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Boundary Conditions as Symmetry
Constraints

J.D.Crawford ,M.Golubitsky, M.G.M.Gomes,
£.Knobloch, L.N.Stewart

ABSTRACT

Fujii, Mimura, and Nishiura [1985] and Armbruster and Dangelmayr [1986, 1987]
have observed that reaction-diffusion equations on the interval with Neumann boundary
conditions can be viewed as restrictions of similar problems with periodic boundary
conditions; and that this extension reveals the presence of additional symmetry
constraints which affect the generic bifurcation phenomena. We show that, more
generally, similar observations hold for multi-dimensional rectangular domains with
either Neumann or Dirichlet boundary conditions, and analyse the group-theoretic
restrictions that this structure imposes upon bifurcations. We discuss a number of
examples of these phenomena that arise in applications, including the Taylor-Couetie
experiment, Raylei gh-Bénard convection, and the Faraday experiment.

0 Introduction

Let P(u) denote a reaction-diffusion equation on the line. Then P(u) is
invariant under translations and reflections. It is well known that a solution u(x) to
P(u) = 0 on the interval [0,x] with Neumann boundary conditions (NBC) may be
extended to a solution of the same PDE on the whole line that satisfies periodic
boundary conditions (PBC) on the interval [-x,x].  This extension is accomplished
by reflection across the boundaries, that is, by defining

u{-x) = u(x) for x € [-7,01

and then extending u to be 2r-periodic on R. By using Euclidean invariance, the
Neumann boundary conditions, and the second order structure of the PDE, it is not
hard to show that this extension procedure preserves regularity of the solutions: for
example C* solutions remain €%, provided the operator ¥ is itself c™.

Fujii, Mimura, and Nishiura [1985] and Armbruster and Dangelmayr (1986,

1987] observe that this extension property changes, in a subtle way, the generic
behaviour of codimension two steady-state mode interactions. In this note we give a
straightforward group-theoretic description of why genericity is affected by this
extension property: simply put, BC can be thought of as a symmetry constraint on the
PBC problem.

Using this general construcgon we indicate several ways in which this idea may
be extended. In particular, we show how the same general construction can be
applied to Dirichiet boundary conditions (DBC) and to Euclidean-invariant PDES in
several spatial variables, defined on generalized rectangles. We also remark on several
physical systems whose analyses illustrate these ideas. These include the Taylor-
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Couette experiment, Rayleigh-Bénard convection, and the Faraday experiment,

This note was inspired by several conversations and seminars held at the week-
long Workshop on Dynamics, Bifurcation, and Singularity Theory during the 1988-89
Warwick Symposium on Singularity Theory and its Applications. During the
workshop it became clear that the same issues concerning boundary conditions were
appearing in a variety of applications, and it was felt that a short note for the conference
proceedings, exploring these issues, would be both appropriate and of general interest.
We wish to thank the rather large group of participants, in particular Andrew Cliffe and
Tom Mullin, who joined in those conversations and who helped formulate the ideas
presented here.

1 Neumann Boundary Conditions and Symmetry

As before, let P (u) denote a reaction-diffusion equation on the line, which is
invariant under translations and reflections.

Lemma 1.1 Solutions to P (u) = 0 satisfying Neumann boundary conditions on
[0,n] are in 1:1 correspondence with solutions satisfying periodic boundary conditions

on [-it,%] having the symmetry

u(-x) = u{x). (1.1)
~Remark Define the two-element group
T By = (LR} (1.2)
where R is the reflection
Rx = -x. (1.3)

Then (1.1) consists of those functions fixed by By

Proof We showed in the Introduction that solutions satisfying NBC lead to the
desired type of solution satisfying PBC. It remains to prove the converse. ,
Let u(x) be a smooth 2n-periodic solution to P (u) = 0 satisfying (1.1).
Differentiating (1.1) implies that
u'0) =0 and u'(-m) =-u'(n).
Periodicity implies that v'(w) = u'(-n), so that u'(n) = 0, whence u satisfies NBC on
[0,x]. o

As observed by Dangelmayr and Armbruster [1986, 1987], there are
consequences of Lemma 1.1 for the generic behaviour of bifurcations of PDEs with
Neumann boundary conditions. This change stems from the fact that the bifurcation
problem with PBC has O(2) symmetry generated by translations module 2% and
reflection. |

