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The Structure of Symmetric Attractors 

IAN MELBOURNE, MICHAEL DELLNITZ • MARTIN GOLUBITSKY 

Abstract 

We consider discrete equivariant dynamical systems and obtain results 
about the structure of attractors for such systems. We show, for example, that 
the symmetry of an attractor cannot, in general, be an arbitrary subgroup of 
the group of symmetries. In addition, there are group-theoretic restrictions on 
the symmetry of connected components of a symmetric attractor. The sym- 
metry of attractors has implications for a new type of pattern formation 
mechanism by which patterns appear in the time-average of a chaotic 
dynamical system. 

Our methods are topological in nature and exploit connectedness properties 
of the ambient space. In particular, we prove a general lemma about connected 
components of the complement of preimage sets and how they are permuted 
by the mapping. 

These methods do not themselves depend on equivariance. For example, 
we use them to prove that the presence of periodic points in the dynamics 
limits the number of ~connected components of an attractor, and, for one- 
dimensional mappings, to prove results on sensitive dependence and the density 
of periodic points. 

1. Introduction 

Our goal in this paper is to describe mathematical properties of symmetric 
attractors that have been observed in the numerical simulations of equivariant 
discrete dynamical systems in [6, i i ,  16]. These properties include con- 
nectedness, sensitive dependence on initial conditions and, indeed, the actual 
symmetry of the attractor. While pursuing this goal we have used techniques 
that are equally valid for systems possessing no symmetry, and these tech- 
niques lead to interesting results for asymmetric systems as well. 

In contrast with much of the literature on discrete dynamical systems we 
make no assumptions on the mapping other than continuity, and our defini- 
tion of attractor is fairly general (Definition 2.2 and Remark 2.3). We shall 
prove results of the following type. 
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(a) If an attractor contains a point of period k, then it has at most k con- 
nected components (Theorem 2.10). Symmetry often forces the origin to be 
fixed. So when an attractor for such a system contains the origin, it must be 
connected. (Such attractors also have full symmetry (Proposition 4.8).) In 
addition, topologically-mixing attractors are connected (Theorem 2.7). 

(b) For continuous maps on the line, attractors (and, more generally, o)- 
limit sets) are contained in the closure of the set of periodic points 
(Theorem 3.1). This 'closing lemma' holds without the usual assumptions of 
genericity and differentiability. In addition, nonminimal attractors of con- 
tinuous maps on the line display sensitive dependence on initial conditions 
(Theorem 3.2). 

(c) There are representation-theoretic restrictions on the symmetry of at- 
tractors (Theorem 4.10). 

(d) There are group-theoretic restrictions on the symmetry of connected 
components of symmetric attractors (see Theorem 4.6). 

(e) Mappings of the plane having Din-symmetry (where D m is the dihedral 
group of symmetries of the regular m-sided polygon in the plane) cannot have 
attractors with symmetry D~ where 2 < k < m (Theorem 5.3). Also, if a Dm- 
equivariant mapping has an attractor with symmetry Din, then each of its 
components must have Dm-symmetry (Theorem 5.8). 

(f) Fully symmetric o-limit sets of planar Dm-equivariant mappings 
automatically have a form of sensitive dependence (Corollary 5.6). 

We shall also show that the proofs of all of these theorems rely in part 
on a single topological lemma (Lemma 2.1) which uses connected components 
of the complement of a preimage set to cover invariant sets. This and related 
results are described in Section 2. Applications of Lemma 2.1 to one-dimen- 
sional mappings are given in Section 3. In Section 4 we discuss how symmetry 
is brought into the study of attractors of mappings and prove some general 
results. We apply the results in Section 4 to derive theorems about symmetric 
attractors for planar mappings with dihedral symmetry in Section 5. 

It was observed in [6] from computer experimentation that symmetry-in- 
creasing bifurcations seem to be the rule in the discrete dynamics of maps in 
the plane with dihedral Din-symmetry. These bifurcations occur through the 
collision of conjugate attractors. In [10] we use the results about preimage sets, 
in particular Theorems 3.5 and 5.9, as the basis for a numerical algorithm for 
the computation of certain types of symmetry increasing bifurcations. 

An important observation in the theory of equivariant steady-state bifurca- 
tions states is that there are restrictions on the possible symmetry of bifur- 
cating equilibria. Our results in Sections 4 and 5 indicate that a similar remark 
holds for general attractors. 

To conclude this Introduction we discuss briefly why the symmetry of at- 
tractors may be important in applications. We first consider systems of partial 
differential equations and then the Faraday experiment on parametrically ex- 
cited surface waves. 

Suppose that u(x ,  t) i's a (vector-valued) solution to a /'-invariant system 
of partial differential equations where /" is a (compact Lie) group of sym- 
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metries. Let A be the o~-limit set in phase space of  the solution u. Numerical 
integration has suggested that even when the solution u is varying chaotically 
in time the set A can itself be invariant under a nontrivial subgroup 27 of  sym- 
metries in F. For example, see the work by PLATT, SmovIcn & FITZZ~AURICB 
[18] on Kolmogorov flow and our own work [10] on reaction-diffusion systems 
on the line (in particular, the Brussetator and the Ginzburg-Landau equation). 
There are two consequences of  the existence of  the symmetries 2; that we wish 
to discuss. The first is a technical comment and the second is, perhaps, of  
more consequence for applications. 

1. A popular method for approximating the dynamics of a system of par- 
tial differential equations by a system of  ordinary differential equations is by 
the use of  the Karhunen-Lobve (or proper orthogonal) decomposition. In [9] 
it is shown that this decomposition can be completed naturally in a way that 
the approximating system of ordinary differential equations is precisely 27- 
equivariant. See also [3, 4]. 

2. The second consequence is difficult to prove rigorously in any given 
system of  partial differential equations, but is likely to be valid in many 
systems. The statement is that the time.average of  the solution is X-in-va- 
riant - thus allowing for a distinctive regular pattern to appear in the time- 
average even though this pattern is never present at any instant of  time. This 
comment suggests a new method for pattern formation based on chaotic 
dynamics rather than the standard kind o f  pattern formation based on sta- 
tionary or time-periodic bifurcations. See [9, 10]. 

We now discuss this second point in a little more detail. Let 

T 

U(x) = lim --1 ~ u ( x , t )  dt; 
T~o~ r o 

then U(x) is the time-average of  the solution u(x, t). Our claim is that we ex- 
pect 

U(ax) = U(x) u a~27. 

To justify this conclusion, one has to presume the existence of a Sinai- 
Bowen-Ruelle measure on A which is both flow- and 27-invariant. Then one 
can use the ergodic theorem to transform the time-average to an integral of  
u over A in phase space; and change of  variables in this integration yields the 
result. This issue is discussed in [9, 10, 2]. What is illustrated numerically in 
[10] is that asymmetric chaotic solutions of  the Brusselator and the Ginzburg- 
Landau equations can have spatially symmetric time-averages. 

