
Symmetric 
Chaos 
Mike Field and Martin Golubitsky 

A pictorial exploration of an order imposed by symmetry within 
chaotic systems 

he possibility of order within chaos has been a 
driving force in much of the recent theory of 
dynamical systems. In this article we make a 
pictorial exploration of an order imposed by 
symmetry. In some ways the coexistence of 
chaotic dynamics and symmetric patterns may 

seem contradictory; but it is not, and the results of this 
marriage can be quite striking. 

W ebegin by describing the very simple idea that we 
use to join symmetry and chaos. We choose a polynomial 
mapping f:Rz 

-> RZ and picture the attractors that are 
formed under iteration by f. We suppose that f commutes 
with a finite group r of linear tran.sformations and ask 
how this symmetry affects the kinds of attractors we find. 
As shown in Reference 1, we expect to find, for certain f, 
attractors that are invariant under all of the transforma-
tions in r. 

Pictures such as those in Figs.1-3 are formed as 
follows. We fix f' and f (in a way that is explained in Sec-
tion 1). Then we choose an initial point Xo and iterate f un-
til the transients die away. Letting f.iterate and plotting 
the points on the resulting orbit yields a picture of the 'at-
tractor.' The black and white images are formed in this 
way. For the color pictures, we count the number oftimes 
each pixel is hit during the iteration process and color by 
number. This process gives a representation of the density 
function for the invariant measure on the attract or. 

In this article we discuss both the symmetry groups 
that can be used in the plane and the simplest symmetric 
maps. We discuss the coloring program that we have 
developed-noting that different colorings bring out 
different structures on the attractor. We shall even discuss 
how it is possible to develop symmetric fractals using 
iterated function systems2• Finally, we discuss a potential 
application. 
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In a more theoretical direction, it has been shown in 
Reference 3 that it is possible to have static equivariant bi-
furcations to periodic phenomena in low dimensional 
systems of ODE. In related work, strong numerical 
evidence has been obtained indicating direct bifurcation 
from steady states to chaotic dynamics in equivariant 
systems, where the chaotic attractor has nontrivial 
symmetry. It is hoped that this work wi11lead to a better 
understanding of the mechanisms leading to this type of 
chaotic dynamics. 

Section 1: Symmetry Groups and 
Symmetric Mappings 

The only finite groups of linear transformations that act 
on the plane are the dihedral groups Dn of symmetries of 
the regular n-gon and the cyclic subgroups 1:n of Dn 
consisting of the orientation-preserving symmetries. Poly-
nomial mappings of the plane that commute with these 

Fig.l: Attractor ofmappiog (la) with 0=3; )"=1.56; u= -1.0; 13=0.10; 
Y= -0.82; 8-0.05; p=3. 
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Fig.2: Attractor of mapping (1a) with n=5; ;"=-1.806; a=1.806; 
(3=0; 1'=1. 

symmetry groups are given in complex coordinates as 
follows. 

Let u = zz and v = zn. Then polynomial mappings 
f:C--C that commute with Dn have the form: 

f(z) = p(u,Re(v»z + q(u,Re(v) )zn-I 

where p and q are arbitrary real-valued polynomials. Most 
of the attractors in this article are formed using the 
truncated form: 

f(z) = (A +au+pRe(v»z+yZn-1 (1a) 

where A, a, p, yare real constants. Indeed, the basic phe-
nomena seen in these mappings occur already when 
p = 0; the resulting three-parameter family can then be 
scaled to two parameters: 

f(z, A, y) = ,1(1- u)z + yZn-l. (1b) 

The two-parameter family Eq. (I b) may be thought of as 
the odd logistic equation-the ,1(1 - u)z term-which 
leaves each radial line invariant and an 0(2) symmetry 
breaking term yZn - I. The one-dimensional odd logistic 
equation ,1(1 - x2 )x has been well studied by Hao Bai-
Lin5

• 

Similarly, we can describe polynomials that commute 
with 1:n rather than Dn. These mappings have the form: 

f(z) = p(u,v)z + q(u,v)zn-I 

where p and q are arbitrary complex-valued polynomials. 
In our numerical exploration of 1:n symmetry we have 
added just one term iwz to yield: 

f(z) = (A +au+pRe(v) +wi)z+yZn-l. (1c) 

For w#O, Eq. (Ic) is 1:n symmetric but not Dn 
symmetric. Varying w in Eq. (1c) from zero to non-zero 
values allows us to see the effect of breaking symmetry 
from Dn to 1:n. 