More precisely, the change in generic behaviour occurs as follows. Instead of
studying the NBC problem, one first studies the PBC bifurcation problem using G(2) *
symmetry, and then restricts the result to the fixed-point space Fix(Bp) to recover the
answer for NBC. The essential reason for the change in genericity is that the general -
0(2)-equivariant bifurcation problem obtained when analyzing the PBC case may not ™
restrict to a general bifurcation problem on Fix(Byy) with the symmetry of NBC. III?
cases where this restricted problem has special features we get a change in genericity.
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We illustrate this point in the simplest instance, steady-state bifurcation.
Assume that P depends on a bifurcation parameter A and that P has a trivial translation-
invariant solution at A = O which, without loss of generality, we may assume 10 be
u=0. Finally, assume that this trivial solution undergoes a steady-state bifucation at
2 = 0. Observe that the only symmetry of NBC is the reflection ‘

T X I T-X. - (1.4

Proposition 1.2 Under the above hypotheses on P (u) = 0, satisfying Neumann
boundary conditions, we have:

(a)  Bifurcating solutions have a well-defined non-negative integer mode number m.
(b)  Generically, when m > 0, the bifurcation is a pitchfork.

Remarks

(a)  The mode number is associated with ‘pattern’ formation and can be observed in
experiments.

(b)  For many operators the natural modes are obtained by separation of variables,
leading to a spatial variation with eigenfunctions like cos(mx). For a general
Z-equivariant bifurcation it would be a surprise for this pure mode to occur as an
eigenfunction. In general one would expect the eigenfunctions to be (perhaps infinite)
linear combinations 2, ay cos(kx).

() The pitchfork bifurcation occurs for m even, even though when m is even (1.4)
does not force this type of bifurcation in the NBC model.

Proof By Lemma 1.1 there is a bifurcation atA =0 in equilibrium solutions of
P (v) = 0 with PBC on [-7,x]). The group of symmetries of this bifurcation problem is
0(2).
(a)  LetL =d¥ denote the linearized equations about u =0 ath =0 and Jet
: K =kerL, :
By O(2) symmeiry we expect K to be either 1- or 2-dimensional, since irreducible
representations of O(2) have those dimensions, Golubitsky, Stewart, and Schacffer
{1988] p. 330. We may write the action of SO{2) on K as
zh el (1.5)
where m = 0 in the simple eigenvalue case and m>0 in the double eigenvalue case. The
integer m defined in (1.5) is the mode number.
Let &' denote the kernel of the representation of 0(2) on K. Then
O(2) or SO(2) whenm = 0

14

L= (1.6)
Zm whenm >0

The isotropy subgroup £ of any bifurcating solution will contain Z'. Therefore
bifurcating solutions will be translaton-invariant when m = 0 (and hence constant), and
invariant under translation by x > x + 2n/m when m > 0. This translation-invariance
is what gives the bifurcating solution a 'pattern’.

When m > 0, T is actually isomorphic to D, generated by %' and a reflection
x b xgx for some X
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(b) Mext we discuss the expected type of bifurcation in the PBC case. When
m > 0, the effective action of O(2) on the bifurcation is by O(2)/Z' = O(2)/Z, =
0(2). Hence, generically we expect a pitchfork of revolution,. When m = 0 and |
Z' = O(2), the group O(2Y/L is trivial and generically we expect a limit point
bifurcation (in the branch of constant solutions). On the other hand when X' = SO(2)
we have O(2)/X' & Z, and generically we expect a pitchfork bifurcation.
The solutions to P(u) =0 satisfying NBC are found in
Fix(Byp) = (z € kerdP : Rz = z}.
Thus, when m > 0, NBC picks out those solutions in the pitchfork of revolution that
are invariant under the reflection Rx = -x, rather than a general reflection x i+ x(-x.
These solutions form a pitchfork, for the following reasen. Let
T(x) = x + 21/2m. ' (1.7)
The translation T lies in the normalizer of the isotropy subgroup
D, =<Z', R},
the isotropy subgroup of solutions satisfying NBC. Such solutions are found in the
1-dimensional space Fix(D ), and T acts as -I on that subspace. Thus the two half-
branches of the pitchfork are identified by T.
Observe that this translation T, which drives the pitchfork bifurcation with
NBC, is not a symmetry of the original equations satisfying NBC. a

Fig. 1 and 2 illustrate these results. Armbruster and Dangelmayr [1986, 1987]
use these ideas to study steady-state mode interactions with NBC. Their arguments
depend on somewhat subtler observations concerning restrictions of O(2)-equivariant
bifurcation problems to the NBC case. These will be discussed in more detail in the
next section; here we use Proposition 1.2 to indicate one of the effects of O(2)
syrmunetry on the linear terms at mode interactions.

R o
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Fig. 1 (a) An NBC mode with m odd, defined on -k S x £ & (b) Its form under the -
reflection T: x#+ m-x. (¢} Its form under the translation T: x b x+n/2, Bothtand Tact .
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Fig. 2 As for Fig. 1 but with m even. Now only T acts by -L.

