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Bifurcation in symmetric systems is typically associated with spontaneous symmetry breaking. That is, bifurcation is 

associated with new solutions having less symmetry. 
In this paper we show that symmetry-increasing bifurcation in the discrete dynamics of symmetric mappings is possible 

(and is perhaps generic). The reason for these bifurcations may be understood as follows. The existence of one attractor in a 

system with symmetry gives rise to a family of conjugate attractors all related by symmetry. Typically. in computer 

experiments, what we see is a sequence of symmetry-breaking bifurcations leading to the existence of comugate chaotic 

attractors. As the bifurcation parameter is varied these attractors grow in size and merge leading to a single attractor having 

greater symmetry. 

We prove a theorem suggesting why this new attractor should have greater symmetry and present a number of striking 

examples of the symmetric patterns that can be formed by iterating the simplest mappings on the plane with the symmetry of 

the regular m-gon. In the last section we discuss period-doubling in the presence of symmetry. 

0. Introduction 

The coexistence of regular patterns with turbu- 

lent fluid flow seems remarkable; yet this coexis- 

tence has been observed in the Taylor-Couette 

system. In the experimental apparatus, fluid is 

contained between two concentric independently 

rotating, cylinders. When the outer cylinder is 

held fixed and the speed of rotation of the inner 

cylinder is increased slowly, the following se- 

quence of states is observed: laminar Couette flow, 

time-independent Taylor vortices (see fig. l(a)), 

time-periodic wavy vortices, two-frequency modu- 

lated wavy vortices, multi-frequency motion. broad 

band turbulence, and then turbulent Taylor vor- 

tices (see fig. l(b)). See Brandstater and Swinney 

111. 
What is curious about this bifurcation scenario 

is that the changes in state, except for the last 

transition, all involve either a breaking of symme- 

try or an increase in the complexity of the dynam- 

ics. In the last transition, however, the dynamics 

remains complicated but the symmetries (and spa- 

tial organization) of the state increase. As pointed 

out to us by R. Tagg and H.L. Swinney, the 

symmetry in the turbulent Taylor vortex state is 

only on average. This symmetry, however, is clearly 

visible in the picture. 

Admittedly, at this time, we have only a mini- 

mal understanding of this transition. Nevertheless, 

since it provides a motivation for the study that 

follows, we will attempt to describe it in more 

detail. In the broad band turbulent state the fluid 

still divides into cells but the dividing surfaces 

have no nontrivial symmetry. The transition to 

turbulent Taylor vortices involves a restoring of 

the planar boundary between the cells. Experi- 

mentally the turbulent Taylor vortex state might 

be described as adding a small ‘turbulently’ vary- 

ing flow field to a symmetric mean field. In this 

sense this state has symmetry only on average. 

As has been shown in several contexts in the 

Taylor-Couette system, however, spatial axial 

translation may be identified with time evolution. 
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Fig. 1. Pictures from the experiments on the Tavlor-Couette system (a) Taylor vortices: (b) turbulent Taylor vortices. Picture5 

supplied by H.L. Swinney and R. Tagg. 

So that we may think of symmetry on average as Now assume that f depends on a parameter X 

being given by a time averaging process. See Case and that A, is an attractor for fi. Loosely speak- 

Study 6 in Golubitsky et al. [3]. We reiterate that ing, we say that f has a symmetry-increasing 

this discussion is purely heuristic. bifurcation at h = h, if 

In this paper we discuss a rather simple method 

by which symmetry-increasing bifurcation can oc- 

cur. Similar observations also appear in Grebogi 

et al. [4]. We work in the following context. As- 

sume that the Lie group r acts linearly on R ’ and 

that f: R” + R” is continuous and commutes with 

r. For an f-invariant subset A we define the 

symmetry of A to be the subgroup 

(i) 2, = Z1 for X <A 

(ii) ,Xx=2, forX>h:: and 

(iii) X2 3 2,. 

zA= {yEr: yA=A}. (0.1) 

(When A consists of a single point, Z,,, is just the 

isotropy group of that point.) 