This last discussion is illustrated in recent experiments by G o ~ J B  and 
coworkers [12] on the Faraday surface wave experiment. In this experiment a 
fluid layer is vibrated at a fixed amplitude and at a fixed frequency. At small 
amplitudes of  vibration the fluid layer remains flat while at larger amplitudes 
it deforms. Patterns are well known to appear in the deformed surface [21, 7] 
and these patterns can be related to the symmetry of the apparatus [8]. In 
the experiment the patterns are detected by viewing the focusing and diffusing 
of  light transmitted through the fluid. 
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It is also well known that at even larger amplitudes of  vibration the fluid 
surface appears to vary chaotically in time and to have no discernible pattern 
at a fixed instant of  time. What GoLI~VB and co-workers have shown, however, 
is that if the intensity of  transmitted light is time-averaged at each point in 
space, then the resulting time-average can have a well-defined spatial pattern, 
a pattern consistent with the symmetry of the apparatus. We believe that the 
associated attractor has  this symmetry and that the symmetry in the time- 
average stems from the symmetry of  the attractor. 

Finally, we note that if the symmetry group X of  an attractor is important, 
then it is necessary to have a numerically efficient method for computing 22. 
Algorithms for finding 22 when the group F is finite are presented in [2, 9] 
and it is shown that generically this algorithm can be expected to give the cor- 
rect answer. 

2. Topological dynamics using preimage sets 

In this section we introduce the topological results that we use. The main 
observation (Lemma 2.1) states that co-limit sets are either contained in the 
closure of  a preimage set or are covered by a finite number of  connected com- 
ponents of  the complement of  that preimage set. This result along with the 
definition of  preimage sets is presented in Subsection (a). This observation has 
a number of  applications which appear throughout this paper. In Subsections 
(b) and (c) we show how Lemma 2.1 can be used to prove the connectedness 
theorems promised in the Introduction and a general result concerning sensitive 
dependence. 

(a) Preimage sets 

Let X be a finite-dimensional Euclidean space and suppose that f : X ~ X 
is a continuous mapping. (In fact, we need only assume that X is a complete, 
locally connected, metric space for our results to be valid.) Recall that if x 6 X, 
the co-limit set of x is defined to be the set co(x) consisting of points y ( X  
for which there is an increasing sequence {nk} of positive integers such that 
fnk(x) --, y. Basic properties of co(x) include 

1. co(x) is closed, 
2. o ) ( f ( x ) )  = co(x), 
3. f ( co (x ) )  C co(x) with equality if co(x) is compact. 

We call a set A topologically transitive if A = co(x) for some x ~A. Equivalently, 
A has a dense orbit. The set A is topologically mixing if for any open subsets 
U, V C A there exists a positive integer N such that f - n ( U )  n V ~  0 for all 
n _> N. I f  A is topologically mixing, then A is topologically transitive under f k  
for all k __> t (cf. [17]). 

Let S be a subset of  X. We define 

~ s ( f )  = ~J (fn)-I (S) 
n=O 
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to be the set consisting of S and all of the preimages of S under f .  Usually, 
when the context is clear, we write ~@s ( f )  = ~ s .  Observe that f - 1  (~9~s) C ~@s- 
It follows that f induces a mapping 

f : X - ~ s ~ X - ~ s .  

Since f is continuous, connected components of X -  ~ s  are mapped into 
connected components. 

The following topological lemma (and Corollary 2.5) are used frequently 
throughout the paper. 

Lemma2.1.  Let x E X  and let S be a subset of X. Then either co(x) C ~ s  
or the following are valid. 

(a) co ( x ) - ~ s  is covered by finitely man5, connected components 
Co . . . . .  C~-I of Z -  ~ s .  

(b) These components can be ordered so that f (C i )  C C(i+l)mod r. 
(c) co(x) c Co u , . .  u G - I .  

Proof. We assume that co(x) ~2 ~?~s. Choose y~ co(x) - ~ s  and e > 0 such 
that Be(y) C X -  ~@s where Be(y) is the open ball of radius e centered at y. 
Since B~(y) is connected, it lies inside a connected component Co of X - ~ s .  
Since y6  co(x), there exist a smallest integer k _>_ 0 such that f k ( x ) ( B ~ ( y ) .  
Also, there is a smallest integer l >  k such that i f ( x ) E B c ( y  ). If  r =  l - k ,  
then f r (Be (y ) )  n B~(y) ~= 0 and it follows by continuity that i f (Co)  C Co. 

Write x' = f k ( x )  and let C/ be the connected component of X-~ .~s  
containing f i ( x ' )  for i = 0  . . . . .  r - t .  It follows by continuity that 
f ( Q )  C C(i+i )modr ,  and so 

f i ( x ' )  6 C O u ""  u Cr_i, i ~ O. 
Hence, 

co(x)  = c o ( x ' )  c Co u . . .  u C - ,  = C0 u . - .  u Cr -1 .  

In addition, since there are only finitely many connected components, they 
have no limit points lying in another connected component of X -  ~ s .  
Hence 

CO (X) C C 0 k.) " ' "  t..)Cr_ 1 k.) ' ~ s ,  

from which (a) follows. [] 

An f-invariant set A is stable if for any open neighborhood U of A there 
is a smaller open neighborhood V of A such that f n ( V )  C U for all n >__ 0. 

Definition 2.2. An attractor is a stable co-limit set. 

Remark 2.3. There are several definitions of  'attractor' in the literature. Since 
we do not require the existence of a dense orbit in A or that A has an open 
basin of attraction, our definition is reasonably general. For example, the 
'Feigenbaum' limit set is an attractor by our definition even though it does 
not have an open basin of attraction. 
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Many of our results hold under a weaker definition of attractor where we 
only require stability at one point in the following sense. A set A is stable at 
one point if there is a point y ~ A such that for any neighborhood U of A there 
is a neighborhood V of  y such that f n ( V )  C U for all n __> 0. An attractor at 
one point is an e)-limit set that is stable at one point. For example, the one- 
dimensional map f ( x )  = 4x(1 - x )  has [0, 11 as an invariant interval with a 
dense orbit. All points outside [0, 1] iterate to - co  and so [0, 1] is not stable 
and hence is not an attractor. However, [0, l] is stable at any point in its in- 
terior and so is an attractor at one point. In fact, our definition of  attractor 
at one point is sufficiently general to include any set that has ever been called 
an 'attractor' for the logistic mapping f ( x )  =/~x(1 - x ) .  

Throughout this paper we shall state our results for attractors. However, 
the majority of results hold also for attractors at one point. In fact, the only 
results that require the stronger notion of attractor are those that make use 
of Proposition 4.8, that is, Proposition 4.9 and Theorem 4.10 in Section 4, 
and Proposition 5.2, Theorem 5.3 and Proposition 5.7 in Section 5. 

Proposition 2.4. Let S and A be closed sets and suppose that A is a stable 
f-invariant set. Then the following statements are equivalent: 

(a) A n S = 0, 
I 

(b) A c~ ~,~s = 0. 

Proof.  Since S C ~ s ,  it is clear that (b) implies (a). Now suppose that (a) is 
valid. Since A and S are closed, there is an open set U containing A with 
U n S = 0 .  Let V be a smaller neighborhood of A such that f " ( V )  C U 
for n = 0 , 1 , 2  . . . . .  It follows that V n ~ s = 0  and so A n ~ s = O  as 
required. [] 

Corollary 2.5. Suppose that A is an attractor, S is closed and A n S = O. Then 

A C C O W . . .  u C r _  I. 

I_emma 2.6. Let M and S be closed subsets. Assume that 
(a) A is an attractor and A n S = 0. 
(b) C is a connected component o f  X - ~ s  and A n C * 0. 
(c) M is f-invariant and A n M ,  O. 

Then M intersects C. 

