponent, initial growth rate, and fitness [8,15,20].

In this paper, we classify the low codimension singularities of strategy functions and
their universal unfoldings. Singularity theory has been used in many contexts, but none of
the standard theories (such as catastrophe theory [10,16,17,21], zeros of mappings [12], or
bifurcation theory [11]) are appropriate for the study of strategy functions. There are two
reasons: the types of singularities of strategy functions in adaptive dynamics are different
from those in other theories and the changes of coordinates that preserve the singularities
of strategy functions are also different from the changes of coordinates in these other theo-
ries. Since singularity theory proceeds by classifying singularities up to allowable changes
of coordinates, it follows that we must develop a new singularity theory to study strategy
functions. Having said this, Damon [2] developed a general unfolding theory for contexts
in which singularity theory is feasible and the new notion of strategy equivalence that we
define (see Definition 1.7) falls into the class that Damon considered. As a result, we will not
need to re-prove the main theorems in this new context. Note that in order to use singularity
theory, we assume that strategy functions f are C∞ smooth.

Next we describe the two types of singularities (ESS and CvSS) that occur in adaptive
dynamics.

Evolutionarily stable strategies (ESS) Maynard-Smith and Price [13,14] used game the-
oretic techniques to model problems in animal conflict. They were interested in optimal (or
winning) strategies s defined as follows: the greatest advantage to y while playing against s
is obtained by playing s. Such a strategy s was called an evolutionarily stable strategy (ESS).
Their definition of ESS formed the basis of much future work. We note that the models
used by Maynard-Smith and Price were defined on a discrete set of trait values; we focus
on continuous trait models. In recent theory, the definition of an ESS point s is given as a
nondegenerate local maximum of f (s, ·).

Definition 1.2 A strategy s for the strategy function f is a singular strategy if fy(s, s) = 0.
A singular strategy s is an ESS if fyy(s, s) < 0.

Since locally other strategies have a disadvantage when playing against an ESS, there was
an understanding in early work that an ESS would emerge as the winner of the evolutionary
process. Note that Definition 1.2 does not specify the sign of f (x, s), that is, the advantage
that an ESS strategy s has against other strategies.
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The concept of ESS has been generalized in many ways. Vincent and Brown [18] extend
Definition 1.2 to strategy functions on (Rn)m for m strategies and n traits, but we restrict our
attention to two players (m = 2) and a single trait (n = 1).

Convergence stable strategies (CvSS) Adaptive dynamics is a technique that uses strat-
egy functions to describe strategy evolution for a given trait r . The underlying idea is that
an environment contains players playing all possible strategies, and that r evolves in time t
according to the advantage or disadvantage obtained by playing r against nearby strategies
or mutations. Indeed, adaptive dynamics assumes that r moves towards mutations y when
f (r, y) > 0 and moves away from y when f (r, y) < 0. Note that up to first order, the sign
of f (r, y) is given by the sign of the selective fitness gradient fy(x, y) when x = y = r ; that
is,

dr

dt
= β fy(r, r), (1.1)

where β > 0 is a constant.
Definition 1.2 implies that ESS is an equilibrium of (1.1). A second kind of singular

strategy follows from the assumption of adaptive dynamics.

Definition 1.3 A singular strategy s is a convergence stable strategy (CvSS) if s is a linearly
stable equilibrium for (1.1).

Note that an equilibrium of (1.1) at s may or may not be be stable. Thus, a fixed strategy
can move closer to or farther away from a singular strategy s.

In addition, certain derivatives of a strategy function f vanish along the diagonal (x, x).
For example,

fx + fy = 0
fxx + 2 fxy + fyy = 0

fxxx + 3 fxxy + 3 fxyy + fyyy = 0
(1.2)

at (x, x) for all x . It follows that s is a singular strategy if and only if ∇ f = 0 at (s, s).

Lemma 1.4 A singular strategy is a CvSS if and only if fyy − fxx < 0 at (s, s).

Proof An equilibrium s of (1.1) is linearly stable if and only if the derivative of fy(r, r)with
respect to r at s is negative; that is, if

∂

∂r
fy(r, r) = fxy(r, r) + fyy(r, r) < 0

at r = s. By (1.2) fxy = − 1
2 ( fxx + fyy) at (s, s) and hence

0 > fxy + fyy = 1

2
( fyy − fxx )

at (s, s). ��
Remark 1.5 Definitions 1.2 of ESS and 1.3 of CvSS do not imply one another. It is easy to
check that the two derivatives fyy and fyy − fxx are independent at (s, s). Thus, a given
singular strategy may be either ESS or not and either CvSS or not. For example, at the origin,
f (x, y) = (x − y)y is CvSS but not ESS.

We note that Dieckmann and Law [4] and Geritz et al. [8] have codified the canonical
equation of adaptive dynamics as

dr

dt
= 1

2
α(r)N̂ (r)σ 2(r) fy(r, r), (1.3)
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Table 1 Solution to the recognition problem for singularities of low codimension for strategy functions f
with a singular strategy at (0, 0). E1, E2, E3 are defined in (1.9) and δ = ±1, ε = ±1

Defining Nondegen Codim Normal form h

– fyy 0 ε(x + δ(y − x))(y − x)

fyy − fxx ε = sgn( fyy − fxx ) δ = εsgn( fyy)

fyy fyy − fxx 1 εx(y − x)

ε = −sgn( fxx )

fyy − fxx fyy 1 ε(y − x + x2)(y − x)

E1 ε = sgn( fyy)

fyy − fxx fyy 2 ε(y − x + δx3)(y − x)

E1 E2 ε = sgn( fyy) δ = ε sgn(E2)

fxx E1 3 ((x + σ(y − x))2 + δ(y − x)2)(y − x)

fyy E3 δ = sgn(E3) σ = ( fxyy + fyyy)/
√
4|E3|

See Theorem 5.5

where α is the probability per birth event, N̂ is the equilibrium population size, and σ 2 is
the variance of phenotypic effect. See [3] for a discussion of the canonical equation. The
important point for us is that a singular strategy s is linearly stable for (1.1) if and only if it
is linearly stable for the more general adaptive dynamics equation (1.3).

1.2 Adaptive Dynamics Singular Strategy Types

Suppose f is a strategy function with a singular strategy at s. We label the type of the singular
strategy in the following way. A singular strategy s is

CvSS+ if fyy(s, s) − fxx (s, s) < 0
CvSS− if fyy(s, s) − fxx (s, s) > 0
CvSS0 if fyy(s, s) − fxx (s, s) = 0
ESS+ if fyy(s, s) < 0
ESS− if fyy(s, s) > 0
ESS0 if fyy(s, s) = 0.

(1.4)

The type of a given singular strategy is given by its CvSS label and its ESS label. For example,
a singular strategy is labeled CvSS+ESS+ if it is CvSS and ESS. In some of the literature,
a singularity that is both ESS+ and CvSS+ is called a continuously stable strategy or CSS
[7,15]. Singularity theory studies properties of singularities of functions that are invariant
under changes of coordinates. In our study, we define changes of coordinates that preserve
ESS and CvSS singularity types.

We refer to singular strategies of type ESS0 or CvSS0 as degenerate singular strategies.
McGill and Brown [15] studied the nondegenerate singular strategies. Dieckmann and Metz
[5] observed the simplest (codimension one) example of a ESS0 degenerate singularity. Geritz
et al. [9] observed the simplest (codimension one) example of a CvSS0 degenerate singu-
larity as well as a more degenerate (codimension two) CvSS0 singularity. In this paper, we
provide a theory that enables us to classify nondegenerate and degenerate singular strategies
of strategy functions and their perturbations, and we carry out this complete classification
through (topological) codimension two. See Table 1.
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In Geritz et al. [8], the authors introduce a classification scheme based on CvSS and ESS
along with two additional singularity types, as follows. If fxx (s, s) < 0, the singular strategy
s wins against all mutant strategies. If fxx (s, s)+ fyy(s, s) > 0, then there exist open regions
of pairs x, y near r where x has an advantage against y and y has an advantage against x .
Such pairs are called dimorphisms. This classification leads to eight different types of singular
strategies. See Vutha [19, Chap. 6] for a description of the singularity theory that corresponds
to the scheme in [8]. In this paper, we restrict our attention to the theory that preserves only
the ESS and CvSS types of a singular strategy.

1.3 Equivalence of Strategy Functions

We define a notion of equivalence between two strategy functions f and f̂ that preserves
ESS and CvSS type singularities.

In singularity theory, two functions f, f̂ : R2 → R are contact equivalent if

f̂ (x, y) = S(x, y) f (�(x, y)), (1.5)

where S : R2 → R is a smooth map and � : R2 → R2 is a diffeomorphism such that

(a) S(x, y) > 0
(b) det(d�)x,y > 0

Remark 1.6 Contact equivalence gives the most general coordinate changes that preserve
singularities of functions. Suppose f = fx = fy = 0 at (x0, y0). If f̂ is contact equivalent
to f , then f̂ = f̂x = f̂ y = 0 at �−1(x0, y0).