Computer experiments suggest the following. Sup- 

pose for h < X,, there is an attractor A, with 

symmetry 2 and suppose that p E r - 2. Then 

p(A,) is also an attractor which we call a con@- 

gate attractor. Suppose that as X increases to X,,, 

A, and p(A,) come together and merge at h,,. 

Then we find that the resulting attractor A, for 

X > h, has symmetries which include the group 

generated by Z and p. In Section 1 we prove a 
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proposition detailing an instance where this sym- 

metry statement can be made precise. One should 

note that the existence of conjugate attractors is 

forced by symmetry, whenever the given attractor 

has less than full symmetry. Therefore, the merger 

of attractors should occur naturally in the discrete 

dynamics of mapping with symmetry. Also note 

that the symmetry of a chaotic attractor, as we 

have defined it, will only be visible on average. 

For examples see the figures in sections 3 and 5. 

The remaining sections of the paper discuss 

examples of merging of attractors. In section 2 we 

discuss the odd logistic equation (mentioned in 

Chossat and Golubitsky [2]). In section 3 we dis- 

cuss iterates of maps with D, symmetry in the 

plane and show several different routes by which 

symmetry-increasing bifurcations to D,-symmetric 

attractors occur. Section 5 is a show-and-tell sec- 

tion presenting some of the striking invariant sets 

that can be obtained through mergers of conjugate 

attractors when iterating maps of the plane with 

D,,, symmetry for m = 3, 5, 6, 7 and 9. In section 4 

we present a general theorem describing period 

doubling in the presence of symmetry and apply 

our results to the case of D,,, symmetry. The 

different fixed-point and period-doubling bi- 

furcations lead into the scenarios of symmetry- 

increasing bifurcations that we present in sections 

3 and 5. 

1. Symmetry of an attractor 

Let f: Iw 2 -+ lR2 be a mapping and let A be an 

invariant set under f. We feel that there are three 

properties of f and A that should hold if the set 

A is to be observed by computer experiment on f: 

(Hl) f(A) = A. 

(H2) A hasadenseorbit T= {~,f(z),f~(z),...}. 

(H3) A is an ‘attractor’, that is, there is an open 

neighborhood U of A such that for every 

XE U,w(x)cA. 

Here w(x) denotes the w-limit point set of x. 

The computer experiment we have in mind is 

the following: choose an initial point x and then 

plot the iterates of f until the graphical image 

settles down. By ‘settles down’ we mean that the 

set A that appears on the screen may be repro- 

duced by clearing the screen and continuing to 

plot iterates on the same orbit. We abstract this 

notion by (Hl). In the experiment we plot the 

iterates of f lying on one trajectory; thus the set 

A that we see on the computer screen is just the 

‘closure’ of the given trajectory. This notion is 

abstracted by (H2). Finally, to guard against nu- 

merical errors when determining the asymptotic 

shape of A, we repeat the process for different 

initial conditions. We abstract the idea that the set 

A does not depend on the initial condition x, as 

long as x is near enough to A, by (H3). 

Proposition 1.1. Let I: R” + R” be continuous 

and commute with the matrix p. Let A c [w” be a 

closed subset. Assume that f and A satisfy 

(Hl)-(H3) and 

(H4) A n p(A) # 0. 

Then p(A) = A. 

Remarks. (1) Proposition 1.1 suggests that when 

two conjugate attractors A and p(A) collide, they 

can merge into a single attractor with symmetry 

containing p. Thus, it is not surprising that colli- 

sions of conjugate attractors produce attractors of 

greater symmetry. 

(2) We note that just after the collision of at- 

tractors the dynamics consists of a point staying 

in one region of the new attractor for many iter- 

ates before moving on to another (conjugate) re- 

gion. The issue of residence time in a region as a 

function of the bifurcation parameter has been 

discussed in Grebogi et al. [4] (in the nonsymmet- 

ric case). We do not consider this important issue 

here. 