Assume that P(u) depends on two parameters and that when these parameters
are set to zero the linearized NBC problem has a double zero eigenvalue and no other
eigenvalues on the imaginary axis. Then 0 lies in the intersection of two curves in
parameter space along which Lu = 0O has a simple eigenvalue. Letmandn be the mode
numbers along these curves, guaranteed by Proposition 1.2.

Corollary 1.3 Supposé thatm # n. ThendimkerL=2.

Remark Without the effect of 0(2) symmetry, we might have expected a
Takens-Bogdanov type singularity at . =0. The distinct mode numbers ruke this out.

Proof Extend o PBC and let

z =Mz + .. (1.8)
be the O(2)-equivariant vector field on R4 = R2xR2 obtained by centre manifold
reduction. Since m # n, O(2) acts by distinct irreducible (indeed absolutely irreducible)
representations on each copy of RZ. Hence

( ¢, 0

\ 0 eyl

The assumption of a double zero eigenvalue in NBC implies that ¢1 =¢p = 0. Thus
M = 0. Restricting (1.8) to NBC proves the result. - o

M=
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2 Generalizations
In this section we consider four types of generalization of the discussion above:
. Dirichlet boundary conditions '
. mode interactions
e equations involving many space variables
° more general types of PDE.

{a) Dirichlet Boundary Conditions and Symmetry
Consider u(x) satisfying Dirichlet boundary conditions (DBC) on [0,x] for the
linearized equation Lu = 0. Extend u to [-x,%] by
u(-x) = -u{x) on [-x,0] (2.1)
and to the whole line by 2n-periodicity. Now u satisfies Lu = 0 and PBC on [-,%],
but here one must appeal to the linearity of L., namely

L(-u) =-Lu.
For the extended u to satisfy the nonlinear equation P (u) = 0 we must assume that
Pu)=-Pu) (2.2)

in addition to Euclidean invariance. . Again it is not hard to show that the extension
procedure (2.1) preserves regularity. When (2.2) holds, remarks similar to those made
for NBC apply to DBC. In particular, the assignment of mode numbers and the
occurrence of pitchfork bifurcation may be expected generically.
The only change in the analysis is in specifying the symmetry of DBC. Define

the reflection S by

(Su)x) = -u(-x), (2.3)
and define the two-clement group

Bp = (1,5}
Then solutions to P(u) = 0 satisfying DBC are found by solving the equations with
PBC and restricting to

Fix(Bpy) = {ux) tul-x) = -u(x}}. o 7 7 (2.4)
Note that bifurcation problems arising from PBC now have Q(2)xZ, symmetry
where Z5 = (I}. The isotropy subgroup I of given solutions will change slightly
from the NBC case because of the extra Z4 symmetry, but not the general structure. In
particular, the transfation T will still identify the two half-branches of the pitchfork.

(b) Mode Interactions
Armbruster and Dangelmayr [1986, 1987] consider steady-state mode
interactions of two nontrivial modes (m, n > 0, m # n) in reaction-diffusion equations
with NBC. WheE extended to PBC, the kemel K of dP is 4-dimensional, and may be
identified with €. The action of O(2) on € is generated by
0(z,w) = (eMifz, eni%y) 25
K(z,w) = Z,W). (2.5)
(Wote: For the group theory and invariant theory we may without loss of generality
assume that m and n are relatively prime by factoring out the kernel of this action. This
kernel must be restored when interpreting the results.)
Let
£:C2xR - €2
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be the reduced bifurcation equations for PBC obtained by a Liapunov-Schmidt
reduction, Then f is O(2)-equivariant under the action (2.5). In these coordinates the
action of the group By is just Z»(x). Since Fix(Byy) = Fix(Z(x)) = IRZ, the
bifurcation equations comresponding to NBC are Jjust

g =f|R%R : R2xR » R2.
If H is a subgroup of a group G, denote the normalizer of H in G by Ng(H). We
know that No(g)(zz(x))lzz(}c) acts nontrivially on R? and provides symmetry
constraints on g. If 6 € SO(2) then (-0)x(9) = (-20), so this group has two elements
and is generated by the true symmetry of NBC

T XM =X (2.6)
whose action on €2 depends on the parity of m and n. Since they are coprime, one, at
least, is odd. So we assume mis odd. Then (2.6) leads to the action on €2 given by

(zw) b (-Z, (-1)"W), '
and hence by restriction on (r,s) € R2 as

Ts) b (-1, (-1)7s). (2.7)
If one does not consider the extension to PBC, then one will still find the Symmetry
(2.6) since it is generated by a symmetry of the domain [0,1]. Thus we would still
know that the restriction g commutes with (2.7), but what is perhaps surprising is that
the form of g is further constrained, just by knowing that g is the restriction of an 0(2)-
equivariant f, This is the main point of Armbruster and Dangelmayr [1986, 1987].