Proof.  By (b), A intersects C; hence C must be one of the connected com- 
ponents guaranteed by Lemma 2.1. These connected components are permuted 
cyclically by f ;  by (a) and Corollary 2.5 they cover the whole of A. By (c), 
M intersects at least one connected component;  invariance implies that M in- 
tersects all the connected components. In particular, M intersects C. [] 

(b) Connectedness results 

We can now prove two rather strong connectedness results for attrac- 
tors. 
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Theorem 2.7. Let A be a topologically-mixing attractor for a continuous mapping 
f .  Then A is connected. 

Note that this theorem may be proved easily if A is assumed to have a finite 
number  of  connected components;  the content stems from eliminating the 
possibility of  an infinite number of  components.  

Proof.  Suppose that A is not connected. Then we may write A as the disjoint 
union of two closed sets A 1 and A 2. Let S be a closed subset of  X such that 
A 1 and A2 lie inside distinct connected components of  X - S .  By Cor- 
ollary 2.5, A C Co u . . .  u Cr-1, where Co . . . . .  C~-1 are connected components 
of  X - ~ s  and are permuted cyclically by f .  Also r >= 2 by construction. In 
particular, A c~ Co and A n C~ are invariant under f r ,  so that f r  has no at- 
tractor containing both of these subsets of  A. Hence A is not an attractor for 
f~, which contradicts the assumption that A is topologically mixing. [] 

Corollary 2.8. I f  A is a topologically-mixing attractor topologically conjugate to 
a subshifi, then A is a fixed point. 

Proof.  It is well known that spaces topologically conjugate to a subshift are 
totally disconnected; cf. Proposition 11.9 in MANI~ [17]. Combining this with 
Theorem 2.7, we see that A is both connected and totally disconnected. [] 

Remark 2.9. The standard examples of  nontrivial topologically-mixing spaces 
conjugate to subshifts are not attractors by any definition. On the other hand, 
it is not difficult to construct examples of  nontrivial topologically-mixing at- 
tractors that are semiconjugate to subshifts and even conjugate to subshifts of f  
a negligible subset. 

Theorem 2.10. Let A be an attractor for a continuous mapping f .  Suppose A con- 
tains a periodic point of period k. Then A has at most k connected components. 

Proof.  Suppose we can write A as a disjoint union of closed sets 

A = A  1 U . . .  uAk+ 1. 

Choose S to be a closed set that separates the Ajs and such that S n A =0.  
By Corollary 2.5, 

A C Co u . . .  u Cr_l 

where Co . . . . .  Cr-1 are connected components of  X -  ~ s .  Since S separates 
the Aft, at most  one Aj can intersect a given C/. It  follows that 

k + l < _ r .  

Now we let M be the periodic trajectory consisting of k points that is 
assumed to exist in A. Since M is f-invariant, we may apply Lemma 2.6 to con- 
clude that M n Cj au 0 for each Cj. It follows that 

k>=r. 
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This contradicts the assumption that we can write A as a disjoint union of 
k + 1 closed subsets. [] 

There are a number of consequences of Theorem 2.10 - we mention two. 

Corollary 2.11. (a) If an attractor contains a fixed point, then it is connected. 
(b) If an attractor contains a periodic point, then it cannot be a Cantor set. 

(c) Sensitive dependence 

We begin by recalling the notion of sensitive dependence on initial condi- 
tions. The following definition is due to GUCKENHEIMER [131 (except that we 
speak of sensitive dependence of A rather than of f ) .  

Definition 2.12. An invariant set A has sensitive dependence if there is a set 
Y D A of positive (Lebesgue) measure and an e > 0 such that for every x 6 Y 
and every 0 > 0 there is a point y that is &close to x and an integer m > 0 
such that 

I fm(x) _ f m ( y ) [  > e. 

We also introduce a weaker notion than sensitive dependence that is 
equivalent to Definition 2.12 for invariant sets of positive measure. 

Definition 2.13. An invariant set A has weak dependence if there is an e > 0 
such that for every x 6A and every O > 0 there is a point y that is &close to 
x and an integer m > 0 such that  

l fro(X) --fro(y) I > ~. 

Proposition 2.14. Let f : X ~ X be continuous, and x ~X. Suppose that S C X 
satisfies the following conditions: 

(a) f ( S )  C S, 
(b) co(x) c ~s ,  
(c) co(x) r  

Then co(x) has weak dependence. If, in addition, a~(x) has positive measure, then 
co(x) has sensitive dependence. 

Proof. Using (c) choose a point p in co(x) - S. Let d be the distance from 
p to S and choose e to be less than d. Let y~co(x)  and let O > 0 .  In the 
0-neighborhood of y there exists a point x' = f k ( x ) ,  some k, and a point z 
that iterates to S (by (b)) - say in 1 iterates. Since p~ co(x) there exists an 
m = 1 such t ha t f m(x  ") is (d - e)-close to p. By (a), fro(z) ~S and hence has 
distance at least e from fm(x ' ) .  [] 
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3. One-dimensional maps 

In this section we prove results about maps on the line which illustrate the 
methods of the previous section, in particular, Lemma 2.1 and Proposi- 
tion 2.14. Our main results deal with the two issues of density of periodic or- 
bits and sensitive dependence for co-limit sets of these one-dimensional maps. 
Many authors have considered these issues but usually when assuming stronger 
hypotheses on the mappings. We focus on results that can be obtained for a 
general class of mappings using the topological methods of Section 2. We note 
that the results in this section are not required in subsequent sections. 

Let f : [R  ~ ~ be continuous and let P e r ( f )  denote the periodic points of 
f .  Then ~-~Per(f) is the set of eventually periodic points of f .  An co-limit set 
is minimal if it contains no proper closed invariant subsets. 

We now state our two main theorems. 

Theorem 3.1. Let f : [R --~ ~ be a continuous map, and x E R. Then 

(a) co(x) C ~&r(f ) .  
(b) The limit points of co(x) lie in P e r ( f ) .  In particular, 

topologically transitive, then co (x) C Per ( f ) .  

if co (x) is 

Theorem 3.2. Let f : [R ~ ~ be a continuous map and x ~ ~. I f  co (x) is compact 
and is not minimal, then co(x) has weak dependence. I f  in addition, co(x) has 
positive measure, then co(x) has sensitive dependence. 

Corollary 3.3. Suppose that co(x) C [R consists of a finite union of closed inter- 
vals. Then co(x) is topologically transitive, periodic points are dense in co(x) and 
there is sensitive dependence. 

Proof. Topological transitivity is clear since co (x) has interior in ~. Hence by 
Theorem 3.1(b), co(x) C P e r ( f ) .  Again since a)(x) has interior, the dense set 
of periodic orbits can be taken to lie in co(x). 