In this paper, we modify contact equivalence so that the structure of strategy functions
and the types of their singularities are also preserved. That is, if f is a strategy function, then
so is f̂ . In particular, f̂ must vanish on the diagonal for every strategy function f . Hence, �
must map the diagonal into itself and there must exist φ : R → R such that

(c) �(x, x) = (φ(x), φ(x)) for every x

In Proposition 1.8, we show that contact equivalences for which the diagonal condition
[(c)] holds also preserve the CvSS type at a singular point (x0, x0). Note that if� ≡ (�1,�2)

for �i : R2 → R, the diagonal condition (c) implies

�1x + �1y = �2x + �2y

at (x, x) for all x .
We also require that the equivalence preserves ESS type at a singular strategy. We show

in Proposition 1.8 and Lemma 1.10 that ESS type is preserved if and only if

(d) �1y(x, x) = 0 for every x

Definition 1.7 A pair (S,�) is a strategy equivalence if the pair satisfy (1.5) (a)–(d). The
strategy functions f̂ = S f (�) and f are called strategy equivalent and denoted as f̂ 	 f .

Note that the set of strategy equivalences is a group. In particular, (S,�)−1 = ( 1
S ,�−1

)
.

Proposition 1.8 Let f and f̂ = S f (�) be strategy equivalent. Suppose f has a singular
strategy at (x0, x0). Then, f̂ has a singular strategy at�−1(x0, x0). Moreover, the singularity
of f̂ at �−1(x0, x0) has the same CvSS and ESS type as the singularity of f at (x0, x0) has.
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Proof Remark 1.6 notes that f̂ = f̂ y = f̂x = 0 at (φ−1(x0), φ−1(x0)) whenever f = fx =
fy = 0 at (x0, x0). Therefore, f̂ has a singular strategy at (φ−1(x0), φ−1(x0)) whenever
f has a singular strategy at x0. We prove the proposition for left changes of coordinates
described by S and for right changes of coordinates described by � separately.

Suppose

f̂ (x, y) = S(x, y) f (x, y),

where S(x, y) > 0. Then a calculation shows

f̂x x = S fxx f̂yy = S fyy

at (x, y) = (x0, x0). Since S(x0, x0) > 0, we have

sgn( f̂ yy − f̂x x ) = sgn( fyy − fxx )

sgn( f̂ yy) = sgn( fyy)

at (x0, x0). Therefore, the singularity (x0, x0) of f has the same ESS type and the same CvSS
type as the singular strategy (x0, x0) of f̂ .

Next, suppose

f̂ (x, y) = f (�(x, y)),

where �(x, y) satisfies (1.5) (b)–(d). Write

�(x, y) =
(
a 0
c d

) (
x
y

)
+ · · ·

Since � preserves the diagonal, it follows that a = c + d . A calculation shows

f̂x x = a2 fxx (�) + 2ac fxy(�) + c2 fyy(�)

f̂ yy = d2 fyy(�)

at (φ−1(x0), φ−1(x0)). In particular,

sgn( f̂ yy(φ
−1(x0), φ

−1(x0))) = sgn( fyy(x0, x0))

Therefore, (x0, x0) for f has the same ESS type as (φ−1(x0), φ−1(x0)) for f̂ . We show
that the CvSS type is also preserved. Since f (�) vanishes on the diagonal x = y, it follows
from (1.2) that

2 fxy(�) = −( fxx (�) + fyy(�))

at (φ−1(x0), φ−1(x0)). Therefore,

f̂x x = (a − c)(a fxx (�) − c fyy(�)) = d(a fxx (�) − c fyy(�))

at (φ−1(x0), φ−1(x0)). This implies

f̂ yy − f̂x x = ad( fyy − fxx )

at (φ−1(x0), φ−1(x0)). Since det(d�)x0,x0 = ad > 0, Therefore, under left changes, the
singular strategy (φ−1(x0), φ−1(x0)) has the same CvSS type for f̂ as the singular strategy
(x0, x0) has for f . ��
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Remark 1.9 Suppose f and f̂ = S f (�) are contact equivalent. The proof of Proposition
1.8 shows that CvSS singularities are preserved whenever (1.5)(c) holds, whereas the proof
of this proposition shows that ESS singularities are preserved whenever both (1.5)(c) and
(1.5)(d) hold.

Lemma 1.10 Suppose the ESS type of a singular strategy is preserved by the contact equiv-
alence f̂ = f (�) for every strategy function f with a singular strategy at (x0, x0). Then,
(1.5) (d) is satisfied at all points on the diagonal.

Proof Suppose ESS type is preserved for every strategy function f . Writing,

�(x, y) = (ax + by, cx + dy) + · · ·
we find

f̂ yy = b2 fxx (�) + 2bd fxy(�) + d2 fyy(�)

at �−1(x0, x0). Choose fyy(�) = 0 and fxx (�) = 1. Remark 1.2 implies fxy(�) = − 1
2 .

Substituting, we find

f̂ yy = b2 − bd

at �−1(x0, x0). Since ESS type is preserved and f̂ yy = 0 at �1(x0, x0), we must have

0 = b2 − bd

In other words, b = 0 or b = d . But (d�)x,x > 0 and (1.5)(d) imply b 
= d , which imply
b = 0. Since we can choose the singular point anywhere on the diagonal, (1.5)(d) is satisfied
at all points on the diagonal. ��
1.4 Singularity theory

As discussed in Golubitsky and Schaeffer [11], there are four major types of result in local
singularity theory: determinacy; classification; unfoldings and codimension; and determinacy
for universal unfoldings. We discuss these types of result in the context of strategy equiva-
lence.

Determinacy Theory for Strategy Functions

Consider a strategy function f : R2 → R defined on a neighborhood of a singular point.
Determinacy theory solves the problem of when a strategy function f is strategy equivalent to
given normal form h. The solution has two features: defining conditions and nondegeneracy
conditions, which are given in terms of the derivatives of f at the singularity. More precisely,
defining conditions are equalities and nondegeneracy conditions are inequalities among the
derivatives of f at the singularity. For example, we prove in Theorem 5.5(b),

Theorem 1.11 A strategy function f is strategy equivalent to the normal form

h(x, y) = ε(y − x)x, (1.6)

on a neighborhood of the origin if and only if the defining conditions

f = fy = fyy = 0 (1.7)
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Fig. 1 Flowchart for recognition of low codimension singularities of Table 1

are satisfied at (0,0) and the nondegeneracy condition

fxx 
= 0 (1.8)

is satisfied at (0,0), where ε = −sgn( fxx (0, 0)).

In other words, the defining conditions (1.7) and the nondegeneracy condition (1.8) solve
the recognition problem for the normal form h in (1.6). In Sect. 4,we presentmethods that lead
to a solution of the recognition problem for a given strategy function h. This information
is useful in applications, since in principle one can test whether a strategy function f is
strategy equivalent to a (presumably) simpler normal form strategy function h.

Classification for Strategy Functions

The answer to the question of obtaining an appropriate normal form for a given strategy func-
tion is still complicated, because one does not know in advance which recognition problem
needs to be solved. One way around this difficulty is to classify the normal forms with a fixed
number of defining conditions. This classification gives a flow chart of possible singularities.
One then tests in order the defining and nondegeneracy conditions of the classified singular-
ities until one finds which singularity is present in f and what the normal form of f is. In
Table 1, we present the classification of normal forms with five or fewer defining conditions.
These conditions involve the derivatives

E1 = fxxy + 2 fxyy + fyyy

E2 = fxxxy + 3 fxxyy + 3 fxyyy + fyyyy

E3 = − 1

36
(4 fxxx fyyy + 3( fxyy + fyyy)

2) (1.9)

at the singular point, and are given by the Classification Theorem 5.5. The information in
Table 1 is most easily understood using the flow chart in Fig. 1.
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Table 2 Universal unfoldings H of normal forms h in Table 1 and recognition of universal unfoldings F of
f when f 	 h

Universal unfolding H of normal form h Necessary conditions for F to be an unfolding of f 	 h

ε(y − x)(x + ay) det

(
fyy − fxx fxyy + fyyy
2Fay Fayy

)

= 0

ε(y − x)(y − x + x2 + a) Fay 
= 0

ε(y − x)(y − x + δx3 + a + bx) det

(
Fay Fayy − Faxx
Fby Fbyy − Fbxx

)

= 0

(y − x)((x + σ(y − x))2 + δ(y − x)2

+ a + b(y − x))
det

⎛

⎝
0 fxxx + fxxy fxyy + fyyy
Fay Faxx Fayy
Fby Fbxx Fbyy

⎞

⎠ 
= 0

Unfolding Theory and Codimension for Strategy Functions

Unfolding theory is the deepest part of singularity theory; universal unfoldings classify up
to equivalence all small perturbations of a given f . Unfoldings are parametrized families of
strategy functions and universal unfoldings are parametrized families that contain all nearby
singularities up to strategy equivalence. The number of parameters in a universal unfolding
of f is the codimension of f , denoted codim f .

The classification mentioned previously is a classification by codimension. Once a degen-
erate singularity is identified, unfolding theory allows us to classify all possible nondegenerate
games that can be obtained from small perturbations of f . For example, in Theorem 5.5(b),
we prove that the universal unfolding of h in (1.6) has codimension 1 and is

H(x, y, a) = ε(y − x)(x + a(y − x)) (1.10)

for a near 0. The parameter value a = 0 separates region a > 0 from region a < 0 where
the unfolding leads to inequivalent games. The universal unfoldings of the normal forms in
Table 1 are given in Table 2.