Indeed part, but only part, of the constraints on g can be understood group-
theoretically. Suppose that n=2 (mod 4), so that (2.7) becomes
T (r,s) b (1,5). (2.8)

Note that the s-axis is invariant since Fix(2.7) = (0,s). Consider the action of
translation by a quarter period,

X X+ 7/2,
which acts on €2 by

(z,w) b (Hz,-w). 29
By (2.9) g(0,w) must commute with w + -w, a constraint not generated by any
symmetry of the domain [0,x]. Thus the bifurcation along the s-axis is a pitchfork,
which might otherwise have been unexpected; algebraically g(0,s) consists only of odd
degree terms. Such symmetries on subspaces were first noted by Hunt [1982] and
formalized in Golubitsky, Marsden, and Schaeffer [1984]. The resuits of Armbruster
and Dangelmayr {1986, 1987) are more extensive, depending precisely on the values of
(m,n}, and we shall not reproduce them here,

The extension to PBC has a small effect on NBC whenm =n > 0. Here the
linearized problem may have a nilpotent part, as in the Takens-Bogdanov bifurcation.
Dangelmayr and Knobloch [1987] have discussed the Takens-Bogdanov singularity
with O(2) symmetry. Using their results and restrictng to Fix(Bjy) it can be shown
that the Takens-Bogdanov singularity with NBC always has the symmetry
(*%,¥) = (~x,~y). When m is odd this is not surprising since the symmetry is just the
NBC symmetry (2.6). When m is even, however, this s}mnietxy is generated by the
phase shift (1.7). So in all cases, one expects a symmetric Takens-Bogdanov
bifurcation when NBC are used. .
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(c) Higher-Dimensional Domains

The remarks made previously extend to higher dimensions - provided the
domain is suitable. For example, consider a reaction-diffusion equation defined on a
rectangle in R? with NBC. Bifurcation problems for such equations can be embedded
in problems with PBC in both dlrectlons The Eenodlc boundary conditions lead to
bifurcation with symmetry Dy + T2, where T2 is the 2-torus generated by planar
translations modulo periodicity in both dm:cnons

If the domain is a square, then PBC will lead to Dy +T2 symmetry.
Investigation of the resulting bifurcation restrictions is being pursued by Gomes
[1989]. Preliminary results suggest that not much, beyond what is noted in §1, will
change in bifurcations with NBC for rectangles, but definite restrictions will appear in
mao<de interactions on squares.

The analysis of Armbruster and Dangelmayr {1986, 1987] must be worked out
for DBC - the results should be slightly different than for NBC, due to the extra
reflectional symmetry, Details will appear in Gomes [1989].

Similarly one can imagine equations in the plane where NBC are imposed on
sides parallel to the y-axis and DBC on sides parallel to the x-axis; and similar
extension arguments apply, subject to a mild symmetry restriction on ¥ for the Dirichlet
direction. Once the general idea is understood, the analyses in this or in higher-
dimensional cases can be worked out when needed.

The general idea discussed here is the classical observation that solutions to
PDEs can sometimes be extended, by reflection or similar methods, across boundaries.
The implication is that this procedure can enlarge the effective symmetries of the
equations, due to new symmetries of the extended domam

‘ Another possible cxtensmn concerns the sphere s2, Imagine posing a PDE on
the upper hemisphere of 2 with NBC on the equator. Solutions can be extended to
the lower hemisphere by reflection. Supposing that the resulting operator is SO(3)- or

- 0(3)-equivariant, we obtain a new notion of genericity for the original bifurcation -

problem on the hemisphere. These results will be published in Field, Golubitsky, and
Stewart [1990]. Itis not hard to envisage more elaborate variations on this theme.

(d)  OGther types of PDE

We have chosen the case of reaction-diffusion equations because these
autornatically possess Euclidean invariance and provide the simplest setting for our
observations,  The ideas generalize directly to second order PDEs with Euclidean
invariance, for example the Navier-Stokes equations.  In many applications u is
vector-valued and the boundary conditions are mixed, either NBC or DBC depending
on the component of u; the methods extend easily to this case. The approach also
applies to suitable PDEs of order higher than 2, for example the von Kdrm4n equations;
we require boundary conditions that force odd order partial derivatives to zero (for
NBC) or even order partial derivatives to zero (for DBC).