Suppose that co(x) consists of k intervals. Then fk  maps a single interval 
into itself and has a fixed point. This implies that co(x) contains a period k 
point and is not minimal. In addition, co (x) has positive measure and sensitive 
dependence follows from Theorem 3.2. [] 

Remark 3.4. (a) Theorem 3.2 holds also for continuous circle maps. In addi- 
tion, Theorem 3.1 is valid for mappings of the circle provided the set of 
periodic points is nonempty. The proofs are completely analogous to those for 
mappings on the line. 
(b) Theorem3.1 is reminiscent of PuG~'s closing lemma [19, 20]. Note 
however that no genericity or differentiability assumptions on f are required, 
in contrast with mappings of the circle or higher-dimensional manifolds. 
However, even in R, it is true only generically that the nonwander~;ng set s  
is equal to P e r ( f ) ;  see YovNc [22]. Part (a) of Theorem 3.1 was proved 
previously by BI~CK [5] using similar methods. We present a proof here to 
focus on the way I_emma 2.1 is used in the proof. 
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(c) Suppose that A is an attractor and that A has an open basin of attraction. 
Then Theorem 3.1 implies that A must contain a periodic point. But then by 
Theorem 2.10, A has finitely many connected components. That is, A must be 
a periodic orbit or a finite union of closed intervals and cannot be a Cantor 
set. Of  course, our definition of attractor does not exclude Cantor sets. In- 
deed, the 'Feigenbaum' limit set is an attractor and a Cantor set but does not 
have an open basin of attraction. 
(d) The 'Feigenbaum' limit set is minimal, has zero measure and does not 
display weak dependence (cf. [14]). This shows that the hypothesis of non- 
minimality in Theorem 3.2 is crucial. (In particular, assuming that co (x) is not 
a periodic orbit is not sufficient to guarantee weak dependence.) In addition, 
there are examples of minimal Cantor sets with positive measure that are at- 
tractors and do not display weak dependence; see [15]. 

We end with a result that is useful in the computation of symmetry-increas- 
ing bifurcations; see [10]. Let p be a periodic point for f and let S denote 
the corresponding periodic orbit. We call p (or S) unstable if there exists a 
neighborhood U of S such that d i s t ( f ( x ) ,  S) > dist(x, S) for all x ( U. Note 
that if p has period k, f is differentiable and I ( fk )  ' (P)I > 1, then p is 
unstable. 

Theorem 3.5. Suppose that x ~ R and that the orbit of x under f is bounded. I f  
p ~ co (x) is an unstable periodic point, then 

co(x) z @.  

Corollary 3.6. Suppose that an odd continuous mapping f : R ~ [R has a compact 
attractor A containing the unstable fixed point O. Then 

(a) A C ~ 0 .  
(b) A is connected. 
(c) A has sensitive dependence. 
(d) Periodic points are dense in A. 

Proof. Statement (a) follows from Theorem 3.5, (b) follows from Theo- 
rem2.10,  (c) follows from Theorem3.2  and (d) follows from Theo- 
rem 3.1. [] 

We now turn to the proofs of Theorems 3.1, 3.2 and 3.5. 

Proof of Theorem 3.1. (a) Setting S =  P e r ( f )  in Lemma2.1  implies that 

either co (x) C ~Per(f) or co (x) C Co u . . .  u Cr-1 where the Cj are connected 
components of R - ~Per(f) and are cyclically permuted by f .  We show that 
the second alternative implies that co(x) C '~Per ( / ) ,  which proves part (a). 

Let coj = c o ( x ) n  Cj. Then coj is an co-limit set for f t .  By construction, 
f has no periodic points in C). Therefore f r  has no fixed points in Cj and 
either f r ( x )  > x for each x ~ Cj or i f ( x )  < x for each x ( Cj. 

Since coj is an co-limit set for fr ,  COj lies in the boundary of Cj. It follows 
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that co(x) is finite (possibly empty). If y ( c o ( x ) ,  then the orbit of y under 
f consists of finitely many points and so y ~ ~@per(f) as required. 

(b) Suppose that y is a limit point in co(x) and let (a, b) be an open inter- 
val containing y. We show that (a, b) n P e r ( f )  . 0, thus proving the first 
statement in part (b). By part (a), there is an eventually periodic point 
z 6 (a, b). Suppose that z iterates to a periodic orbit of period r. Let g =fr .  
Then z iterates under g to a fixed point p, gk(z) = p  for some k. If p = z, 
then we are finished, so we may assume that p > z. 

Let coj(x) denote the co-limit set o f f J ( x )  under g. Then y is a limit point 
of  coj(x) for at least one j,  1 =<j __< r. Hence, there are points Ya <Y2 con- 
tained in coj(x) n (a, b). Let e = (Y2 - yl) /2.  Since Yl, Y2 E coj(x), f J (x )  
iterates under g to a point x '  ~ (a, b) within distance e of Y2 and then to a 
point gl(x') within distance e of Yl for some l => k. Therefore, we have 

gl(x')  < x', gl(z) = p  > z. 

It follows from the intermediate value theorem that gt has a fixed point be- 
tween x' and z and hence in (a, b). This is the required periodic point for f .  

Suppose now that co (x) is topologically transitive. To complete the proof  
of part (b) it is sufficient to show that co(x) is either a periodic orbit or a 
perfect set. That  is, either every point is periodic or every point is a limit 
point. Since co(x) is topologically transitive, we can assume without loss of 
generality that x6 co(x). If F l ( x )  = F 2 ( x )  for positive integers nl * n2, then 
co(x) is a periodic orbit. Otherwise the orbit ( F ( x ) ;  n = 1, 2, . . .} consists of  
distinct points. Let y fi co(x). Then there is an increasing sequence n~ such 
that f n k ( x ) ~ y .  The points f~k(x) lie in co(x) and are distinct, so that y is 
a limit point of  co(x) as required. [] 

Next we turn to the proof  of Theorem 3.2. We require two preliminary 
results. The first of these, I_emma 3.7, is used also in the proof  of Theo- 
rem 3.5. The second result, Lemma 3,8, contains the technical part of the 
proof  of  Theorem 3.2. 

Lemma 3.7. Suppose that f : [R ~ fir is continuous, x ~ R and co (x) is compact. 
i 

If  z ~ c o ( x ) - P e r ( f ) ,  then co(x) C ~ z .  

Proof.  Since f ( c o ( x ) ) =  co(x), there exists a sequence Zn~co(x), such that 
z0 = z  and f ( z n ) = z n - 1 .  We have assumed that z is not periodic, so the 
points in the sequence are distinct. Hence co(x) c~ ~ is an infinite set. Sup- 

pose that co(x) q :~z .  By Lemma 2.1, co(x) C C0 u . - .  u Cr-1 where each Cj 
is a connected component of  ~ - ~ .  But then co(x) n ~ consists at most 
of  the union of  the end points of  the intervals Cj and hence has at most 2r 
points. This is a contradiction. [] 

Lemma 3.8. Suppose that f : fir ~ ~ is continuous and x ~ ~. Suppose further that 
co(x) C P e r ( f )  and co(x) r3 P e r ( f )  =~ 0. Then either co(x) has weak depen- 
dence or co(x) is a periodic orbit. 
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Proof. The proof divides into two cases depending on whether or not the 
following property (5") is satisfied. 

(5") For any positive integer I, there is a periodic orbit S C ~ such that at 
least l connected components of ~ -  S intersect co(x). 

Suppose first that property (5.) is valid and let y be a periodic point in co (x) 
with period k. We may choose a periodic orbit S C [R so that at least k + 1 
components of [R-  S intersect co(x). Suppose that co(x) K ~ s .  Then there 
are at least k + 1, but by Lemma 2.1 finitely many, components of [R - ~ s  
that cover co(x) and that are cyclically permuted by f .  One of th_ese com- 
ponents contains y and there is a contradiction. Hence co(x) fi ~ s .  Either 
co(x) = S, in which case co(x) is a periodic orbit, or S satisfies the hypotheses 
of Proposition 2.14, so that co(x) has weak dependence. 

It remains to consider the case when property (t) is not valid. Since 

co(x) fi P e r ( f ) ,  it follows that co(x) C F i x ( f  k) for some k. By continuity, 
co(x) C F i x ( f  ~) and consists entirely of periodic orbits. We show that if 
co(x) contains more than one periodic orbit, then there is weak dependence. 