In our investigation of maps with Dn symmetry, we 
have sometimes added an extra term: 

Fig.3: Attractor of mapping (la) with n=6; ;..= -2.7; a=5.0; (3=2.0; 
1'=1.0. 

f(z) = (A + au + pRe(v»z 
+ yZn-1 + 8(Re(z/lzl )nPzlzl (1d) 

This term is not polynomial, having a mild singularity at 
the origin. In particular, for non-zero 8 this term tends to 
dominate the iteration near z = O. 

a 
b 

Fig.4: Symmetry creation. Attractors of mapping (1a) with n = 3; a = 1.0; 
(3=0.0; 1'=0.1. (a) A= -2.10; (b) A= -2.25; (c) A-2.38. Transitions 
occur at A approximately -2.12 and -2.375. 
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Fig.5: Conjugate attractors (shown in different colors) of mapping (la) 
with n=3; A=1.5; a= -1.0; fJ=O.I; 1'= -0.8. 

Mathematically, the two most noteworthy phenome-
na associated with attractors obtained from these map-
pings are that the attractors can have full symmetry 
(either Dn or In depending on whether or not (J) is zero), 
and, as a parameter is varied, attractors with less 
symmetry can suddenly bifurcate to attractors with 
greater symmetry. Both of these phenomena are described 
in Reference 1. 

An example of symmetry creation is given in Fig.4, 
where the bifurcation parameter A. is the coefficient of the 
linear term. As A. decreases from - 0.9 we see: a period-
doubling bifurcation, then a Hopfbifurcation to invariant 
circles, Fig.4(a); a breakdown of the invariant curves to a 
strange attractor, Fig.4(b); and then a merging of 
conjugate attractors to form one fully symmetric attrac-
tor, Fig.4(c). In Fig.S we show, for a different set of 

Fig.6: The effect of breaking symmetry from DI6 to Z16' Attractor of 
mapping (lc) with n=16; A=2.39; a= -2.5; fl= -0.1; 1'=0.9. The two 
pictures are with ro=O.O and ro= -0.15. 
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parameters, the three conjugate attractors (corresponding 
to three different initial conditions) in three different 
colors. 

In Fig.6 we show the symmetry-breaking effect on 
the attractor that may be found by adding a small rotation 
(J), as in Eq. (Ic). The difference between Dn symmetry 
and In symmetry (where n = 16) can be clearly seen in 
this figure. 

In Fig.7(a) we illustrate the effect of adding the non-
polynomial term {) by using an example with 9-fold 
symmetry. The addition of such terms typically adds more 
structure near the origin. We illustrate this phenomenon 

Fig.7: Scaling of structure in map (Id) with non-zero delta. (a) (upper) 
Attractor with n=9; A= -2.4; a=3.8; fl=0.85; 1'=1.0; 1)= -0.35; 
p=3. (b) (lower) Attractor magnified 20 times near origin. 

in Fig.7 (b) by showing a 20-fold magnification of a square 
neighborhood of the origin. 

Recently, in cooperation with Ian Stewart, we have 
begun to explore a second kind of symmetric mapping 
whose attractors can be visualized in the plane: the torus 
mapping (see Fig.8). There are two advantages to using 
torus maps. Firstly, since tori are compact, iterates of 
torus maps always remain bounded; and secondly, the 
attractors of torus maps, when viewed in the plane, can be 
repeated periodically (see Fig.9) to form interesting quilt-
like patterns. Several examples are given in Fig. 10. 
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Fig.S: Attractor of torus mapping (If) with A=0.25; a= -0.3; 13=0.2; 
1'=0.3; k=l. 

We view the torus T Z as RZ/1 where 1 is a planar 
lattice. Then mappings g:Tz -+ T Z can be lifted to mappings 
f:Rz-+Rz of the form f(X) = p(X) + L(X) where p is 
doubly periodic (that is, p(X + t) = p(X) for all tE 1) 
and L is a linear map that preserves 1. To introduce sym-
metry, we require that the mappings g (and hence f) 
commute with the linear symmetries (or holohedry) of the 
lattice. We perform the iteration of the torus map g by iter-
ating the lifted mapping f modulo 1. 