Rather than formulate a general theorem to covér these disparate cases, we
describe typical examples in the remaining sections. Until now we have worked
abstractly and concentrated on group-theoretic restrictions. We now consider specific
applications whose analysis is aided by these ideas.

PRV
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3 The Couette-Taylor Experiment

The Couette-Taylor apparatus consists of a fluid contained between two
independently rotating coaxial circular cylinders. Depending on the speeds of rotation
of the cylinders, a great variety of flow patterns can form. In his analysis of what are
now called Taylor vortices, Taylor [1923] assumes PBC on the flow within a vortex
pair, even though physically this assumption is questionable. His theory nevertheless
agrees remarkably well with experiment.

More recently many patterned states have been catalogued, see Andereck, Liu,
and Swinney [1986], and theorists have been busy trying to explain how they arise.
One fruitful approach to describing the many states discovered since Taylor's
pioneering work is to retain PBC and focus on the 0(2) symmetry thereby introduced.
See Golubitsky and Stewart [1986], Iooss [1986], Chossat, Demay and Iooss [1987],
and Golubitsky and Langford [1988].

One of the basic consequences of this symmetry is that the transition from the
laminar (unpatterned) Couette flow to Taylor vortices is the expected O(2)-symmetric
pitchfork of revolution. In his talk at this Workshop, Tom Mullin described his
experiments and supporting numerical computations of Andrew Cliffe, which show
that even for cylinders of moderate length the initial transition from laminar flow to
vortices does nof occur by a pitchfork of revolution, but by a perturbed pitchfork.
Benjamin {1978] and Mullin [1982] previously made similar observations in
experiments with short cylinders. The work of Benjamin {1978], together with
unpublished results of Mullin and Cliffe which are briefly described below, cast doubt
on the assumption of PBC. In this section we interpret their work in the light of
symmetry, taking into account the effect of boundary conditions discussed previously.

In a real cylinder there are two types of Taylor vortex flow: regular and
anomalous. In both cases the Taylor vortices occur in pairs with the flow oriented
inward along the mid-plane of the pair. In the regular case an integer number of such
pairs fits into the cylinder, while in the anomalous case a half-pair occurs at each end.
In other words, the direction of flow at the ends is different in the two cases. (States
with a single half-pair at one end, that is, an odd number of vortex cells altogether, can
also occur, but we ignore them here.) In Mullin's experiments the outer cylinder is

~

regularmode

anomalous mode

amplitude

‘ Reynolds number '

Fig. 3 A perturbed pitchfork as found in Mullin's experiment (schematic).
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held fixed and the speed of the inner cylinder is increased quasistatically. A schematic
of his results is shown in Fig. 3.

There are two interesting features of Fig. 3. First, there is a range of speeds for
which no laminar-like flow exists; secondly, there are two stable half-branches
correspond to a regular mode and an anomalous mode, related by a shift of one vortex
along the axis of the cylinder,

Cliffc obtains similar results numerically, as follows. Following Schaeffer
[1980] he includes a homotopy parameter V in the boundary conditions at the ends of
the cylinder, such that the boundary conditions are Neumann for V = 0 and physically
realistic for v=1. When v = 0 Cliffe finds a pitchfork bifurcation which, as v is
turned on, breaks to a perturbed pitchfork as in Fig. 3.

The discussion in §2 leads to the following observations. The v = 0 model
with NBC should indeed lead to a pitchfork, via the introduction of PBC and
O(2)-symmetry. Moroever, the two half-branches of the pitchfork are related by the
translation (1.7). That is, one expects to find one half-branch of regular modes and
one half-branch of anomalous modes. Note that this conclusion can only be reached
by making the extension to PBC. Note also that the only genuine axial symmetry in
the apparatus, reflection in the midplane, acts rrivially in this pitchfork bifurcation,
because the number of vortices is even. Thus it is not surprising that when NBC are
violated (v # 0) the pitchfork becomes imperfect, as in Fig. 3.

In this instance the experiments of Mullin are in good agreement with the
numerics of Cliffe, and they both agree for perturbed NBC as in Schaeffer’s approach.
It should be remembered, however, that there are numerous fluid states - such as wavy
vortices and spirals - that are not consistent with NBC, but are admitted by PBC. The
work cited previously leads to equally good predictions concerning these other PBC-

‘based patterns, several of which have been verified by experiment. The situation
appears to be that neither NBC nor PBC provides a fully adequate model, but that each
works surprisingly well for an appropriate range of flow patterns.