(3) Suppose f: Iw ’ -j IR n commutes with the Lie 

group r and the set A has nontrivial symmetry 

Ea. Then after the collision of conjugate attrac- 

tors, we expect the symmetry of the resulting 

attractor to include the group generated by 2, 

and p. In particular, we will see examples with 

r = D,,, where both 2, and p have order 2, but 



the group generated by Z, and p is all of I’. The 

resulting pictures are quite striking. 

(4) A simple way to see that (H4) is satisfied on 

a computer is to vary a parameter X in f until 

A, n Fix(p) # 0, where 

Fix(p)= {uEIW”: p(u)=u}. 

Proof. Suppose that 

o(x)=A foreveryxET, (I .I) 

where T is defined in (H2). Then the validity of 

the proposition is seen as follows. Let U be the 

open neighborhood defined in (H3) and set 

Q=p(U)nU. 

Observe that Q is open and nonempty, since 

Q 2 p(A) n A f 0 by (H4). Since T is dense in A 

andQO7# 0,wehaveQnTf 0.ChoosexE 

Q n T. Since x E T, (1.1) implies that w(x) = A. 

However, x E p(U) and the equivatiance of f 

coupled with (Hl) implies that o(x) c p(A). Thus 

A c p(A). Reversing the roles of A and p(A) 

establishes that A = p(A), as desired. 

By (H3) we know that w(x) c A for each x E T. 

Thus to verify (1.1) we fix x and show that each 

a E A is in w(x). If a E A - T, then the density of 

T implies the existence of a sequence f”/(x) + a 

as j + co. Thus a E o(x), as desired. When a E T 

however, the density of T in A does not imply the 

existence of a sequence of iterates of x converging 

to a since a is already in T. 

We observe that if a is not isolated in A or if T 

is a periodic orbit, then such a sequence of iterates 

always exists. This statement is easily verified when 

T is periodic of period m, for f”‘(x) = x for all 

j. Suppose now that a is not isolated in A, then 

there exists a sequence of distinct points a, E A 

converging to a. Since T is dense in A we can 

choose iterates f”)(x) such that 

1 a, -f”‘/(X) / < Ia, - al. 

This inequality shows that f”)(x) # a and f”)(x) 

---) a as j + cc. Thus a E o(x). 

Define W = { a E A: a is isolated}. We claim 

that either 

W=0 or T is a periodic orbit. (I .2) 

The discussion in the last paragraph shows that 

(1.2) implies (1.1). We verify (1.2) by assuming 

W # 0 and showing that T is periodic. 

Observe that W c T since the density of T in A 

implies that isolated points in A must be in T. 

Also observe, that the continuity of f and the 

invariance of A under f implies that if a is not 

isolated in A, then f(a) is not isolated in A. 

Recall from (HZ) mat T consists of iterates of the 

point z. The last comment shows that if z is not 

isolated in A, then no point in T is isolated in A. 

This contradicts the fact that W c T and the as- 

sumption that W f 0. Thus z E W. Finally (Hl) 

implies that there is an a E A such that f(a) = z. 

If a were not isolated in A, then z would not be 

in W. So a is in W and hence in T. Therefore 

a =1”(z) for some m. Thus J’~‘+‘(z) = z and T is 

a periodic orbit, as claimed. This verifies (1.2). n 

2. The odd-logistic equation 

The only nontrivial (faithful) action of a com- 

pact group on [w is given by i2 1 = { 1, p} acting by 

px = -xx. The H,-equivariant mappings are just 

the odd functions. Consider, as an example, the 

odd-logistic equation 

f(x, A) = Ax - x3. (2.1) 

We discuss the asymptotic dynamics of f as h 

increases. When X < 1, the fixed point x = 0 is 

stable. At X = 1 the fixed point loses stability and 

bifurcates producing two conjugate fixed points 

which are nonzero and stable. These fixed points 

then undergo periodic doubling cascades resulting 

in a pair of conjugate attractors A + and A each 

consisting of a single orbit ‘filling up’ parts of the 

real line, say [a, p] and [-/I, -a]. As X is in- 

creased further ,8 decreases and eventually be- 



Fig. 2. Picture of iterates of the odd-logistic equation /(x, A) 

= Ax ~ x3. The picture is created by fixing A, iterating f 100 

times and then plotting the next 150 iterates of f. 

comes negative. When this happens a Z,-symmet- 

tic attractor is produced. 