It is sufficient to show that co(x) has  weak dependence under g = f k .  
Suppose that PI and P2 are distinct periodic orbits in co(x) and define 

e=�88 min [P l -Pa] .  
PlEPI ,P2~P2 

Suppose that y ~ co(x) and O > 0. Choose an iterate z = f l ( x )  that is O-close 
to y. There are integers ml, m2 >-0 such that gmj(z) is within distance e of 
points pj~Pj, j  = 1, 2. On the other hand, y is fixed by g so that ginS(y) =y. 
Hence lgmj(y)-gmj(z)[ =ly--gm;(z)[ > e  for j = l  or j = 2 ,  thus proving 
weak dependence. [] 

Proof of Theorem 3.2. We prove weak dependence. Strong dependence then 
follows from the additional assumption that co(x) has positive measure. The 
strategy of our proof is to reduce, under the assumption that co(x) does not 
have weak dependence, to the situation where the hypotheses of Lemma 3.8 
are valid, in which case the theorem follows. 

The proof varies depending on whether or not co(x) is topologically tran- 
sitive. Suppose first that co(x) is topologically transitive. Since co(x) is not 
minimal, there is an invariant closed subset S contained properly in co (x). If 

z~S is not periodic, then by Lemma3.7,  co(x)C ~ C ~ s  and weak 
dependence follows from Proposition 2.14. So we may assume that S, and 
hence co(x), contains periodic points. In addition, co(x) C P e r ( f i  by Theo- 
rem 3.1(b) so that the hypotheses of Lemma 3.8 are satisfied as required. 

Next suppose that co (x) is not topologically transitive. We assert that either 
co(x) C P e r ( f )  or co(x) has weak dependence. If the first possibility holds, 
the hypotheses of Lemma 3.8 are satisfied. 

We prove the assertion by assuming that co (x) K P e r ( f )  and showing that 
co(x) has weak dependence. Choose z E c o ( x ) - P e r ( f )  and let S =  
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{fn(z)  ; n __> 0}. By Lemma 3.7, co(x) C ~ C ~ s .  Note that if S is a proper 
subset of  co(x), then we are finished by Proposition 2.14. 

Choose y ~ co(x) such that f ( y ) =  z. By the above discussion we may 
assume that y~S .  So either z iterates onto y under f or zEco(z ) .  Since 
z C P e r ( f ) ,  it is the second possibility that is valid: z E co(z). Hence we may 

again apply Lemma 3.7 to deduce that co (x )C  ~-~(z). Since co(x) is not 
topologically transitive, co(z) is a proper subset of  co(x), and weak depen- 
dence follows from Proposition 2.14. [] 

Proof of Theorem 3.5. Let S be the  periodic orbit corresponding to p. We show 
that there are points in co(x) that iterate to S and do not lie in S. Such a 
point q is not periodic and hence co(x) C ~ q  C ~ p  by Lemma 3.7. 

Since the orbit of  x under f is bounded, co(x) is compact.  Hence, co(x) 
lies in the interior of  a closed interval I. Let U be the neighborhood of  S in 
the definition of unstable periodic point. We may assume that U C I .  Let 
V C U be a smaller neighborhood of S and let W C I be a neighborhood of 
co(x). 

We assert that there must be a point q ~ W -  U such that  f ( q )  ~ V. Choose 
a sequence of neighborhoods Vj converging to S and a sequence of 
neighborhoods W: converging to co(x). By the assertion we obtain a sequence 
of  points qjE W j -  U, such that f ( q j ) ~  V:. The sequence qj lies in I - U ,  
which is compact,  so passing to a convergent subsequence, we have that 
qj ~ q. Moreover, it follows from the construction of the sequence that 
q~ co(x) - S and f ( q )  ~ S as required. 

It remains to verify the assertion. First observe that there is an integer 
K => 0 such that f k ( x )  ~ W for all k _> K. For otherwise, i f ( x )  E [R - W for in- 
finitely many integers j ,  and since this set of  points is bounded, there would 
be an co-limit point in ~ - W. This contradicts the fact that co(x) C W. 

So without loss of  generality, we may assume that i f ( x )  ~ W for all j _> 0. 
Since S C co (x), x eventually iterates into V. Let k be the least integer satisfying 
f k ( x )  E V. Then q = f k - l ( x )  ~ W -  U. For if q (  U, then q~ U -  V and must 
iterate out of  U before entering V. [] 

4. Symmetry of an attractor 

Suppose that  F is a finite group acting linearly on X, and that f is F- 
equivariant, that is, 

f ( y x )  = ?, f (x) .  

I f  x E X, we define the isotropy subgroup of x to be the subgroup 

Zx=ly~F:~x=x}. 

I f  X is a subgroup, then it has a fixed-point subspace 

Fix (X) = Ix E X: o-x = x for all a ~ X}. 
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We can now define the symmetry of a nonempty set A C X. The subgroup 
of F that fixes each point in A is denoted by 

TA= N -~, 
xEA 

and the isotropy subgroup of A consists of  the group elements that preserve 
the set A, and is denoted by 

Z A = { y ~ F : y A  =A}.  

Proposition 4.1. Let A C X be nonempty. 
(a) A C Fix (T A). 
(b) TA is a normal subgroup of ZA. 

Then 

Proof.  These statements follow easily from the definitions of  TA and 
27A. [] 

By Proposition 4.1, Z A is contained in the normalizer N(TA) of TA. The 
symmetry group SA of  A is defined to be the quotient group 

S A = •A/TA C N(TA)/TA. 

Note that if A consists of  a single point, then SA is the trivial group. 

Remark 4.2. It is the group SA that plays the most significant role in the 
theoretical issues discussed in this paper. However it is interesting to compare 
the meaning of the three groups T A, XA and SA in applications, particularly 
to nonequilibrium solutions of partial differential equations. The group T A 
refers to the symmetries of  a solution at each instant in time while Z A refers 
to symmetries of  the time-average of that solution. The important  observation 
for applications is that ZA can be larger than T A [10]. In this sense, SA = 
ZA/T A are the new symmetries that appear in solutions by taking time- 
averages. 

I f  T A = 1, then ZA can be identified with SA and we say that A is ZA-sym- 
metric. Note that T A = I in the important  case when A contains a point with 
trivial isotropy. 

Having defined the kinds of  symmetry that an attractor can have we now 
consider several different issues concerning these symmetries - each issue is 
considered in a separate subsection. In the first subsection we show that there 
are general group-theoretic restrictions on the symmetries of  connected com- 
ponents of  an attractor A given that we know the symmetry group SA. In the 
second subsection we show that there are definite restrictions on the symmetry 
group SA given by the representation of  the full group of symmetries F on 
Nn. These restrictions are controlled by the group elements in F that act as 
reflections across hyperplanes in [R ~. The final subsection is devoted to prov- 
ing a technical but general result concerning the way connected components 
of complements of  preimage sets are permuted by both the mapping (as in 
Lemma 2.1) and the group action. This result is used in the final section to 
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prove more specific results about the symmetries of  attractors and their com- 
ponents for planar mappings with dihedral symmetry. 

(a) Symmetries of  connected components 

Proposition 4.3. Assume: 
(a) Y is a finite set with tY  ] = r. 
(b) The finite group Z~ acts transitively on Y. 
(c) Z' is a group acting fixed-point freely on Y. 
(d) The actions of  22 and Zr commute. 