4 Rayleigh-Bénard Convection

Next we discuss Rayleigh-Bénard convection in a box. Consider the onset of
the convective instability in a 2-dimensicnal problem in {0 <x <7, 0 Sy € w) with
(x,y) denoting horizontal and vertical directions respectively. The problem is more
complex than reaction-diffusion equations on a line because boundary conditions must
be imposed in both x and y. We consider here the case in which the boundary
conditions on the horizontal surfaces y = 0, ® are homogeneous and distinct. For
example, a Robin-type boundary condition applies to the temperature at the top if the
top surface radiates heat according to Newton's law of cooling.

In this case there are no symmetries associated with the boundary conditions in
y, and there is no modal structure in y. In the absence of the vertical sidewalls the
equations of motion are invariant under translation x 1+ x+£ and reflections x b XQg-X-
When sidewalls are prcsent we may take the boundary conditions to be

ux,y) = (x,y) a (x,y) Oonx=0,x '(4.1a)~

or
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u(x,y) = v(x,y) = —g—g— xy)=0o0nx=0,mr, (4.1b)

where (u,v} are the (x,y)-components of the velocity, and 0 is the temperature departure
from pure conduction. In both cases the boundary conditions at the sides are identical,
and the problem therefore has Zn symmetry T: x sn-x. The boundary conditions
(4.1a) describe free-slip perfectly insulating boundaries, and extend to PBC on - < x
S with
u(-x,y) = -u(x,y)
v(-X,y) = v(x,y) 4.2)
B(-x,y) = B(x,y).
Consequently there is a well-defined mode number m. Consider now the action of the
reflection t. Since (u,v) are components of a vector we know that
T(w,v) = (-u,v). ' (4.3)
Therefore 7 acts on mode m by
W VmBry) = (DT FHlug, -1y (-1)Pg )
= -D™Umv50.,), (4.4)
and the reflection symmetry acts nontrivially on the odd modes and trivially on the even
modes. The odd modes therefore automatically undergo a pitchfork bifurcation. . The
even modes also undergo a pitchfork, but only because the horizontal translation (L.7)
acts by -I on both even and odd modes. Thus the pitchfork bifurcation in the even
modes is a consequence of the translation symmetry of PBC,
_ Case (4.1b) corresponds to no-slip, thermally insulating boundaries. Since
\il(x,y) =v(xy)=0o0onx =0, r one might try to extend the solution to -t < x < 1t by
u(-x,y) = -u(x,y)
V('X-Y) = 'V(K-Y) (4.5)
as in the scalar case (2.1). But since this violates (4.3) this problem cannot be
extended to PBC on -m £ x S 7, and hence there is no mode structure of the form
(1.5).- Indeed, explicit calculation shows that the eigenfunctions are sums of
trigonometric and hyperbolic functions, Drazin [1975]. These, nonetheless, divide
into two classes, odd and even with respect to x. The odd eigenfunctions break t and
bifurcate in pitchforks. Since there is no translational symmetry we do aof expect the
even modes to bifurcate in pitchforks. ‘
An additional reflectional symmetry % is present if the boundary conditions on
top and bottom are identical. In the special case

%(X.y) =vxy)=8(x,y)=0 ony=0x (4.6)

the boundary conditions extend to PBC on -x S y < v under
u(x,-y) = u(x,y)
v(X,-y) = -v(x,y) 4.7)
e(xv"Y) = -G(K,Y) ,

and a mode structure exists in the vertical direction. Since T:y'+» m-y acts by
T(u,v) = (u,-v), %) = -8, (4.8)

it acts on mode n by -
T,V 8y = (1) (uy, v, 0,)- 4.9)
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Hence odd modes in y bifurcate in a pitchfork because they break &, while the even
modes do so because the translation analogous to (1.7), y» y+27t/2n, acts by -1, If the
boundary conditions in y do not extend to PBC we expect only the odd modes to
undergo a pitchfork bifurcation. These results explain why Hall and Walton [1977]
find a pitchfork in the Rayleigh-Bénard problem with the boundary conditions (4.1b)
and (4.6) for both odd and even eigenfunctions in the horizontal direction.

5 The Faraday Experiment

In the Faraday experiment a fluid layer is subjected to a vertical oscillation at
frequency @. When the forcing amplitude A is small, the fluid surface remains
essentially flat, but waves are parametrically excited when the amplitude is increased.
Indeed, in careful experiments, for most frequencies of vibration the initial ransition
from the flat surface is to a standing wave at /2, half the driving frequency,

In this section we discuss results of Gollub and coworkers using containers
with differing geometry, and hence different symmetries; and we explain how these
symmetries, when coupled with boundary conditions, affect the analysis of these
parametric instabilities. We focus on the experiments of Ciliberto and Gollub [1985a]
and Gollub and Simonelli [1989] which employ containers of circular and square
cross-section, respectively. The experiments were performed by fixing the forcing
frequency @, slowly varying the amplitude A, and observing the asymptotic behaviour
of the surface.