Specifically, we consider here only the square lattice 
of unit length. Thus periodicity reduces to 
p(x + I,y) = p(x,y + 1) = p(x,y); and the holohedry is 
0 4, the symmetries of the square. These symmetries are 
generated by (x,y) -+ (y,x) and (x,y) -+ (1 - x,y). Com-
mutativity with respect to 0 4 implies that: 

f(x,y) = p(x,y) + k(x,y) (1e) 

where k E Z and the periodic map p = (p(,Pz) has the 
form: 

P2(X,y) = p((y,x) 

and: 

p((x,y) = amncos(2mnx) sin (2mlY). 

The specific mapping whose attractors we have explored is 
as follows: 

f = 1 (sin(21TX)) (Sin(21TX)COS(21TY)) 
(x,y) /l, • 2 + a . 2 (2) sm ( 1TY) sm ( 1TY) cos 1TX 

+ {3 + r + k (x). (If) 
sm ( 41TY ) sm ( 61TY ) cos ( 41TX) Y 

Finally, we refer the reader to the very recent preprint by 
King and Stewart which develops some of the themes 
discussed in this work. 6 

Section 2: Using Symmetry to 
Visualize Chaos 
Iterates of On symmetric mappings in the plane provide a 
simple way to visualize the signature of chaos-sensitive 

dependence on initial conditions. First note that the lines 
generated by the nth roots of unity in the complex plane 
are invariant under iteration by On symmetric mappings. 
This can be seen by direct calculation or\ more generally, 
using fixed-point subspace arguments (see Reference 4, 
Chapter XII). When one looks at the pictures of 
symmetric chaos shown previously, this fact seems rather 
remarkable, since the lines of symmetry appear to have 
nontrivial intersection with the trajectory that forms the 
attractor. It follows from symmetry, however, that if an 
iterate ever lands on an axis of symmetry, then all 
subsequent iterates remain on that axis. 

The existence oflines of symmetry allows us to divide 
the attractor into 2n pieces, obtained by intersecting the 
attractor with the 2n wedges in the complement of the 
lines of symmetry. For the remainder of our discussion we 
restrict our attention to triangular symmetry (n = 3). 

During the iteration process we can determine the 
wedge in which a given iterate lies. This allows us to make 
a color description of the mapping, as follows. We assign 
to each ofthe six wedges a different color, as shown in the 
border of Fig. 1 I. We then color each pixel on the screen 
according to which wedge that pixel ends up in after 

Fig.9: Same attractor as in Fig.S repeated periodically on a 3x3 grid. 

iteration by f. This explains the colors used in the interior 
of Fig. 1 I. For comparison, we show in Fig.I2 the 0 3 
symmetric attractor associated with the mapping in 
Fig. 1 I. 

Note that the 0 3 symmetry of this mapping is 
apparent in the coloring of Fig.II. That is, the coloring in 
each wedge can be obtained from the coloring in one 
wedge by rotating the colors of the boundary as one 
rotates the wedges. There is, of course, an ambiguity in the 
coloring of Fig. I I associated with the question of precisely 
which point inside a given pixel is iterated. Different 
points may iterate to different wedges, and hence 
determine different colors for the whole pixel; we ignore 
that issue here. 

We now show how we can get a series of color 
pictures that illustrate sensitive dependence on initial 
conditions for this 0 3 symmetric mapping. Suppose we 
color a pixel by determining in which wedge the second 
iterate lies, as we have done in Fig.13(a). What we find is 
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Fig.l0: Quilt patterns. Attractors of torus mapping (If). *(a) (top) A= -0.59; 
a=0.2; 13=0.1; Y= -0.09; k=O. (b) (center) A= -0.59; a=0.2; 13=0.1; 
Y= -0.33; k=2. (c) (bottom) A= -0.34; a=0.571; 13=0.17; Y= -0.13; k=2. 
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that the colors begin to mix. Indeed, when we color the 
eighth iterate it is obvious that points in neighboring pixels 
are being rapidly mixed by the iteration process. This 
mottling gives a striking representation of sensitive 
dependence on initial conditions. 

It is worth remarking that the chaotic dynamics 
pictured using these On symmetric mappings of the plane 
could not have existed had we restricted our attention to 
invertible maps. A simple continuity argument, coupled 
with the invariance of the lines of symmetry, shows that 
connected wedges have to map to connected wedges; that 
is, symmetric chaos is not possible. It is possible, however, 
to obtain this kind of symmetry creation and symmetric 

Fig.ll: Color coding of sensitive dependence on initial conditions using 
mapping (tal with n=3; 1=2.5; u= -2.5; 13=0.0; 1'=0.9. One iterate 
in advance. 

chaos for invertible mappings, if one looks in higher 
dimensions. In particular, the pictures of the attractors 
associated with these On symmetric mappings could have 
been obtained by projecting the attractor of an invertible 
On symmetric mapping on R4 into the plane. This 
observation is important when considering applications 
that are governed naturally by systems of differential 
equations, which generate invertible mappings. 