Determinacy Theory for Universal Unfoldings

Suppose that F(x, y, α) is a k-parameter unfolding of f (x, y) = F(x, y, 0) where f has a
codimension k singular strategy at the origin. Suppose also that f (x, y) is strategy equivalent
to a normal form h(x, y). That is, we know that f satisfies the defining and nondegeneracy
conditions of h. We then ask when is the given F a universal unfolding of f ? This question
is discussed in Sect. 6 where the answer can be given by showing that a certain matrix has
a nonzero determinant. The answer for the normal forms in Table 1 is also given in Table 2.
These results are used in Sect. 3 when we analyze the Dieckmann–Metz example.

1.5 Structure of the Paper

Having introduced the singularity theory classification and unfolding results in this opening
section, we present the corresponding pairwise invasibility plots in Sect. 2. In Sect. 3, we
apply our results to a highly nonlinear hawk-dove game studied by Dieckmann andMetz [5].
We show that the singularity studied in [5] is one of the two codimension one singulari-
ties in our classification (Table 1). We also show that the elliptic topological codimension
two singularity appears at certain parameter values in the Dieckmann–Metz model. Further
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discussion is needed to understand the importance of the existence of specific higher order
singularities in applications.

Sections 4 and 5 answer the question: When are two singularities of strategy functions
equivalent? We present the needed singularity theory results in Sect. 4 and show how this
theory can be used to classify the singularities that might be expected in two parameter
systems in Sect. 5. Note that the strategy function assumption f (x, x) ≡ 0 implies that

f (x, y) = (y − x)g(x, y).

We call g a payoff function. The singularity theory calculations are best done using payoff
functions rather than strategy functions and in coordinates u = x, v = y − x whose axes are
the vertical line and the diagonal. These results are then translated back to the results in xy
coordinates listed in this section.

The final section (Sect. 6) discusses the theory behind universal unfoldings (which classify
all small perturbations of a given singularity up to strategy equivalence) and how to compute
universal unfoldings of a given singularity. The discussion in Sects. 4–6 show how subspaces
and ideals in the space of functions that are defined locally near a singularity (germs) can be
used to prove the existence of normal forms and universal unfoldings and how to relate the
abstract classification results to tools that help analyze specific applications.

We end this introduction by noting that the singularity theory results are all based on the
specific kinds of strategy equivalenceswe chose. In this case,we have chosen themost general
changes of coordinates that preserve ESS and CvSS singularities in single trait models. If
additional singularity types are preserved, then the allowable changes of coordinates will
change, as will the classification results. SeeVutha [19]. One of themost interesting questions
for future work is to consider the singularity theory setting for dimorphisms, where the game
theoretic singularities of f (x, y) and f (y, x) are simultaneously preserved.

2 Geometry of Unfolding Space

In a given universal unfolding, the classification of small perturbations proceeds by deter-
mining parameter values where singularity types change. See [11, Chap. III, §5]. In the
parameter space of a universal unfolding of a strategy function, there are three varieties
where such changes occur; these varieties are based on degeneracies (CvSS0, ESS0) and
bifurcations. Bifurcation points in parameter space occur at points in phase space where the
zero set of F is singular. Specifically, suppose F(x, y, α), where α ∈ Rk , is a universal
unfolding of f (x, y). Then we define

C = {α ∈ Rk : ∃ x such that Fx = Fyy − Fxx = 0 at (x, x, α)}
E = {α ∈ Rk : ∃ x such that Fx = Fyy = 0 at (x, x, α)}
B = {α ∈ Rk : ∃ x, y such that F = Fx = Fy = 0 at (x, y, α)} (2.1)

The transition variety is the union of the degenerate CvSS variety C , the degenerate ESS
variety E , and the bifurcation variety B; that is,

T = C ∪ E ∪ B

The transition variety is a codimension 1 real algebraic variety in parameter space whose
complement consists of connected components. The main geometric result about universal
unfoldings states that strategy functions associated to two sets of parameters in the same
connected component of the complement of the transition variety T in parameter space
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Table 3 Transition varieties for universal unfoldings of normal forms of topological codimension≤ 2.Normal
forms are written in u, v coordinates. Note that ε = ±1 and δ = ±1

Universal unfolding G′(·, α) B E C

ε(u + δv) – – –
ε(u + av) – a = 0 –
ε(v + u2 + a) – – a = 0
ε(v + δu3 + a + bu) – – a2 − 4

27 δb3 = 0
(u + σv)2 + δv2 + a + bv b2 − 4δa = 0 b2 + 4σ 2a = 0 a = 0

are strategy equivalent. More specifically, each connected component of the complement
corresponds to a unique pairwise invasibility plot (up to equivalence). See Sect. 2.2.

2.1 Transition Varieties

We can simplify the calculation of the transition varieties in two ways. First, since universal
unfoldings vanish on the diagonal, they can be written as

F(x, y, α) = (y − x)G(x, y, α).

Second, in the theoretical calculations, it is simpler to work in the coordinates u = x and
v = y − x . That is, we define

G ′(u, v) = G(u, u + v) = G(x, y)

We begin by rewriting (2.1) in terms of G̃ and obtain

C = {α ∈ Rk : ∃ x such that G = Gx + Gy = 0 at (x, x, α)}
E = {α ∈ Rk : ∃ x such that G = Gy = 0 at (x, x, α)}
B = {α ∈ Rk : ∃ x, y such that G = Gx = Gy = 0 at (x, y, α)} (2.2)

Next, we rewrite (2.2) using uv coordinates and G to obtain

C = {α ∈ Rk : ∃ u such that G ′ = G ′
u = 0 at (u, 0, α)}

E = {α ∈ Rk : ∃ u such that G ′ = G ′
v = 0 at (u, 0, α)}

B = {α ∈ Rk : ∃ u, v such that G ′ = G ′
u = G ′

v = 0 at (u, v, α)} (2.3)

Using (2.3), we compute the transition varieties for the low codimension singularities
displayed in Table 2 and list the results in Table 3.

2.2 Persistent Pairwise Invasibility Plots

We classify persistent perturbations (those perturbations corresponding to the connected
components of the complement of the transition variety) of the universal unfolding of each
singularity of low codimension. Persistent perturbations h(x, y) are displayed using pairwise
invasibility plots. These are plots of the zero set of h in the xy plane; regions where h(x, y)
is positive (advantage to mutant) are indicated by + and regions where h(x, y) is negative
(disadvantage to mutant) are indicated by −. In addition, the types of singularities in h are
also indicated.

Wedescribe the typeof a given singular point using theCvSSandESS labels in (1.4).Recall
that a singular point is CvSS+ if it is a linearly stable equilibrium for the canonical equation
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Table 4 Markers for different
singularity types on the pairwise
invasibility plots (Color table
online)

Codimension 0 • CvSS+ESS+
� CvSS−ESS+
• CvSS+ESS−
� CvSS−ESS−

Codimension 1 • CvSS+ESS0
� CvSS−ESS0
� CvSS0ESS+
� CvSS0ESS−

Codimension 2 � CvSS0ESS0

(1.1), whereas a singular point is ESS+ if all mutant strategies experience a disadvantage
against the singular strategy. Near a degenerate CvSS0 or ESS0 singular point, a small change
in parameters can change the number and CvSS and ESS type of the singular point and it can
change the number of signed regions (often by introducing new bounded signed regions).
The formation or loss of these regions occurs independently of changes in the number of
nondegenerate singularities and their type. Therefore, the singularity theory approach to
classification of strategy functions provides an extra level of detail in adaptive dynamics, and
this detail corresponds to a phenomenon that is away from the diagonal and captured by the
bifurcation varietyB. Indeed, one of the benefits of unfolding theory is that it can rigorously
capture quasi-global information using local techniques.

The pairwise invasibility plots of persistent perturbations that we draw all indicate the
singularity type according to the following scheme. The ESS singularity type is given by
color and the CvSS singularity type is given by shape. Specifically, red indicates ESS+ and
green indicates ESS−; circle indicates CvSS+ and square indicates CvSS−. Therefore, a red
square indicates an CvSS−ESS+ singularity, etc. In addition, degenerate singularity types
are specified as follows: yellow indicates ESS0 and diamond indicates CvSS0. See Table 4.

In the following,we showpairwise invasibility plots associated to universal unfoldings (see
Table 2) of normal forms with topological codimension 0, 1, and 2 (see Table 1). The captions
in the figures for codimensions 0 and 1 give game theoretic interpretations. The unfoldings
of higher codimension singular strategies contain combinations of the lower codimension
cases. In particular, the multiplicity of singular strategies and the regions of advantage and
disadvantage are quite complicated to explain in words; the figures adequately enumerate the
possibilities.

Codimension zero In Fig. 2, we show the pairwise invasibility plots of codimension 0
normal forms (see Theorem 5.5 (a)) given by f (x, y) = ε(y − x)(x + δ(y − x)) for ε =
±1, δ = ±1. Since these normal forms have codimension 0, the ESS and CSS type of
a singular point for these normal forms is preserved under all perturbations of the strategy
function. The four representative normal forms recover the classification of strategy functions
discussed in McGill and Brown [15].

Codimension one For codimension one singularities with unfolding parameter a, the tran-
sition variety is the origin and it divides parameter space into two connected components
a < 0 and a > 0.