Then ,~ is isomorphic to a subgroup of Y-r, that is, 22-~ Zk where k divides r. 

Proof.  Let a be a generator of  Z~, fix y E Y, and let a E X. Since ay E Y, there 
is a unique a p E Zr such that ay = aPy, by (a) and (b). Define X : 2 2 ~  Zr by 
X ( f f )  = a p. We show that X is a monomorphism. The proposition follows 
with k = rip. 

To see that X is a homomorphism, suppose that Z(aj)  = aPJ for j = 1, 2. 
Then ajy = a PJy and 

a z a l y  = a2aPly = aP~azy 

since by (d) the actions of  22 and 7/~ commute. Hence 

G2GlY = aPlaP2y = aP2aP~y 

since 7/~ is abelian. It follows that 

X(a2a~) = x (a2 )  X(a~) . 

We now show that X is injective. Suppose that X ( a )  = i. Then ay = y  and 
a = 1 since by (c), 22 acts fixed-point freely. [] 

Corollary 4.4. Suppose that f : X ~ X is F-equivariant and A is a periodic orbit 
of period r. Then SA = Y-A where k divides r. 

Proof.  Let Y = A  = [ x , f ( x )  . . . . .  f r -1 (x)} .  Note that the action o f f  on Y is 
a transitive Zr action. Moreover, Y,#(x) = TA for each j from which it follows 
that S A acts fixed-point freely on Y Since F-equivariance means that the ac- 
tions of  SA and Zr commute, the result follows from Proposition 4.3. [] 

Remark  4.5. Often we shall discuss properties of  F-symmetric attractors A for 
F-equivariant mappings f so that SA = F. This assumption can be verified in 
two distinct ways. First, when A contains a point with trivial isotropy, then 
T A = 1 and we can identify SA with 22A C F. If XA �9 F, discard the elements 
of  F that are not in 22A and redefine F = Z" A . Then f is still F-equivariant and 
A is F-symmetric. 

Second, even when A does not contain points with trivial isotropy, this 
hypothesis can be satisfied - if in addition we restrict f .  Suppose that 
T A . 1. Note that A C FiX(TA) by Proposition 4.1(a) and FiX(TA) is an 

f-invariant subspace. Let g = f [  FiX(TA ) . Then g is a A-equivariant mapping 
where A =N(TA) /TA .  Inside A, SA =XA and we are back in the first case. 
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Theorem 4.6. Let f : X ~ X be a F-equivariant map with an attractor A, SA = F. 
Suppose that A is the disjoint union of two compact sets A 1 and A 2 . Then SA1 is 
a normal subgroup of F and the quotient group F/SA1 is cyclic. 

Proof.  Choose So to be a closed set separating A1 and A 2 such that 
A n So = 0. Let S = U reryS o. Since A is F-symmetric, we have that 
A n S = 0. By Corollary 2.5, we have 

A Q C o u . . .  u C r _  1 

where the Cj are connected components of X -  ~ s .  Moreover, the connected 
components are permuted cyclically by f and permuted by elements of F. 

Define Aj = {7 ~ F : yCj = Cj}. Since f permutes the components Cj and is 
F-equivariant, it follows that A0 . . . . .  At-1. Let A = A0. Then A is the 
kernel of  the action of F on {Co . . . . .  Cr-l} and is normal in F. Moreover, 
F/A acts fixed-point freely on {Co . . . . .  Cr-1} and hence is cyclic by Proposi- 
tion 4.3. 

We assert that SAx contains A. It is easy to check that SA1 is a normal 
subgroup of F. It then follows that F/SA~ = (F/A)/(SA1/A) is cyclic (since 
F/A is cyclic). It remains to verify the assertion. If 7 E A, then 7(A n Cj) = 
A c~ Cj for each j. The choice of So guarantees that if a Cj intersects A1, then 
C j ~ A 2 = 0  so that y ( A l n  C j ) = A l n C j .  Thus A1 is made up of y-sym- 
metric pieces and is itself y-symmetric. [] 

Remark 4.7. (a) Suppose in Theorem 4.6 that F is a simple noncyclic group and 
SA = F. Then SA1 = F. (Recall that a group G is simple if the only normal 
subgroups are G and 1.) An example of such a group F is given by the sym- 
metry group of the icosahedron which is isomorphic to the alternating group 
As. 

(b) Suppose that F =Dm in Theorem 4.6. Then SAI is either Dm or 7/m 
when m is odd, and SA1 is either Din, 7/m or Dm/2 when m is even. It is easily 
verified that these subgroups obey the hypotheses of the theorem. The remain- 
ing normal subgroups Zk, where k divides m, may be ruled out thanks to the 
isomorphism Dm/77k ------ Dm/k. 

(C) For certain representations of a group F, there may be further restric- 
tions on the symmetry of disjoint parts of  the attractor. For example, we show 
in Theorem 5.8 that if Dm acts faithfully on •2, m _> 3, then SAt = Din. 

(b) Symmetries of attractors 

We have seen that there are group-theoretic restrictions on the symmetry 
groups of periodic orbits (Corollary 4.4) and on the symmetry of connected 
components of symmetric attractors (Theorem 4.6). We now show that there 
are restrictions on the symmetry groups of attractors. In contrast to the 
previous results, these restrictions are not purely group-theoretic, but depend 
on the representation of the group. Suppose that F C O(n) is a compact Lie 
group and let Z be a subgroup of F. Recall that r ~ F is a reflection if F ix( r )  is 
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a hyperplane in ~". Let Kz be the set of  reflections in F -  Z and define 

L z =  U F i x ( r ) .  
rEK z 

The connected components  of  [R n - L  z are permuted by elements of  Z. We 
use the fact that a Z-symmetric  attractor for a F-equivariant map cannot in- 
tersect Lz .  This is a consequence of the following result proved in [6, Prop- 
osition 1.1] under slightly different hypotheses. 

Proposition 4.8. Let f : ~ - ~  [R n be continuous and commute with a matrix p. 
Let A C ~ be an attractor for f .  I f  

A n p (A)  =~ 0, 

then 

p (A)  = A .  

Proof.  We show that p (A) C A. A similar argument gives the reverse inclusion. 
We assert that if U D A is any open neighborhood, then U D p (A). Since p (A) 
is closed, it follows that p(A)  C A, as desired. 

We verify this assertion as follows. Since A is stable, there is an open 
neighborhood V of A such that fm(v)C U for all m __> 0. Since, by 
equivariance, p(A)  is also an attractor for f ,  there exists an x ( ~ such that 
p(A ) = co(x). 

Let z be a point in A n p(A)  C V. Since V is open, there is a k_> 0 such 
that f ~ ( x )  is near to z; hence f ~ ( x ) ~  V. It follows that p ( A ) =  c o ( x ) =  
c o ( f ~ ( x ) )  C U, as asserted. [] 

Proposition 4.9. Let F C O(n)  be a compact Lie group with subgroup Z. Suppose 
that f : ~n_+ [R n is a continuous F-equivariant mapping with a Z-symmetric 
topologically mixing attractor. Then there is a connected component of [R ~ -  L z 
that is preserved by Z. 

Proof. By Proposi t ion4.8 ,  any Z-symmetric  attractor A must satisfy 
A n L z = 0. In addition, A is connected by Theorem 2.7, Hence A lies inside 
a single connected component  C of N n - L x .  But Z fixes A and 
hence C. [] 

I f  we drop the topological mixing assumption in Proposition 4.9, then the 
situation is more complicated, but there is still a representation-theoretic 
restriction on Z. 