The exact value of A where this merging of 

attractors occurs may be calculated easily. Let x, 

be the unique positive fixed point of f and let x, 

be the unique positive critical point of f. The 

theory of quadratic maps tells us that the positive 

attractor A + contains x,. A necessary condition 

for an iterate of some point in A + to be negative 

is that f(x,) 2 x,. (To verify this remark just look 

at the graph of f.) The smallest value of A where 

this condition can be satisfied is given by 

fyx,) = 0. 

Since xf = X/3, ‘t I 1s easy to verify that this value 

is 

h, = 30/2. 

Fig. 2 is created as follows. For a given value of 

X, we iterate f for 100 points and then plot the 

next 150 points. We then increment X and repeat 

the same process. The initial point for the incre- 

mented X is just the terminal point of iteration by 

f at value A. Note the sudden increase in symme- 

try of the attractor in fig. 2 at X = X,. 

3. Chaos and D3 symmetry 

The dihedral group D, consists of all symme- 

tries of the regular m-gon in the plane. These 

symmetries are generated by 

R,(z) = e2ni/mz, 

K(Z) =t. 

A mapping f: V + V is equivariant with respect 

to the group r acting on V if 

f(v) = YfW. 

The general D,,,-equivariant mapping on Iw ’ z C is 

given by 

f(z,A)=p(u,u,h)z+q(u,v,A)z”~‘, (3.1) 

where 

u = zt and v= (zm+P)/2. (3.2) 

Using computer experiment, we have explored, in 

a haphazard way, the discrete dynamics of the 

following mapping: 

f(z,X)=(au+pu+X)z+yZm-1. (3.3) 

For a complete discussion of D,,, equivariants see 

Golubitsky et al. [2]. In this section we discuss 

patterns formed by symmetry-increasing bifurca- 

tions in maps with triangular symmetry, that is, in 

the map (3.3) when m = 3. 

More explicitly, we choose X to be the bifurca- 

tion parameter and we look for merging of attrac- 

tors as h is varied. We assume y # 0; upon 

resealing f by af (z/u), we can assume y = 1. 

In our explorations we have observed many 

different pictures of D,-symmetric attractors re- 

sulting from iterates of (3.3) when m = 3. We 
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Fig. 3. Pictures of some of the transitions described in scenario 1. Numerically the transitions occur at X = 2.185 and h = 2.27. Here 
we have (Y = -1. p = 0, y= -0.5 and m = 3. (a) X = 2.18, Iterates = 17889: (b) X = 2.23. Iterates = 26559: (c) A = 2.275, 

Iterates = 100706. 

have, however, detected only a few types of sym- 

metry-increasing bifurcations and these are related 

to the type of primary bifurcation from the &in- 

variant fixed point z = 0. These initial bifurcations 

are described in section 5. In the following scenar- 

ios, the bifurcations to and from chaotic attractors 

are based only on numerical evidence. Arrows 

indicate the typical sequence of transitions we 

have observed. Here ZZ(~) denotes the two ele- 

ment group generated by K(Z) = 2. Recall that 

when 2 is a subgroup the fixed-point subspace is 

defined by 

Fix(Z) = { ZEC: az=z,VaE~}. 

Since the group acts linearly Fix(Z) is a linear 

subspace. Moreover, f: Fix(Z) + Fix(Z) for any 

equivariant f. See Golubitsky et al. [2]. 