There are two pairs of codimension one singularities. The first pair is given by the normal
form (1.6) and universal unfolding (1.10); it consists of singularities that are degenerate ESS
andnondegenerateCvSS.Strategy functions corresponding to one connected component have
a nondegenerate ESS+ singular point, whereas those corresponding to the other connected
component have a nondegenerate ESS− singular point. See Fig. 3.
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Fig. 2 Codimension zero normal forms ε(y − x)(x + δ(y − x)). These singularities are distinguished as
follows: when δ = −1 the best that player B can do against player A is to to play the same strategy as player
A. The singular strategy is stable on an evolutionary time scale when ε = −1 and unstable when ε = +1. An
analogous description holds when δ = +1

Fig. 3 Codimension one unfolding of degenerate ESS0: ε(y − x)(x + a(y − x)). When ε = −1, the singular
strategy is stable on an evolutionary time scale and there is a transition from unstable ESS for a < 0 to stable
ESS for a > 0. When ε = +1, the singular strategy is unstable on an evolutionary time scale and there is a
similar transition in ESS type

The second pair is given by the normal form f (x, y) = ε(y − x)(y − x + x2) with
universal unfolding F(x, y, a) = ε(y − x)(y − x + x2 + a); it consists of singularities
that are degenerate CvSS with nondegenerate ESS. Strategy functions with a < 0 have no
singular points whereas they have a CvSS+–CvSS− pair of nondegenerate singular points
for a > 0. See Fig. 4.

Codimension two In Fig. 5, we show invasibility plots for the codimension two normal
form f (x, y) = ε(y − x)(y − x + δx3) (Theorem 5.5 (c) when k = 2). This normal form is



Dyn Games Appl (2015) 5:180–213 193

Fig. 4 Codimension one unfolding of degenerate CvSS0: ε(y − x)(y − x + x2 + a). Two singular strategies,
one of which is stable on an evolutionary time scale and the other unstable, coalesce and disappear as a
increases through 0. The type of ESS depends on the the sign of ε. In addition, there is a transition in the
regions of advantage and disadvantage

a higher codimension example of a strategy function with a CvSS0 singularity. The universal
unfolding of f (x, y) is

F(x, y, a, b) = ε(y − x)(y − x + δx3 + a + bx)

F(·, a, b) has a singular strategy for all values of a, b given by the intersection of the
zero set of the cubic payoff function g(x, y) = y − x + δx3 + a + bx and the diagonal
x = y. The transition variety consists of C = {a2 = 4

27δb
3} and is a cusp in the ab plane.

The complement of this transition variety consists of two disconnected components. In one
component, F(·, a, b) has a single nondegenerate singular strategy. In the other component,
F(·, a, b) has three nondegenerate singular strategies. See Fig. 5. The precise types of these
singularities depend on ε and δ as shown in that figure.

The transition fromone to three singular points is a higher codimension analog of theCvSS
transition in codimension one. In fact, the two newly formed singular points are necessarily
a CvSS+,CvSS− pair of nondegenerate singular points which preserve the ESS type of the
degenerate point. Note that two bounded signed regions form during this transition.

Codimension three; topological codimension two In Figs. 6, 7, 8 and 9, we show transition
varieties and pairwise invasibility plots for the topological codimension two normal form

f (x, y) = (y − x)((x + σ(y − x))2 + δy2)

These normal forms have codimension three and are the simplest examples of strategy
functions that have a CvSS0ESS0 singularity. The parameter σ is a modal parameter (see
[11, Chap V]; that is, strategy functions for different σ are strategy inequivalent, but they all
have the same codimension (in this case three). The universal unfolding of f (x, y) is

F(x, y, a, b, τ ) = (y − x)((x + (σ + τ)(y − x))2 + δy2 + a + b(y − x)),

where a, b, τ are near 0. The parameters a, b are unfolding parameters (of the entire codi-
mension three one-parameter family f that depends on σ ). Therefore, f is said to have C∞
codimension three and topological codimension two.

Different types of pairwise invasibility plots corresponding to parameters a, b (for fixed
σ ) are enumerated by connected components of the complement of the transition variety,
where
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Fig. 5 Codimension two unfoldings of the four degenerate CvSS0 singularities given by ε = ±1; δ = ±1;
H(x, y, a, b) = ε(y − x)(y − x + δx3 + a + bx)

(a) (b) (c)

Fig. 6 Transition variety T in ab plane for the topological codimension two normal form h(x, y) = (y −
x)((x + σ(y − x))2 + (y − x)2). See Fig. 7 for associated pairwise invasibility plots

C = {a = 0} E = {b2 = −4aσ 2} B = {b2 = 4aδ}.

For a fixed value of σ , these varieties are given as a line and two parabolas in the ab plane.
Persistent invasibility plots consist of the diagonal x = y and either an ellipse (δ = +1)

or an hyperbola (δ = 1). The possible intersections of the conic with the diagonal depend
on σ in certain ranges: σ < 0 or σ > 0 in the elliptical case or σ < −1,−1 < σ < 0, 0 <

σ < 1, 1 < σ in the hyperbolic case. See the transition varieties and their complements in
Figs. 6 and 8.
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Fig. 7 Pairwise invasibility plots for the topological codimension two universal unfolding H(x, y) = (y −
x)((x + σ(y − x))2 + (y − x)2 + a + b(y − x)) for regions given in Fig. 6

3 The Dieckmann–Metz Example

Dieckmann and Metz [5] consider generalizations of the classical hawk-dove game that lead
to strategy functions. The hawk-dove game has two players A and B who can play either
a hawk strategy or a dove strategy with payoffs given in Table 5. Here V > 0 is a reward
and C ≥ 0 is a cost. The entries in the matrix give the payoff that player A receives when
different combinations of strategies are pursued. Specifically, when both players play hawk,
the players share equally the reward V and the cost C . When both players play the dove
strategy, the reward V is shared equally by both players. Finally, when one player plays hawk
and the other plays dove, the player playing hawk gets the reward V . Hence, the payoff matrix
for player A is the one in Table 5.

In fact, [5] considers a game where A plays hawk with probability x (and therefore dove
with probability 1 − x) and B plays hawk with probability y. Dieckmann and Metz then
show that the advantage for B in this game is given by the strategy function

f (x, y) = (y − x)(V − Cx) (3.1)

Note that for x∗ = V/C , f (x∗, y) = 0 for all y. Therefore, B has no advantage or
disadvantage against A when A plays x∗. Direct calculation shows that f = fy = fyy = 0
and fxx > 0 at (x∗, x∗). Hence, f has a codimension one ESS0 singularity at (x∗, x∗)whose
universal unfolding is
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(a) (b)

(d)

(c)

(e) (f) (g)

Fig. 8 Transition variety T in ab plane for the topological codimension two normal form h(x, y) = (y −
x)((x + σ(y − x))2 − (y − x)2. See Fig. 9 for the associated pairwise invasibility plots

F(x, y, a) = f (x, y) + a(y − x)(y − x∗),

where a near 0. The universal unfolding F has two different outcomes based on the sign
of a. If a > 0 then B has an advantage for all strategies, whereas if a < 0, then B has a
disadvantage for all strategies. In other words, the ESS type at the singular strategies changes
under small perturbations. Dieckmann and Metz refer to f as a degenerate game.

Dieckmann and Metz consider variations of (3.1) that lead to parametrized families of
strategy functions, which are based on various ecological assumptions [5]. Their most com-
plicated game has the form

f (x, y) = ln

(
1 + Q(x, y)

1 + Q(x, x)

)
, (3.2)

where

Q(x, y) = A(x, y)B(x, y)/R

A(x, y) = 1

2

√
P(x)P(y)

P(x) = r0 + r1(x − x0) + r2(x − x0)
2
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Fig. 9 Pairwise invasibility plots for the topological codimension two universal unfolding H(x, y) = (y −
x)((x + σ(y − x))2 − (y − x)2 + a + b(y − x)) for regions given in Fig. 8

B(x, y) = V (1 − x + y) − Cxy.

The strategy function (3.2) has parameters V,C, R, r0 > 0 and x0, r1, r2 which are fixed.
We will choose f so that it has a singularity at (x0, x0). Therefore, we need f (x0, x0) to be
defined, that is, we require 1 + Q(x0, x0) > 0, which follows from assuming

x20 <
r0V + 2R

r0C
. (3.3)

In [5], Dieckmann and Metz claim that the strategy function (3.2) has the same ESS0
degeneracy as in (3.1) for certain parameter values. InTheorem3.2 (a),we verify the existence
of this codimension one singularity using the techniques in this paper. We also note that our
classification theorem gives us a way to calculate degenerate singularities in a given model.
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Table 5 The hawk-dove game Player B Hawk Player B Dove

Player A Hawk 1
2 (V − C) V

Player A Dove 0 1
2V

(Such degeneracies were called an organizing centers by Thom [17] and Zeeman [21].) We
can do this by checking certain derivatives and following the logic in the flow chart in Fig.1.
Indeed, by using these techniques, we extend the analytic results of Dieckmann and Metz on
the hawk-dove system [5] in Theorem 3.2 (b,c). In our calculations, we show that singularities
of (3.2) and their respective types can be given in terms of Q and its derivatives.

Lemma 3.1 The strategy function (3.2) has a singular strategy at (x0, x0) if and only if
Qy(x0, x0) = 0. Moreover, at a singular strategy

sgn( fxx ) = −sgn(2Qxy + Qyy)

sgn( fyy) = sgn(Qyy)

sgn( fyy − fxx ) = sgn(Qxy + Qyy). (3.4)

Proof Observe that

fx (x, y) = Qx (x, y)

1 + Q(x, y)
− Qx (x, x) + Qy(x, x)

1 + Q(x, x)

fy(x, y) = Qy(x, y)

1 + Q(x, y)
(3.5)

Therefore, since 1 + Q(x0, x0) is assumed positive, f has a singular strategy at (x0, x0)
if and only if Qy(x0, x0) = 0. If (x0, x0) is a singular strategy of (3.2), then a calculation
using (3.5) shows that at (x0, x0).

fxx = −2Qxy + Qyy

1 + Q

fyy = Qyy

1 + Q

fyy − fxx = 2
Qxy + Qyy

1 + Q

from which (3.4) follows. ��
Theorem 3.2 The following singularities and their universal unfoldings may be found in
(3.2).