Section 3: Symmetric Fractals 
Our previous discussion focused on how symmetry can be 
introduced into the study of chaotic dynamics. We now 
make an analogous statement for the study of fractals 
using the notion of iterated function systems2

• 

Iterated function systems provide a simple way for 
generating fractals in the plane, as follows. Choose a 
collection of k contracting affine mappings Pj. Recall that 
an affine map has the form p(X) = LX + b where L is an 
invertible matrix and b represents a translation. The affine 
map is a contraction if L is a contraction, that is, if all of 
the eigenvalues ofL have modules less than unity. The col-
lection {P1"",Pk} is an iterated function system if each 
affine map Pj is a contraction. 

Next, form the following dynamical process. Choose 
an initial point Xo and (with a uniform distribution) 
randomly choose a map Pj. Let XI =Pj (xo)' Now, 

randomly choose another j and form x2, etc. Since the Pj 
are contractions this process will, with probability 1, form 
a bounded sequence. Indeed, the process has a unique 
attractor A that is characterized by the set theoretic 
formula (see Barnsley2) 

k 
A= U pj(A). 

j= I 
(3a) 

We now form an iterated function system in a slightly 
different way. Choose one affine contraction P and a 
symmetry group I' of order k. Then form an iterated 
function system by setting Pj = YjP where the Yj are the 
elements of I'. It follows from Eq. (3a) that the resulting 
attractor A has to be I' symmetric. Examples of such 
fractals are given in Fig. 14. As before, the coloring 
represents the invariant measure on A. 

Section 4: Prism 
The programs we describe here are part of a package that 
we have named Prism (a mnemonic for PRograms for the 
Interactive Study of Mappings). The two main programs 
included in Prism are iter, which iterates maps and 
produces data files, and draw, which reads the data files 
produced by iter and colors the attractor. 

The primary purpose of iter is the rapid computation 
oflarge numbers of iterates (typically between 20 and 150 
million) and the storing of the resulting pixel hit 
information in a data file. As well as this facility for 
producing data files, iter can be used interactively to 
examine and display iterations and to study the effects of 
incrementing parameters. In this mode it is possible to 
display between 1 and 20 plots on the screen and to edit 
and save parameters. Normally, such plots are done using 

Fig.t2: Attractor for mapping in Fig.ll. 

between 5,000 and 50,000 iterations per plot. An 
important benefit of this procedure is the possibility of 
seeing new kinds of bifurcations related both to the shape 
of the attractors and to the structure of the invariant 
measures on the attractors. In Fig.15 we present an 
example with D7 symmetry where each of the attractors 
has full symmetry but changes in the geometric structure 
of the attractor occur. 
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Fig.13: Color coding as in Fig.n. (a) (upper) 4 iterates in advance. (b) (lower) 8 iterates in advance. 

Draw has to be flexible enough to meaningfully color 
attractors with large variations in the number of pixel hits, 
and easy enough to operate so that it is possible to tinker 
with the colors. For example, if we let max _ hit denote the 
maximum number of times any individual pixel is hit, we 
typically find that 93% of the pixels are hit between 1 and 
(max_hit/500) times and 99% between 1 and (max_hit! 
1(0) times. This phenomenon is perhaps not so surprising: 
in any visual image (a mountain range or a face) much of 
the significant information (ridges or creases) is support-
ed on a very small area, a fact well-known to artists. 

Generally, the features associated to pixels with a 
large number of hits are relatively easy to locate and 
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display. Features associated with a small number of hits 
require extra resolution. In our context we obtain more 
resolution by increasing the number of iterations. 
Fig.16(b) shows the same attractor with 16 times as many 
iterates as Fig.16(a) . 