For a circular vessel, Ciliberto and Gollub [19852a] find that for most
frequencies the initial transition is to a standing wave with azimuthal mode number m;
that is, the spatial pattern is invariant under rotations by 2n/m. There is also a radial
index for the number of radial modes, but the radial siructure does not play a significant
role. The existence of well-defined modes is not surprising, given the O(2) symmetry
of the apparatus.  Further, the experiments show that different choices of @ lead to
- standing waves with different azimuthal mode numbers, and hence that there exist
isolated values of ® at which the primary transition from a flat surface occurs by the
simultaneous instability of two modes with unequal azimuthal mode numbers m and n.
Ciliberto and Gollub [1985a] studied such a codimension two instability for modes
withm =4 and n=7. Near the point of multiple instability they observed complicated
dynamics, including quasiperiodic and chaotic motion.

The multiple instability has been analysed by numerous authors using a variety
of approximation techniques; see Ciliberto and Gollub {1985b], Meron and Procaccia
[1986], and Umeki and Kambe [1989]. We focus here on the approach of Crawford,
Knobloch, and Riecke [1989].  Since the forcing is periodic, it is natural to consider
the stroboscopic map S which takes the fluid state at time t to its state one period later,
at time t+2n/w. Indeed the experimental measurements provide essentially a
reconstruction of the dynamics of 52, the twice iterated map. The construction of §
from ‘first principles' would require integrating the Navier-Stokes equations. The idea
of Crawford et al. [1989] is to develop a description of 5 by appealing to symmetry and

genericity. First, note that the flat surface F is a fixed point of S and that the-w/2
standing wave is a 2-cycle; hence the parametric instability can be identified as a period-
doubling bifurcation for §. At the period-doubling bifurcation point the linearization -
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(dS)p of 5 at F has an eigenvalue -1. This conclusion is supported by the linear
analysis of Benjamin and Ursell [1954]. Any model of this experiment will be
0(2)-symmetric; hence the generalized clgcnspace V of (dS)g for eigenvalue -1 is
O{2)—invariant.

Now we impose genericity. For a nonzero azimuthal mode number we expect
V to be 2-dimensional. The reason is that generically the action of ((2) is irreducible,
hence of dimension < 2; but if the dimension is 1 then the pedod-doubled state has
motatonal symmetry, and hence has azimuthal mode number zero, So we may identify
V with € and write the action of 0 € S50(2) on V as

zp eMiby (5.1)

Crawford er al. [1989] analyse the interactions of modes with mode numbers
n>m 2 1 as follows. They assume that a centre manifold reduction has been
performed to yield an O(2)-equivariant mapping

s:2 €2, S(0) =0, (dS)g=-1 (5.2)
whose asymptotic dynamics is equivalent to thatof 5.  The action of O(2) on c? is
determined by the mode numbcrs and is

0.(z1,29) = (e““ Z{, emezz)

K(zy,29) = (Z1.22)-

Since m # n the representations of O(2) on the two ccordinates z; are distinct, Thus
(dS)q cannot be nilpotent.  Crawford er al. show that there exist appropriate choices
for the low order terms of § for which the dynamics of S comresponds approximately to
that of § observed in experiments. Some questions remain open, but their resolution
requires further experiments and will not be discussed here.

In contrast, the experiments of Simonelli and Gollub [1989] are performed in a
square container, Here mode numbers m and n corresponding to the two horizontal
directions x and y are also observed.  Not surprisingly, whenever mode (m,n) is
observed the surface can be perturbed to a new surface with mode numbers (n,m),
corresponding to the reflectional symmetry of the square about a diagonal. When
m # n several authors have analysed the initial transition. In particular Silber and
Knoblach [1989] describe the stroboscopic map, but with the symmetry modified from
0(2) to Dy to correspond to the symmetry of the container. Feng and Sethna [1989]
perform an asymptotic analysis of the Navier-Stokes equations to study the nonlinear
behaviour of the standing waves in a nearly square cross-section.