(a) Fix
V 
= C, r1 = r2 = 0, and x0 = V/C. (3.6)

Assume

r0V

(
1 − V

C

)
> −2 (3.7)

Then the strategy function f (x, y) near (x0, x0) is strategy equivalent to

h = −(y − x)x .

Let F(x, y, r2) be the unfolding of f obtained by letting r2 vary near 0. Then F is a
universal unfolding of f .
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(b) Fix
x0 = 0, r0 = 1, r1 = −2, r2 = 0, 3V = C (3.8)

Then the strategy function f (x, y) near (0, 0) is strategy equivalent to

h = (y − x)(y − x + x2).

Let F(x, y, r1) be the unfolding of f obtained by letting r1 vary near −2. Then F is a
universal unfolding of f .

(c) Fix

x0 = −3, r0 = 2, r1 = 2, r2 = 1, V = C = 1

9
(3.9)

Then the strategy function f (x, y) near (−3,−3) is strategy equivalent to

h = (y − x)((x + 21√
13

(y − x))2 + (y − x)2).

Let F(x, y, r1, r2) be the unfolding of f obtained by letting (r1, r2) vary near (2, 1).
Then F is a universal unfolding of f .

Remark 3.3 In their pictures, Dieckmann and Metz [5] assume

V = 1

2
C = 1 R = 2 r0 = 1

which satisfies (3.7). The pairwise invasibility plots for Theorem 3.2 (a) are given in Fig. 3,
which are identical to those in [5]. The plots for Theorem 3.2 (b) are given in Fig. 4. Note that
the degenerate singularity in (a) is the simplest form of a degenerate ESS0, the degenerate
singularity in (b) is the simplest form of a degenerate CvSS0, and the singularity in (c) is
one of the simplest degeneracies of both ESS0 and CvSS0 type. In particular, the hawk-dove
model contains the pairwise invasibility plots associated with Fig. 4 (ε = −1) in case (b)
and with Fig. 7 (σ > 0) in case (c). Note that in diagram (2), there is a surprising region of
advantage for player B that is surrounded by a region of disadvantage.

Lemma 3.4 Calculations yield

Qy = r1(V − Cx20 ) + 2r0(V − Cx0)

4R

Qyy = (4r0r2 − r21 )(V − Cx20 ) + 2r0r1(V − Cx0)

4r0R

Qxy = r1(V − Cx20 ) − 2r0C(r0 + x0r1)

4r0R
(3.10)

Proof These calculations are done directly from the definition of Q. ��
Remark 3.5 Suppose F(x, y, α) for α near 0 is an unfolding of f . Then a calculation shows

Fαy = Qyα

1 + Q
− QαQy

(1 + Q)2

Fαyy = Qyyα

1 + Q
− QαQyy

(1 + Q)2

Fαxx = −2Qxyα + Qyyα

1 + Q
− Qα(−2Qxy + Qyy)

(1 + Q)2

at (x0, x0, 0).
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Proof of Theorem 3.2: (a) From Table 1, we need to show that fx = fy = fyy = 0 and
that fyy − fxx < 0 at (x0, x0). Note that fy = 0 and fyy = 0 if and only if Qy = 0 and
Qyy = 0, which follow from (3.10) and (3.6). Since fx = − fy for all strategy functions,
fx = 0. Remark 3.4 shows that ε = sgn( fyy − fxx ) = sgn(Qxy), since Qyy = 0. It follows
from (3.10) that Qxy < 0 and ε = −1. By Theorem (b), f (x, y) is strategy equivalent to the
normal form

h = −(y − x)x

We show that F(x, y, r2) is a 1-parameter universal unfolding. Using Table 2, we need

det

(
fyy − fxx fxyy + fyyy
2Fr2 y Fr2 yy

)

= 0

at (x0, x0, 0). Using the fact that Qy = 0 at (x0, x0) and Remark 3.5, we note that

Fr2 y = Qr2 y

1 + Q
= 0

We also showed earlier that sgn( fyy − fxx ) = sgn(Qxy) = −1. Therefore, F is a 1-
parameter universal unfolding of f if and only if

Fr2 yy 
= 0

at (x0, x0, 0). We calculate using the fact that Qyy = 0 and Remark 3.5 to find that

Fr2 yy = Qr2 yy

1 + Q
= V

R

(
1 − V

C

)

= 0

which holds by (3.6). Condition (3.7) follows from (3.3).
(b) From Table 1, we need to show that f = fx = fy = fyy − fxx = 0 and

E1 = fxxy + 2 fxyy + fyyy 
= 0

at (x0, x0). Note that fx = fy = 0 and fyy− fxx = 0 if and only if Qy = 0 and Qxy+Qyy =
0, which follows from (3.10) and (3.8). Remark 3.4 shows that ε = sgn( fyy) = sgn(Qyy).
It follows from (3.10) that Qyy < 0 and ε) = −1. By Table 1, f (x, y) is strategy equivalent
to the normal form

h = −(y − x)(y − x + x2)

if and only if

E1 = −31V

3R

= 0

which holds for (3.2).
We show that F(x, y, r1) is a universal unfolding near r1 = −2. Using Table 2, F(x, y, r1)

is a 1-parameter universal unfolding if and only if

Fr1y 
= 0

at (0, 0,−2). By direct calculation, we find that Fr1 y = 2

3R

= 0; hence the result holds.

(c) Using Table 1, we need to show that the defining conditions fx = fy = fxx = fyy = 0
and the nondegeneracy conditions

E1 = fxxy + 2 fxyy + fyyy 
= 0
E3 = −(4 fxxx fyyy + 3( fxyy + fyyy)2)/36 
= 0
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are satisfied at (x0, x0). Note that (3.10) implies that the defining conditions are equivalent
to Qy = Qxy = Qyy = 0, which holds for (3.9). By direct calculation

E1 = 4

R
> 0 E3 = 13

144R2 > 0

at (0, 0, 2, 1). In particular, δ = sgn(E3) = 1. Therefore, by Table 1, f (x, y) is strategy
equivalent to the normal form

h = (y − x)((x + σ(y − x))2 + (y − x)2).

Note that in this normal form, we do not actually have to know the value of σ , though it
is 21

√
13. Using Table 2, we see that F(x, y, r1, r2) is a 2-parameter universal unfolding of

f if and only if

det

⎛

⎝
0 fxxx + fxxy fxyy + fyyy

Fr1y Fr1xx Fr1 yy
Fr2 y Fr2xx Fr2 yy

⎞

⎠ 
= 0 (3.11)

Since Qy is independent of r2 by (3.10), Remark 3.5 implies Fr2 y = 0. Note also that Qxy

is independent of r2 by (3.10). Remark 3.5 implies Fr2xx = Fr2 yy = − 8
9R 
= 0 at (0, 0, 2, 1).

It is easy to check that Fr1y = − 2
9R 
= 0. In particular, (3.11) holds whenever

fxxx + fxxy − fxyy − fyyy 
= 0 (3.12)

Using Remark 3.5, we find that the expression in (3.12) equals − 8
R and hence the con-

clusion holds. ��

4 The Restricted Tangent Space

Let f = (y − x)g and f̂ = (y − x)ĝ be strategy functions with corresponding payoff
functions g and ĝ. We begin this section by proving that f̂ is strategy equivalent to f more
or less if and only if ĝ is strategy equivalent to g. See Proposition 4.2. The remainder of the
section develops the techniques, particularly that of the restricted tangent space, needed to
answer the question:When is g+ p strategy equivalent to g? Theorem 4.7 and Corollary 4.10
are important steps in answering this question.

4.1 Strategy Equivalence of Payoff Functions

The nondiagonal zero contour of the strategy function f = (y − x)g is the set g = 0. The
following lemma relates singular points of f on the diagonal to intersections of g = 0 with
the diagonal.

Lemma 4.1 A strategy function f = (y − x)g has a singular strategy at s if and only if
g(s, s) = 0. In addition,

(a) s is an ESS if and only if gy(s, s) < 0.
(b) s is a CvSS if and only if gx (s, s) + gy(s, s) < 0.

Proof Direct calculation shows that

fy(s, s) = g(s, s)

fyy(s, s) = 2gy(s, s)

fyy(s, s) − fxx (s, s) = 2(gx (s, s) + gy(s, s))
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Parts (a) and (b) follow from Definitions 1.2 and 1.3 of ESS and CvSS. ��
We now show that strategy equivalences lead to similar changes of coordinates on the

corresponding payoff functions.

Proposition 4.2 f̂ = (y − x)ĝ is strategy equivalent to f = (y − x)g if and only if ĝ(x, y)
is strategy equivalent to either g(x, y) or −g(−x,−y).

Proof Begin by observing that f (x, y) is strategy equivalent to f (−x,−y) = −(y −
x)g(−x,−y).