For a successful color editor one needs to work with 
as few variables as possible; however, the more colors one 
uses the greater the resolution one can expect. We adopted 
the following strategy for coloring. Rather than working 
with individual colors, we work with color bands. Each 
color band may be regarded as a linear segment in RGB-
space, where we specify the initial and final colors and the 
number of intermediate points. To color an attractor, we 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  140.254.87.149 On: Mon, 29 Aug
2016 12:29:09



start by selecting a small number of color bands and a 
range in pixel hits for each band-say all pixels with pixel 
hits in the range (O,g)] will be colored by band 1 and all 
pixels with pixel hits in the range (g),g2] will be colored 
by band 2, etc. If we divide band I into k sub-intervals 

Fig.14: Symmetric fractals. Attractors using symmetric iterated func-
tion systems. (a) (top) Affine map (0.40x-0.ly+0.Ol, 
-0.31x+0.45y+0.2); symmetry Zs. (b) (center) Affine map (O.40x 
-O.ly + 0.01, -0.35x + 0.40y+0.2); symmetry D •. (c) (bottom) 
Affine map (0.45x -O.ly + 0.10, -0.31x+0.45y+0.2); symmetry ZII' 

then we assume that the initial color is assigned to pixels 
with pixel hits between 1 and INT(g)Ik), etc. Generally, 
we use between 4 and 7 color bands and divide each color 
band into approximately 15 sub-bands. We find that 
reasonable colorings require 70 to 100 colors. The 
program has a feature that allows it to store successful col-
or bandings. 

In Fig.17 we show the same attractor with two 
different color strategies: the first uses two bands and 30 
colors, while the second uses 5 bands and 100 colors. 

Various options come with draw that allow one, for 
example, to devote the entire screen to the attractor. We 
use this feature for taking photographs of the images. In 
this way it is possible to get high-quality output rather in-
expensively. The pictures for this article were taken from a 
SUN high-resolution color monitor using Kodachrome 
EPR-64 professional quality film. 

Both iter and draw were written in C and utilize 
various system calls (such as compression, file copying 
and removal). The iteration part of iter uses an optimized 
version of complex multiplication that runs 1.5 to 2 times 
faster on computing complex powers than does the 
standard induction definition. 

Section 5: Applications 
The major application that we foresee for symmetry-
increasing bifurcations is to provide an explanation for 
certain forms of patterned turbulence in hydrodynamics. 
As mentioned in Reference 1, a good candidate for such a 

Fig.15: Bifurcation diagram of attractors of mapping (la) with n=7; 
A= -2.08; 11=1.0; 13=-0.1; 1'=0.1417. Gamma is incremented by 
0.005485 between pictures. 

correlation is the turbulent Taylor vortex state in the 
Couette-Taylor apparatus. This apparatus consists of a 
fluid contained between two independently rotating 
cylinders. 

What is observed in the experiments when the outer 
cylinder is held fixed and the speed of the inner cylinder, 
or Reynold's number, is increased slowly, is a first 
transition from laminar flow to a flow-called Taylor 
vortices-that has a cellular structure with an exactly 
straight cell boundary and that can be related to 
invariance under a reflectional symmetry across a plane 
perpendicular to the cylinder axis, as well as to the 
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rotational symmetry of the apparatus. Subsequent bifurca-
tions maintain the cellular structure but break the 
symmetry. 

Eventually, at relatively high speeds of the inner 
cylinder where turbulent fluid motion has begun, the 
straight cellular structure reasserts itself, at least on 
average. What is meant by 'on average' is that, if a time se-
ries of the fluid flow field were time-averaged, then the 
straight boundary between cells would be exact. As it is, of 
course, the fluid does flow across the cell boundary, but 
rather more slowly than the fluid velocity would suggest. 

We believe that a symmetry-increasing bifurcation of 
chaotic attractors has taken place in the Navier-Stokes 
equations. However, neither direct analytic nor numeric 
exploration of this state is currently possible. Our 
reasoning is that if such a bifurcation did occur, then 
before the bifurcation the flow would be asymmetric on 

average, but afterwards it would be symmetric. Here we 
are thinking of our mapping as a time map associated 
with the flow of the Navier-Stokes equations. Much work, 
including specifying a more precise bifurcation, is needed 
before we can actually claim to understand this potential 
application. 
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Fig.16: Attractor of mapping (ld) with n=4; A= 1.2; a= -1.0; 
13=0.0752; y=I.0; 11= -0.2. (a) (upper) 5 million iterates. (b) (lower) 
80 million iterates. 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  140.254.87.149 On: Mon, 29 Aug
2016 12:29:09



Fig.I7: Enhancement of structure 
by changes in color. 
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