Theorem 4.10. Let F C O(n) be a compact Lie group with subgroup X. Suppose 
that f : R n ~ ~n is a continuous F-equivariant mapping with a Z-symmetric at- 
tractor. Then there is a subgroup A such that 

(a) A is a normal subgroup of  Z, 
(b) X/A is cyclic, 
(c) A fixes a connected component of [R n -  LA. 
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Proof. Let A be a X-symmetric attractor for a F-equivariant continuous map- 
ping f .  Let L be the union of the reflection hyperplanes that do not intersect 
A, that is, 

L = g Fix(r) 
Fix(z) nA =0 

where r is a reflection in F. We use L to define A. 
Observe that X acts on L since elements of X fix A. Hence, X leaves ~~L 

invariant and X permutes the connected components of R"-~@L- 
By Corollary 2.5, A is covered by finitely many connected components 

Co . . . .  , Cr-1 of N n  ~L and these connected components are permuted 
cyclically by f .  Let Ai = {d EX: dCi = Ci}. 

Next, observe that 
dCi = Cj = 5Ci+~ = Cj+I. (4.1) 

To see this, observe that 

dC/= Cj=Sf(C/) =f (Cj)  =OG+l n Cj+ 1 * 0. 

Implication (4.1) follows, since the Cis are connected components. 
Thus Ai C zli+l and the Ais are all equal. We define 

A -~ A 0 . . . . .  Ar_ 1 . 

Since A is the kernel of the action of X on the set ~ =  {Co . . . . .  Cr-~}, A 
is a normal subgroup of X (thus verifying (a)) and X/A acts fixed-point freely 
on ~. It follows from (4. t) that this action commutes with cyclic permutations 
on C~and from Proposition 4.3 that X/A is cyclic (thus verifying (b)). 

Next, we assert that L~ C L. Before proving the assertion we show that 
verifying this assertion will indeed prove (c) and complete the proof of 
this theorem. Since L C ~ .  and since A fixed a connected component of 
R"-~'~L, it follows that A must fix a connected component of ~ " - L .  
Hence, by the assertion, A must fix a connected component of ~ n  L~. 

To prove the assertion, assume that Fix(r) C LA, that is, assume that 
r~A.  We prove that Fix(r) C L by contradiction, that is, we assume that 

Fix(r) n A * 0 (4.2) 

and, to establish the contradiction, show that r 6 A. 
Observe that (4.2) implies that r ( A ) c ~ A .  0. Hence, Proposition 4.8 im- 

plies that r (X; thus, r permutes the Cjs. 
Finally, observe that since A is covered by the ~s, (4.2) implies that 

Fix(r) n Cj * 0 for some j ;  hence, r(Cj) n C j .  0. Since r~X, r permutes 
the Cjs, and r ( C j ) =  Cj. So, by definition, r ~ A j = A .  [] 

Remark 4.11. (a) In Section 5 we apply Theorem 4.10 when F =  D,~ is acting 
on ~z and show that not all subgroups of Dm can be the symmetry group of 
an attractor for a Dm-equivariant mapping. 

(b) Suppose that F is finite. Then the representation-theoretic restriction 
obtained in Theorem4.10 is necessary and sufficient; see ASHWlN & ME~- 
BOr:I~NE [1]. In particular, there are no restrictions on cyclic subgroups of F 
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nor on subgroups of F that contain all the reflections in F. (For the case of 
cyclic subgroups, see also KINc & STEWART [16]. ) Proposition 4.9 is also op- 
timat except when F is a cyclic subgroup of 0 (2 )  (see [1]). 

(c) Permuting connected components of complements of preimage sets 

Definit ion 4.12. Let 5~ be a finite collection of closed subsets of  X. The collec- 
tion ~ is a fundamental decompos#ion for the action of F if 

(a) X = UBe~B. 
(b) int (B) = B, for each B ( ~ .  
(c) The sets int (B) are pairwise disjoint. 
(d) The group F acts on ~ ,  that is, ?(B) E ~ for all B (  :~  and 7EF.  
(e) If  ?(B) = B  for some Be 2 and nontrivial 7 6 F ,  then there is an ele- 

ment ~ ~ F such that y f i B .  fiB. 

Remark 4.13. (a) Definition 4.12(e) states that F acts fixed-point freely on group 
orbits in ~ .  

(b) This definition is similar to that of a fundamental domain. However, 
we allow the possibility that yB = B for some B E ~ and some nontrivial y r F. 

(c) A natural way to produce fundamental decompositions is to choose a 
hyperplane in X passing through the origin. Let So denote a half-plane inside 
this hyperplane, and let S = Uyer ?So. Let .~  be the collection of closures of 
connected components of X - S .  It is clear that ~ satisfies Defini- 
tion 4.12(a)-(d). Condition (e) must be verified in each case. 

Recall that ~ s  is defined to be the set of preimages of a set S under f .  

Proposi t ion 4.14. Suppose that F is not cyclic and A is an co-limit set with 
SA = F. Let c~ be a fundamental decomposition for F and let S be the closed set 
U B~ 20B.  Then 

(a) A C ,~s. 
(b) I f  A is an attractor, then A c~ S t 0. 
(c) I f  A is an attractor and ~ is constructed as in Remark 4.13(c), then A in- 

tersects ?So for each ? ~ F. 

Proof. (a) Suppose that A r ~ s .  Then by Lemma 2.1, A - ~ s  is covered by 
connected components C o . . . . .  Cr-1 of X -  ~@s, and these connected com- 
ponents are permuted cyclically by f .  We assert that F acts fixed-point freely 
on the connected components. Then it follows from Proposition 4.3 that F is 
cyclic, which we had assumed not to be the case. When applying that proposi- 
tion, set 27 = F and Y =  {Co . . . . .  Q- l} .  

It remains to verify the assertion. Suppose that ?C 0 C Co. Then the F- 
equivariance of f implies that yCj C Cj for each j.  Let Bj denote the unique 
subset of 2 that contains Cj - note that uniqueness follows from Defini- 
tion 4.12(c). Then ),Bj = Bj for every j.  Since A is F-symmetric, the collection 
of  subsets {Bfl consists of a collection of group orbits of F by Defini- 
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tion 4.12(d), each of which is fixed by y. But Definition 4.12(0 states that F 
acts fixed-point freely on group orbits, so 7 = 1 as required. 

(b) This follows from Proposition 2.4. 
(c) I f  S = U yer yS0, then A intersects ySo for some 7 ( F ,  and hence for 

all 7 ~ F since SA = F. [] 

5. Planar maps with dihedral symmetry 

The dihedral group D m consists of  the symmetries of  the regular m-sided 
polygon and is generated by a rotation 0 through 2 n / m  and a reflection K. 
The irreducible representations of  Dm are one- or two-dimensional and the 
faithful representations are given on C ~ ~2 by 

O" Z = e2Ini/mz,  K"  Z = 

where l and m are coprime. We consider here only the standard two-dimen- 
sional representation l = 1; the results for the other two-dimensional irreduci- 
ble representations are identical. 

The subgroups of Dm are Dk and 77 k, k _> 1, where k divides m. There are 
m axes of  symmetry for Dm which we label L 1 . . . . .  Lm. 