We prove the proposition for left changes of coordinates described by S and right changes
of coordinates described by � separately. Note that for S(x, y) > 0,

f̂ (x, y) = S(x, y) f (x, y) if and only if ĝ(x, y) = S(x, y)g(x, y)

Hence, the proposition holds for left changes of coordinates.
Next, suppose

f̂ (x, y) = f (�(x, y))

where � ≡ (�1,�2) satisfies Definition 1.7 (b)–(d). By Definition 1.7 (c),

�1(x, x) = �2(x, x)

for all x . Therefore, there exists � : R2 → R such that

�2(x, y) − �1(x, y) = (y − x)�(x, y)

Next, observe that

(y − x)ĝ(x, y) = f̂ (x, y)

= f (�(x, y))

= (�2(x, y) − �1(x, y))g(�(x, y))

= (y − x)�(x, y)g(�(x, y))

Therefore,

f̂ (x, y) = f (�(x, y)) if and only if ĝ(x, y) = �(x, y)g(�(x, y))

By defintion �(x, x) = �2y(x, x), which is nonzero by Definition 1.7 (b). Therefore,

�(x, y)g(�(x, y)) 	 g(�(x, y))

If �(x, y) > 0, then ĝ and g are strategy equivalent. If �(x, y) < 0, then ĝ(x, y) is
strategy equivalent to −g(−x,−y). Hence, the statement also holds for right changes of
coordinates. ��
4.2 Restricted Tangent Space of a Payoff Function

Let E be the space of all payoff functions g : R2 → R that are C∞ on some neighborhood of
the origin. Suppose g ∈ E with g(0, 0) = 0. Singularity theory helps answer the recognition
problem: When is the payoff function ĝ strategy equivalent to the payoff function g? An
important step to answering this question is

Question For which perturbations p are g + tp strategy equivalent to g for all small t?
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We answer the question by adapting the discussion in [11]. In particular, we first use
differentiation with respect to t to find a necessary condition on p. Suppose that p ∈ E
satisfies p(0, 0) = 0. Suppose also that g + tp is strongly strategy equivalent to g for all
small t . That is, suppose there exists a smooth t-dependent strategy equivalence such that

g(x, y) + tp(x, y) = S(x, y, t)g(�(x, y, t)), (4.1)

where

�(0, 0, t) = (0, 0) �1,y(x, x, t) = 0 S(x, y, 0) = 1 �(x, y, 0) = (x, y). (4.2)

Differentiating both sides of (4.1) with respect to t and evaluating at t = 0 gives

p(x, y) = Ṡ(x, y, 0)g(x, y) + �̇1(x, y, 0)gx (x, y) + �̇2(x, y, 0)gy(x, y), (4.3)

where the dot indicates differentiation with respect to t . Note that Ṡ(x, y, 0) can be chosen
arbitrarily in (4.3), whereas �̇(x, y, 0) is restricted by conditions (4.2). Specifically,

�̇(x, x, 0) = (0, 0) and �̇1y(x, x, 0) = 0

It follows that p must satisfy

p(x, y) = a(x, y)g(x, y) + b(x, y)gx (x, y) + c(x, y)gy(x, y), (4.4)

where the function a is arbitrary and the functions b and c satisfy

b(x, x) = c(x, x) b(0, 0) = 0 by(x, x) = 0 (4.5)

Definition 4.3 The restricted tangent space of g, denoted RT(g), consists of all p ∈ E that
satisfy (4.4) and (4.5)

The goal of this subsection is to explicitly determine RT(g) (see Proposition 4.6). To do
this, we will use the fact that E is a commutative algebra (addition and multiplication of
functions in E stay in E) and some facts about ideals in E of finite codimension.

Maximal Ideals and Finite Codimension

An ideal J is finitely generated if there exist q1, . . . , qk ∈ J such that every element in J
has the form a1q1 + · · · + akqk where a j ∈ E . In this case, we denote J by 〈q1, . . . , qk〉.

A vector subspaceW ⊂ E has finite codimension if there is a finite-dimensional subspace
V ⊂ E such that E = W + V . If no such subspace exists, we say that W has infinite
codimension.

The maximal ideal in E is

M = {a ∈ E : a(0, 0) = (0, 0)}.
Taylor’s Theorem implies thatM = 〈x, y〉. The product idealMk = 〈xk, xk−1y, . . . , yk〉

consists of all functions whose Taylor expansion at the origin vanishes through order k − 1.
A standard theorem from commutative algebra states (cf. [11, Proposition II, 5.7]):

Proposition 4.4 Let I ⊂ E be an ideal. There is an integer k such thatMk ⊂ I if and only
if I has finite codimension.
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Nakayama’s Lemma helps determine when ideals have finite codimension. In its simplest
form, Nakayama’s Lemma states

Mk ⊂ J if and only if Mk ⊂ J + Mk+1

More generally (see [11, Lemma II, 5.3]):

Lemma 4.5 (Nakayama’s Lemma) Let I is a finitely generated ideal. Then

I ⊂ J if and only if I ⊂ J + MI

Computation of the Restricted Tangent Space RT(g)

With this background, we can compute the restricted tangent space of a payoff function g.
Define

I(g) = 〈g, (y − x)gy, (y − x)2gx 〉 (4.6)

We say that g has finite codimension if I(g) has finite codimension.

Proposition 4.6 Let g be a payoff function with finite codimension. Then

RT(g) = I(g) + R{x(gx + gy), . . . , x
s(gx + gy)} (4.7)

for some s.

Proof Suppose p ∈ RT(g). By Definition 4.3, there exist functions a(x, y), b(x, y), c(x, y)
satisfying (4.5) such that p satisfies (4.4). We claim that b, c satisfy (4.5) if and only if there
exist functions �(x, y), n(x, y), q(x) such that

b(x, y) = xq(x) + (y − x)2m(x, y)

c(x, y) = xq(x) + (y − x)n(x, y) (4.8)

To verify (4.8), first let d(x) = b(x, x) = c(x, x) and note that d(0) = 0. Hence d(x) =
xq(x). Next, note that there exist functions �(x, y), n(x, y) such that

b(x, y) = xq(x) + (y − x)�(x, y)

c(x, y) = xq(x) + (y − x)n(x, y) (4.9)

Finally, since by(x, x) = �(x, x), it follows that �(x, x) = 0. Hence there exists m(x, y)
such that �(x, y) = (y − x)m(x, y), thus verifying the claim.

The claim along with (4.4) shows that

p = ag + n(y − x)gy + m(y − x)2gx + q(x)x(gx + gy)

∈ I(g) + R{x(gx + gy), . . . , x
s(gx + gy), . . .}.

Since I(g) has finite codimension, it follows from Proposition 4.4 thatMs+1 ⊂ I(g) for
some s. Since xs+1(gx + gy) ∈ Ms+1, it follows that all terms after xs(gx + gy) are in I(g).

��
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4.3 Modified Tangent Space Constant Theorem

The definition of RT(g) implies that if g + tp is strategy equivalent to g for all small t , then
p ∈ RT(g). In the converse direction, we have the following theorem.

Theorem 4.7 (Modified Tangent Space Constant Theorem) Let g be a payoff function. If

I(g + tp) = I(g) for all t ∈ [0, 1], (4.10)

Then g + tp is strategy equivalent to g for all t ∈ [0, 1].
Remark 4.8 The proof of this theorem is a straightforward modification of the proof of an
analogous theorem in bifurcation theory (see [11, Chapter II Theorem 2.2]). The details of
the proof, which are standard in singularity theory, are in Vutha [19].

Definition 4.9 A payoff function g(x, y) is k-determined if g + h 	 g for all h ∈ Mk+1.

Corollary 4.10 If Mk ⊂ I(g), then g is k-determined.

Proof Let h ∈ Mk+1. We claim that I(g + th) is independent of h. Since

h, (x − y)2hx , (x − y)hy ∈ Mk+1 ⊂ I(g),

it follows that

I(g + th) = 〈g + th, (x − y)2(gx + thx ), (x − y)(gy + thy)〉 ⊂ I(g) + Mk+1 ⊂ I(g)

Conversely,

I(g + th) ⊂ I(g) + Mk+1 ⊂ I(g) + MI(g).

Nakayama’s Lemma 4.5 implies that I(g+ th) = I(g) for all t . By Theorem 4.7, g+h 	 g.
��

5 Recognition of Low Codimension Singularities

In this section, we use Theorem 4.7 and Corollary 4.10 to solve the recognition problem for
payoff function singularities of low codimension appearing. The results are summarized in
Table 1. We found that the calculations are more easily done in the coordinates

u = x v = y − x x = u y = u + v.

We translate the singularity theory methods to uv coordinates in Sect. 5.1 and we perform
the actual calculations in Sect. 5.2.

5.1 A Change of Coordinates

Given a payoff function g(x, y) write g(x, y) as g′(u, v) in uv coordinates. That is,

g(x, y) = g(u, u + v) ≡ g′(u, v)

Observe that

g′
u(u, v) = gx (u, u + v)xu + gy(u, u + v)yu = gx (x, y) + gy(x, y)
g′
v(u, v) = gx (u, u + v)xv + gy(u, u + v)yv = gy(x, y)
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Hence

gx (x, y) = g′
u(u, v) − g′

v(u, v) gy(x, y) = g′
v(u, v)

and

I(g) = 〈g, (y − x)gy, (y − x)2gx 〉 = 〈g′, vg′
v, v

2(g′
u − g′

v)〉 = 〈g′, vg′
v, v

2g′
u〉 (5.1)

Remark 5.1 We will calculate the normal forms for payoff functions g(x, y) written in uv

coordinates. We continue to call the payoff functions g(u, v) rather than g′(u, v).