Boundary conditions play a more subtle role in the square case. Let the fluid
state be specified by the surface deformation {(x,y) and the fluid velocity field
u(x,y,z), where 0 € x,y €7 are the horizontal coordinates and z is the vertical
coordinate. The realistic no-slip boundary conditions at the sidewalls require

u(0,y,2z) = u(m,y,z) = 0

u(x,0,z) = ux, m, ) = O;
while the  field may satisfy either NBC or DBC dependmg on the experimental
arrangement:

(5.3)

C S

(0.y) I (my) = c(x 0) = ay (r,0) =

or

C0.y) = Gy} = {(x.0) = {(v.0) =
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It has also been suggested that contaminants on the surface of the fluid might lead to
Robin boundary conditions, see Hocking [1987].
The extension to -n < x,y < m with PBC is straightforward for u. Let
u = (u,v,w); then
(u,v,w)(x,-y,2) = (u,-v,w)(x,y.z) 0<xSm,-nsysn
and
(uv,wi(-x,y,z) = (,v,wix,y,z) -RSXSTW, -T<Sy<m.
The extension for {(x,y) depends as usual on whether NBC or DBC are selected:

NBC: Cix-y)=C(xy) Osxsm-msysxm
Cexyy=0xy) R<x<m,-w<ysm;
DBC: Ex,-y)=-L(xy) O<x<m-n<y<n

C-xy) =-L(x,y) -m<xSk,-k<y<m.
In either case the extended problem has D4+T2 symmetry, and one naturally expects
the eigenfunctions of (dS)g to have well-defined mode numbers, for example,
£ ~ cos(mx)cos(ny) for NBC. By contrast a Robin boundary condition would force
the eigenfunctions to be mixtures of these pure modes.
The D4+T2 action on -1 < x,y S T is generated by

Dy: K1 (Y)Y b (-xy)
Ko: (X.¥) b (¥,%)
Tz: (f-Pl,(Pz) (X,Y) B (x+‘P1ry+‘-P2)

If for gwen {m,n) with m # n, we choose

7y el{mx+ny) 4 Zzt,41(mx ny) . 236l(mv:+my) +z 4ex(nx my)
as a basis for the eigenspace, then the coordinates (21, 29, 23, 24) € ¢ are
transformed by

Ky {z(, 22, 23, Z4) P (23,21, 24, 23)

Ky :(21, 29,23, 24) 0 (23,24, 21, %)

(@1,92): (21, 23, 23, 29) b

MOINe),  Mme1-n9)), JP1+me2) . ine1-mgo)

In this case NBC are selected by invariance under the group

By = {xy, k3t
generated by N

Ki: (xy) b (-x)

24).

and
K3t (x,7) b (X,~y).
Note that k3= K9K{Ky.
For DBC we have the additional symmetry operation
(©.0)xy.2) = -{(-xy,2)
which acts on the eigenspace by
o: (21, 29, 3, zg) b (~Zy,~ Z1, =24, -Z3).
Now DBC are selected by invariance with respect to the subgmup
Bp = {o, kyo1}.
The bifurcation problems relevant to the models of the Faraday experiment
occur on Fix(Byy) and Fix(Bpy). Interestingly, the effective symmetry group eccuring
in the bifurcation of mode (m,n) can be smaller than the D4 symmetry suggested by the
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experimental geometry. 'Upper bounds' on the resulting contraints can be determined
by calculating the relevant normalizer in each case, but additional constraints may also
arise, not inherited in this way from symmetries of the original problem, a point that we
do not discuss further here. For NBC the normalizer constraints depend on the parities
of the mode numbers as follows:

Np4+T2BN/BN ‘mode (m,n)

Dy m+n odd
D5 m+n even; m, n each odd
Zn m+n even, m, n each even

Simonelli and Gollub [1989] also demonstrate the existence of codimension
two mode interactions between different standing waves, as had previously been
obtained in the circular case. Although the dynamics near such points of multiple
instability have not been studied in detail either experimentally or theoretically, it is clear
that a wider variety of possibilities arises than in the circular problem. Most significant
is the role of boundary conditions, For NBC or DBC the primary standing waves are
pure modes, and the linearization (dS)g of the centre manifold map is diagonal, that is,
(dS)q = -1, as in the O(2) mode interaction. If, however, the experimental conditions
require Robin boundary conditions, then (dS)q should have a nilpotent part. The
normal foms selected by these two linearizations involve quite different nonlinear
terms, and presumably quite different dynamics.

For example, a stability analysis of 2-cycle solutions indicates that in the
nilpotent mode interaction the primary modes can undergo a secondary Hopf
bifurcation, while in the diagonal interaction the first possibility for Hopf bifurcation
occurs only along a secondary mixed mode branch. Also, preliminary numerical
results suggest that chaotic behaviour is readily found for the nilpotent mode
interaction, whereas for the diagonal case chaos is likely to occur only for parameters in
a very thin regjon, as in the O(2) mode interaction. In addition, when (dS)q = -I, the
dependence of the normalizer on the mode numbers indicates that the 'parity’ of the
modes influences the dynamics. A detailed discussion of these issues will be given in
Crawford, Golubitsky and Knobloch [1989].
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