We prove below that there are certain subgroups of D m that cannot be the 
symmetries of  attractors for Dm-equivariant mappings. The proofs rely on the 
following simple remark. 

Lemma 5.1. Let A C Dm be a subgroup satisfying Theorem 4.10(c), that is, A 
fixes a connected component o f  ~2 _ LA " Then A is either D~,  D 1 or 1. 

Proof.  Suppose that A . Dm. Then there are reflections in D m that do not lie 
in A so that L A is nonempty and consists of  lines through the origin. Observe 
that any nontrivial rotation in Dm cannot preserve a connected component  of 
[R 2 - L A ;  SO A cannot contain a proper rotation. The only subgroups of D m 
that do not contain rotations are D I and 1. [] 

Corollary 5.2. Suppose that f is Dm-equivariant with a S-symmetric topologically- 
mixing attractor. Then ~S is either D m, D 1 or 1. 

Proof.  Apply Proposition 4.9 and Lemma 5.1. [] 

Theorem 5.3. Suppose that f is Dm-equivariant, m >= 2. Suppose further that A is 
an attractor for  f and ZA = Dk. 

(a) I f  m is odd, then k =  l or k = m .  
(b) I f m  is even, then k =  1, k = 2 or k = m. 

We note that the first nontrivial consequence of Theorem 5.3 occurs when 
m = 6 .  For m < 6  the only subgroups D~ of  D m have k =  1, k = 2  or k = m  
and the theorem is trivially valid. 
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Proof. Let Z = D k C D m where 3 _ k < m. We show that there is no subgroup 
A C Z satisfying the conditions of  A 4.10(a)-(c) .  Condition (c) together with 
Lemma 5.1 implies that A is either DI or 1 (since k < m). Now when k >_ 3, 
the group D1 is not a normal  subgroup of Dk (so (a) fails) and the group 
Dk/1 = Dk is not cyclic (so (b) fails). [] 

Remark 5.4. KING & STEWART [16] prove that there exist attractors with cyclic 
symmetry for any cyclic subgroup. It  is shown in ASHWIN & MELBOURNE [1] 
that there exist attractors with D m and D 2 symmetry. 

Lemma 5.5. Suppose that A is a Din-symmetric attractor for a Dm-equivariant 
mapping f .  I f  m >. 3, then A intersects each half-line emanating from the origin. 
If  m = 2, then A intersects at least one line of symmetry. 

Proof. Let So be any half-line emanating from the origin and define S = 
U 7~Om YS0. The set S generally consists of  2m half-lines and is illustrated for 
the case m = 4 in Figure 1. Note that when So lies on an axis of  symmetry, 
then S consists of  m half-lines. When m _> 3, it is easy to check that for any 
choice of  So, the collection ~ of connected components  of  N2 _ S is indeed 
a fundamental  decomposition. It follows immediately from Proposition 4.14, 
that if A is an attractor with ZA =Dm and m __> 3, then for any choice of  So, 

A C ~ s  and A n So * O. 

Figure t. half-lines for m = 4. 

In the case m = 2, let S be the union of the two axes of  symmetry. Then 
the connected components  of  ~ 2 _  S form a fundamental  decomposition. It 

follows that  A C ~ s ,  and A n S ~= 0. [] 

Corollary 5.6. Let A be a Dr~-symmetric og-limit set for a Dm-equivariant map- 
ping f where m ~ 2. Then A has weak dependence. Moreover, if A has positive 
measure, then A has sensitive dependence. 

Proof. Let S be the union of the axes of  symmetry for Dm. Choosing S O to 

be a half-axis of  symmetry in the proof  of  Lemma 5.5 shows that A C ~ s .  
It follows that A and S satisfy the hypotheses of  Proposit ion 2.14. [] 

Proposition 5.7. Let f be Dm-equivariant where m is even and m >= 4. Let A be 
an attractor with Z A = D 2 . Then A intersects precisely one axis of symmetry. 
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Proof. Let L and M denote the two axes of symmetry for the subgroup D 2. 
By Lemma 5.5, A intersects at least one of  the axes, say L. Moreover, by Prop- 
osition 4.8, A does not intersect any other axis of  symmetry with the possible 
exception of  M. 

Let S denote the union of the two axes of symmetry for D,n that are adja- 
cent to L. Then A 63 S = 0. Since A intersects L, A intersects a connected com- 
ponent of R 2 - S that intersects L. But such a connected component cannot 
intersect M. Therefore A c~ M = 0 by Lemma 2.6. 

As promised, we can improve Theorem 4.6 for the faithful representations 
of D m on C = N2. 

Theorem 5.8. I f  A & a D~-symmetric attractor, m >= 3, and A is the disjoint 
union of two compact subsets A I and A2, then these subsets are D,,-s3wtmetric. 

Proof.  Let So be a closed set with the property that A 1 and A2 lie in distinct 
connected components of  ~2 _ So. Define S = kJ ~Dm yS0- By Corollary 2.5, 
A is covered by finitely many connected components Co . . . . .  Cr-1 of 

We assert that these components are D~-invariant. It is sufficient to show 
that reflections leave the components invariant since D,, is generated by 
reflections. Let L be an axis of  symmetry corresponding to a reflection ~c and 
observe that K permutes connected components by the Dm-invariance of  S. 
But A intersects L by Lemma 5.5 and hence L intersects one of the connected 
components, say Co. Since tc fixes L pointwise we have xCo = Co. In addi- 
tion, the equivariant map f permutes the connected components so that 
tcC} = Cj for each j thus verifying the assertion. 

Now let ), E Din. Then yA = A and by the assertion, 7 Cj = Cj for each j .  
Hence y(A c~ Cj) = A  c~ Cj. But S is constructed so that only one o f A  1 or A 2 
may intersect a given Cj. If A~, say, intersects Cj, then we have y(At c~ C~) = 
A 1 c~ Cj. Thus A 1 and A a are unions of D,,-symmetric subsets and are 
themselves D,~-symmetric. D 

The following result is useful for computing symmetry-increasing bifurca- 
tions. See [101. 

Theorem 5.9. Let f be a Dm-equivariant mapping, m >= 3, with an attractor A.  

(a) I f  SA = D~, then A C 3 s  "where S is the union of  any two lines through 
the origin. 

(b) I f  X a = D2, then A C ~L  ,for some line of symmetry L. 

Proof.  (a) Suppose that A r 3/~s . Then by Lemma 2. t ,  

A C C o w ' "  u C r _  I, 

where Co, . . . ,  Cr-t are connected components of  N 2 _  ~@s, and these con- 
nected components are permuted cyclically by f .  
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Since m__> 3, there is an axis o f  symmetry  M, M r  S. By Lemma 5.5, 
A c~ M :r 0. Hence one o f  the connected components ,  Co, say, intersects M. 
It follows that  ~ n M * 0 for j = 0 . . . . .  r - 1. In  particular, A intersects 
only the two connected components  o f  [R 2 - S that  intersect M. But A is D m- 
symmetr ic  and hence intersects all four  connected components  o f  [R 2 - S giv- 
ing a contradict ion.  

(b) Let S = LI u L2 where L 1 and L2 are the axes o f  symmetry  for D2. By 

the p roof  o f  L e m m a  5.5, A C ~ s .  It follows f rom Proposi t ion  2.4 that  

A C ~AnS.  By Propos i t ion  5.7, A intersects precisely one o f  these axes, L1, 

say. In part icular  A c~ S C L1. Therefore A C ~LI" D 
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