Proposition 5.2 In uv coordinates, we have

(a) M = {g : g(0, 0) = 0} = 〈u, v〉
(b) I(g) = 〈g, vgv, v

2gu〉
(c) RT(g) = I(g) + R{ugu, u2gu, . . .}
Proof (a) follows directly from the definition ofM and Taylor’s theorem in uv coordinates.
(b) follows from (5.1) on dropping the primes. Recall from (4.7) that

RT(g) = I(g) + R{x(gx + gy), . . . , x
s(gx + gy)}.

Hence (c) follows from the fact that x = u and gx + gy = gu . ��
We can also write the change of coordinates in terms of the map

ψ(u, v) ≡ (u, u + v) =
(
1 0
1 1

) (
u
v

)

When we do so we write g′ = g ◦ψ . Next we describe the form that strategy equivalences
take in uv coordinates.

Proposition 5.3 Suppose that the payoff functions g, ĝ are strategy equivalent. That is ĝ =
Sg ◦ � where S and � satisfy Definition 1.7. Let g′ = g ◦ ψ and ĝ′ = ĝ ◦ ψ . Then g′ and ĝ′
are contact equivalent; that is

ĝ′ = S′g′ ◦ �′,

where S′ = S ◦ ψ and �′ = ψ−1 ◦ � ◦ ψ . Moreover

�′
2(u, 0) = 0 and �′

1,v(u, 0) = 0. (5.2)

Proof We compute

ĝ′ = ĝ ◦ ψ = (Sg ◦ �) ◦ ψ

= (S ◦ ψ)(g ◦ ψ ◦ ψ−1 ◦ � ◦ ψ)

= S′(g ◦ ψ ◦ �′)
= S′g′ ◦ �′,

as desired. Note that the diagonal y = x is v = 0 in the uv coordinates. Therefore,

�′(u, 0) = (�′
1(u, 0),�′

2(u, 0))

implies that �′
2(u, 0) = 0. Moreover, the derivative with respect to y corresponds to the

derivative with respect to v. So, �1,y(x, x) = 0 implies that �′
1,v(u, 0) = 0. ��

Remark 5.4 It follows from (5.2) that S′(u, v) satisfies S(u, v) > 0 and �′(u, v) is a diffeo-
morphism that satisfies �′(u, 0) = (φ(u), 0) and that

(d�′)u,0 =
(
a 0
0 b

)
.
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5.2 Recognition of Low Codimension Singularities

We now present normal form theorems for singularities of low codimension. In this subsec-
tion, all derivatives are computed at the origin unless otherwise indicated. Also, we denote
the i th derivative of g with respect to u at the origin by g(i)

u .

Theorem 5.5 Suppose g = 0 at (0, 0).

(a) Then g 	 εu+δv where ε = sgn(gu) and δ = sgn(gv) if and only if gv 
= 0 and gu 
= 0.
(b) Suppose gv = 0 and ε = sgn(gu). Then g 	 εu if and only if gu 
= 0.
(c) Suppose gu = · · · = g(k−1)

u = 0, ε = sgn(gv), and δ = εsgn(g(k)
u ). Then g 	 ε(v+δuk)

if and only if gv 
= 0 and g(k)
u 
= 0. Moreover, when k is even we may take δ = +1.

(d) Suppose gu = gv = 0, guu 
= 0, E ≡ guugvv − g2uv 
= 0 and σ ≡ guv/
√
E. Then

g(u, v) 	 (u + σv)2 + δv2,

where δ = sgn(E). Moreover, σ is a modal parameter.

Proof (a) Since g(0, 0) = 0, use Taylor’s theorem to write g(u, v) = guu + gvv + · · · .
Note that g ◦ � where �(u, v) = (u/|gu |, v/|gv|) yields g 	 εu + δv + · · · . Next calculate
I(εu + δv) = M. It follows from Corollary 4.10 that εu + δv is 1-determined and g has the
desired normal form. The converse is straightforward.

(b) Since g = gv = 0, use Taylor’s Theorem to write g = guu + p where p ∈ M2.
Divide by |gu | to obtain g 	 ε(u + p) for ε = sgn(gv) and a modified p ∈ M2. WLOG we
can assume ε = +1. Dividing u + p by 1 + 1

2 puuu
2 + puvuv shows that u + p is strategy

equivalent to u + av2 + q where a ∈ R and q ∈ M3. It follows that

I(u + av2 + q) ≡ 〈u + av2 + q, v2(1 + qu(u, v)), 2av2 + vqv(u, v)〉
= 〈u + av2 + q, v2, 2av2 + vqv(u, v)〉
= 〈u + q, v2, vqv(u, v)〉
= 〈u, v2〉

for all a ∈ R and q ∈ M3. Then use Theorem 4.7 to conclude that g has the desired normal
form. The converse is straightforward.

(c) Assume g = gu = · · · = g(k−1)
u = 0 and gv 
= 0 
= g(k)

u . By Taylor’s theorem

g(u, v) = (gv + p1(u, v))v + uk p2(u, v),

where p1 ∈ M and p2(0, 0) 
= 0. Dividing by ε(gv + p1(u, v)) yields g 	 ε(v + δuk p)
where p(0, 0) > 0. Now compute

I(v + δuk p) = 〈v + δuk p, v(1 + uk pv(u, v)), v2uk−1(pu(u, v) + up)〉 = 〈uk p, v〉 = 〈uk, v〉
Therefore, by Theorem 4.7, g 	 ε(v + δuk). Note that when k is even, the equivalence of

g with −g(−u,−v) allows us to set δ = 1.
(d) Since g = gu = gv = 0 at (0, 0), use Taylor’s theorem and multiply by 2 to obtain

g(u, v) 	 guuu
2 + 2guvuv + gvvv

2 + p,

where p ∈ M3. Using the transformation g �→ −g(−u,−v) if needed, we can assume
sgn(guu) = 1. Dividing by guu , we get

g 	 u2 + Buv + Cv2 + p,
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Table 6 Calculation of elements
of I(p) inM3 (u + σv)3 (u + σv)2v (u + σv)v2 v3

(u + σv)p 1 0 δ 0

vp 0 1 0 δ

v2 pv 0 0 σ δ

v2 pu 0 0 1 0

where p ∈ M3 and

B = 2
guv

guu
and C = gvv

guu
.

Complete the square and rewrite g as

g = (u + σ1v)2 + ρ1v
2 + p,

where σ1 = guv

guu
and ρ1 = E

g2uu
. Rescaling v leads to

g 	 (u + σv)2 + δv2 + p.

Let h = (u + σv)2 + δv2. We claim M3 ⊂ I(h). It follows from Corollary 4.10 that h
is 2-determined, thus proving the assertion. Compute

I(h) = 〈(h, v2(u + σv), v(σ (u + σv) + δv)〉
Note that M3 = 〈(u + σv)3, (u + σv)2v, (u + σv)v2, v3〉. Since the determinant of the

4×4 matrix in Table 6 is−δ 
= 0, it follows thatM3 ⊂ I(h) as desired. Note that the normal
forms for different σ are all payoff inequivalent. Parameters that lead to continuous families
of inequivalent functions are called modal parameters; so σ is a modal parameter. ��

5.3 Translation of Results from Payoff to Strategy Functions

Tables 7 and 8 summarize the calculations needed to translate results from payoff functions
g(u, v) to strategy functions f (x, y). For example, consider the defining and nondegeneracy
conditions

g = gv = 0 gu 
= 0 (5.3)

in Theorem 5.5(b). Since

gv(u, 0) = gy(x, x) gu(u, 0) = gx (x, x) + gy(x, x),

(5.3) can be rewritten as

g = gy = 0 gx 
= 0.

Moreover, in terms of the corresponding strategy function f = (y − x)g

f = (y − x)g
fx = (y − x)gx − g fy = (y − x)gx + g
fxx = (y − x)gx − 2gx fyy = (y − x)gy + 2gy

(5.4)

In particular, (5.3) holds at (x, x) whenever

f = fx = fy = fyy = 0 fxx 
= 0

Tables 7 and 8 show calculations for payoff functions and their derivatives up to third
order. See Tables 1 and 2 for the translated results.
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Table 7 Translation of
derivatives at (u, 0) in uv

coordinates to (x, x) in xy
coordinates

gx = gu − gv gy = gv

gxx =guu − 2guv + gvv gxy =guv−gvv gyy = gvv

gxxx =guuu − 3guvv

+ 3guvv − gvvv

gxxy =guuv−2guvv+gvvv

gxyy = guvv − gvvv gyyy = gvvv

Table 8 Translation of
derivatives from payoff functions
g to strategy functions f at (x, x)

f = 0 fxx = −2gx
fx = −g fxy = gx − gy

fy = g fyy = 2gy
fxxx = −3gxx fxxxx = −4gxxx
fxxy = gxx − 2gxy fxxxy = gxxx − 3gxxy
fxyy = 2gxy − gyy fxxyy = 2gxxy − 2gxyy
fyyy = 3gyy fxyyy = 3gxxy − gyyy

fyyyy = 4gxxx

6 The Universal Unfolding Theorem

Unfolding theory could be described in terms of either strategy or payoff functions and in
either xy or uv coordinates. In this section, we discuss unfolding theory of payoff functions
in uv coordinates.

Definition 6.1 Let g ∈ E . The function G : R2 × Rk is a k-parameter unfolding of g if

G(u, v, 0) = g(u, v)

Suppose G(u, v, α), α ∈ Rk , and H(u, v, β), β ∈ R� are unfoldings of g. We say that the
perturbations in the H unfolding are contained in the G unfolding if for every β ∈ Rl , there
exists A(β) ∈ Rk such that G(·, ·, A(β)) is strategy equivalent to H(·, ·, β). We formalize
this in the following definition.

Definition 6.2 Let G(u, v, α) be a k-parameter unfolding of g ∈ E and let H(u, v, β)

be an �-parameter unfolding of g. We say that H factors through G if there exist maps
S : R2 × R� → R, � : R2 × R�, and A : R� → Rk such that

H(u, v, β) = S(u, v, β)G(�(u, v, β), A(β)),

where

(a) S(u, v, 0) = 1
(b) �(u, v, 0) = (u, v)

(c) �1(0, 0, β) = �2(u, 0, β)

(d) �1y(u, 0, β) = 0
(e) A(0) = 0

Remark 6.3 We do not require that �(0, 0, β) = (0, 0); that is, when β is nonzero, the
equivalence does not always preserve the origin.

There exist special unfoldingsG which contain all perturbations of g, up to strategy equiv-
alence. These unfoldings are characterized as follows.
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Definition 6.4 An unfolding G of g is versal if every unfolding of g factors through G. A
versal unfolding depending on the minimum number of parameters is called universal. That
minimum number is called the (C∞) codimension of g and denoted codim(g).

Suppose G(u, v, α), α ∈ Rk is a universal unfolding of a payoff function g. This implies,
in particular, that all one-parameter unfoldings of g can be factored through G. For any
perturbation q , consider the one-parameter unfolding

H(u, v, t) = g(u, v) + tq(u, v)

Since H factors through G, we write

H(u, v, t) = S(u, v, t)g(�(u, v, t)), (6.1)

where S,�, A satisfy Definition 6.2.
On differentiating (6.1) with respect to t and evaluating at t = 0, we find

q(u, v) = d

dt
[S(u, v, t)g(�(u, v, t)]

∣
∣
∣
∣
t=0

+
k∑

i=1

Ȧi (0)Gαi (u, v, 0), (6.2)

where A(t) = (A1(t), . . . , Ak(t)) in coordinates and˙is differentiation with respect to t .

6.1 Tangent Spaces and Unfolding Theorems

Definition 6.5 The tangent space of a payoff function g, denoted by T (g), is the set of all
p of the form given in the first term on the RHS of (6.2).

Remark 6.6 The only difference between the definition of T (g) and RT (g) is the fact noted in
Remark 6.3 that �(·, ·, t) need fix the origin. Given a payoff function g, a simple calculation
shows

T (g) = RT (g) + R{gv}
Therefore, RT (g) has finite codimension if and only if T (g) has finite codimension.

The calculation in (6.2) leads to a necessary condition for G to be a universal unfolding
of g. Specifically, if an unfolding G is versal, then

E = T (g) + R
{
Gα1(u, v, 0), . . . ,Gαk (u, v, 0)

}
. (6.3)

One of the most important results in singularity theory states that (6.3) is also a necessary
condition for G to be a versal unfolding. See [2] §9.

Theorem 6.7 (versal unfolding theorem) Let g ∈ E and let G be a k-parameter unfolding
of g. Then G is a versal unfolding of g if and only if (6.3) is satisfied.

Corollary 6.8 An unfolding G of g ∈ E is universal if and only if the sum in (6.3) is a direct
sum. The number of parameters in G equals the codimension of T (g). In particular, if g has
codimension k and p1, . . . , pk ∈ E are chosen so that

E = T (g) ⊕ R{p1, . . . , pk},
then

G(u, v, α) = g(u, v) + α1 p1(u, v) + · · · + αk pk(u, v)

is a universal unfolding of g.
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Table 9 Algebraic data for low codimension singularities in Theorem 5.5

h Codim I(h) T (h) Vh

εu + δv 0 M E –
εu 1 〈u, v2〉 〈u, v2〉 ⊕ R{1} R{v}
ε(v + u2) 1 〈u2, v〉 M R{1}
ε(v + δu3) 2 〈u3, v〉 〈u2, v〉 R{1, u}
(u + σv)2 + δv2 3 M3 ⊕ R{h, vhv} M3 ⊕ R{hu , h, vhv} R{1, v, v(u + σv)}

6.2 Universal Unfoldings of Low Codimension Singularities

Let h be a normal form payoff function. It is straightforward to compute T(h) from I(h).
Specifically,

T(h) = I(h) + R{hu, uhu, . . .}
We can then use Corollary 6.8 to explicitly determine a universal unfolding of h by

computing a complementary subspace Vh to T(h) in E . Note that the codimension of h is just
dim(Vh).

The data needed to compute universal unfoldings of the low codimension normal forms
that we have studied in this paper are summarized in Table 9.

6.3 Recognition Problem for Universal Unfoldings

We consider the following situation which commonly arises in applications: Let G(x, y, α)

be an unfolding of a payoff function g(u, v), where g is a strategy equivalent to a normal
form h. When is G a universal unfolding of g?We use the approach in [11, Chap. III, Sect. 4]
to answer this question for low codimension normal forms.

Let γ = (S,�) be a strategy equivalence. That is, S and � satisfy conditions Definition
1.7 (a)–(d) and γ (h) = Sh ◦ �.

Lemma 6.9 Suppose g = γ (h). Then

T(g) = γ (T(h))

Proof Define a smooth curve of strategy equivalences δt at h as

δt (h) = S(u, v, t)h(�(u, v, t)),

where S,� vary smoothly in t . Assume further that S(u, v, 0) = 1 and �(u, v, 0) = (u, v).
Then p = d

dt δt (h)
∣∣
t=0 is a typical member of T(h). Let δ̂t = γ δtγ

−1 and calculate

γ (p) = γ
d

dt
δt (h)

∣∣∣∣
t=0

= d

dt
γ δtγ

−1γ (h)

∣∣∣∣
t=0

= d

dt
δ̂t (g)

∣∣∣∣
t=0

. (6.4)

Since δ̂t is a smooth curve of strategy equivalences and δ̂0 is the identity map we see that
γ (p) ∈ T(g). Hence γ (T(h)) ⊂ T(g); interchanging the roles of g and h shows that T(g) =
γ (T(h)), as claimed. ��
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Table 10 Recognition problem for universal unfoldings of singularities in Theorem 5.5

h Codim T (g) Necessary condition

εu 1 M2 ⊕ R{1, u} det

(
gu guv

Gα Gαv

)

= 0

ε(v + u2) 1 M Gα 
= 0

ε(v + δu3) 2 M2 + 〈v〉 det

(
Gα Gαu
Gβ Gβu

)

= 0

(u + σv)2 + δv2 3 M3 ⊕ R{gu , ugu , vgv} det

⎛

⎝
0 guu guv

Gα Gαu Gαv

Gβ Gβu Gβv

⎞

⎠ 
= 0

Define the pullback mapping �∗ : E → E as �∗(g)(u, v) = g(�(u, v)).

Lemma 6.10 Let I = 〈p1, . . . , pk〉. Then �∗(I) is the ideal 〈�∗(p1), · · · ,�∗(pk)〉.
Proof Follows directly from �∗(g+h) = �∗(g)+�∗(h) �∗(g ·h) = �∗(g) ·�∗(h). ��
Lemma 6.11 If I, J are ideals, then Lemma 6.10 implies that

�∗(I + J ) = �∗(I) + �∗(J ) �∗(I · J ) = �∗(I) · �∗(J ) (6.5)

When solving recognition problems for low codimension normal forms, we often write
T(g) using powers of the maximal idealM and the ideal 〈y − x〉. We show that these ideals
are invariant under pullback maps coming from strategy equivalences that fix the origin.

Definition 6.12 An ideal I is intrinsic if for every strategy equivalence γ = (S,�) such
that �(0) = 0, we have γ (I) = I
Proposition 6.13 The ideal

J = Mk + Mk1〈vl1〉 + · · · + Mks 〈vls 〉
is intrinsic for any finite set of nonnegative integers ki , li .

Proof The ideals 〈v〉 andM are intrinsic sinceM consists of maps that vanish at the origin
and 〈v〉 consists of maps that vanish on the diagonal and strategy equivalences preserve the
origin and the diagonal. The proof now follows from Lemma 6.11. ��

Let h be a normal form with codimension k. We now calculate necessary and sufficient
conditions for the k parameter unfolding G to be a universal unfolding of g when g = γ (h)

is strategy equivalent to h. We do this as follows:

(a) Write T(h) = J ⊕ Wh where J is intrinsic.
(b) Using Lemma 6.9 and the fact that J is intrinsic, we can write T(g) = J ⊕ Wg .
(c) By Theorem 6.7, G is a universal unfolding of g if and only if

E = J ⊕ Wg ⊕ R{Gα1 , . . . ,Gαk } (6.6)

(d) A complementary space to J in u, v coordinates always consisted of dimWg + k mono-
mials. We can choose a basis for Wg in terms of g and its derivatives. Then we solve the
problem by writing the Taylor coefficients of this basis and the Gα j in the monomials
that are not in J . It follows that G is a universal unfolding if and only if this matrix has
a nonzero determinant.

The results for the low codimension singularities are given in Table 10; these results can
be translated using the derivatives in Tables 7, 8 to obtain the results listed in Table 2.
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