Scenario 1. (Fig. 3) 0 + fixed point in Fix@,(~)) 

-+ chaotic 1D set in Fix@,(~)) --) (eventually) 

chaotic Z *( K)-symmetric set + &symmetric at- 
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Fig. 4. Pictures of some of the transitions described in scenario 2. Numerically the transitions occur at X = - 2.12 and X = - 2.375. 

Here we have a = 1, /3 = 0, y = 0.1 and m = 3. (a) X = - 2.10, Iterates = 34113; (b) X = -2.25. Iterates = 42714; (c) h = - 2.38, 

Iterates = 173182. 

tractor created by a merger at 0 of conjugate 

Z 2( K)-symmetric attractors. 

circles across Fix@ 2(~))) + D,-symmetric attrac- 

tor created by a merger at Fix(E) of conjugate 

Z 2( K)-symmetric attractors where 2 is a subgroup 

Scenario 2. (Fig. 4) 0 + fixed point in Fix(Z,(K)) 

--j Z *( K)-symmetric period two points + two in- 

variant circles + Z *( K)-symmetric chaotic attrac- 

tor (obtained through merger of the invariant 

conjugate to Z 2( K). 

Remark. Since Z*(K) and 2 together generate D,, 

we expect the resulting attractor to be D,-symmet- 

liC. 
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Fig. 5. Pictures of some of the transitions described in scenario 3. Numerically the transitions occur at A = ~ 1.78 and X - ~ 1.80. 
Here we have a = 1, fl = 0, y = 0.5 and m = 3. (a) X = - 1.755, Iterates = 112617; (b) A = - 1.79. Iterates = 37327: (c) y = - 1.804, 

Iterates = 109949. 

Scenario 3. (Fig. 5) 0 + Z,(K)-symmetric period 
two points + period six points (constituting a 
Z 2( K)-symmetric set) + six invariant circles + 
Z *( K)-symmetric chaotic attractor (obtained by 
merging of the invariant circles) + Q-symmetric 
attractor obtained by merger of the B *(K)-sym- 

metric and its conjugates at Fix(I), as in scen- 
ario 2. 

Scenario 4. (Fig. 6) 0 + period two points in 
Fix@,(~)) + period four points off of Fix(Z,(K)) 
--, nonsymmetric chaotic attractor (a) -+ H*(K)- 
symmetric chaotic attractor, having a fine struc- 
ture similar to the Hknon strange attractor (with a 
Cantor type cross section) (b) --) Qsymmetric at- 
tractor obtained by merging of the conjugate 
H,(K)-symmetric attractors at Fix(X), as in sce- 
nario 2 (c). 
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Fig. 6. Pictures of some of the transitions described in scenario 4. Numerically the transitions occur at X = - 1.92893 anu 

A= - 1.937. Here we have a = 1, p = -0.7, y = -0.8 and M = 3. (a) X = - 1.937, Iterates = 93162; (b) h = - 1.93, Iterates = 55841; 

(c) X = - 1.94, Iterates = 143572. 

Remark. It is remarkable that each of these sce- 

narios leads to attractors with different forms and 

seemingly different structure. 

Finally, we remark that the pictures here could 

not have been created by iterating homeomor- 

phisms. For a homeomorphism the points x and 

f(x) must have the same isotropy, yet in these 

cases the numerics show existence of points with 

isotropy subgroup 1 which are taken by f to a 

point with isotropy D, in the first example and to 

a point with isotropy ZZ(~) in the second. 

4. Period doubling and symmetry 

As we mentioned in section 3 the scenarios of 

symmetry-increasing bifurcation we have observed 

on the computer all begin with symmetry-breaking 

bifurcation. Indeed, the broad classes we have 

seen begin with a stable r-invariant fixed point 

losing stability either by a symmetry-breaking bi- 

furcation to new fixed points or a symmetry- 

breaking bifurcation to period two points. In this 

section we discuss the period two bifurcations in 

detail. 
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Let f: lR n X R + R n be a r-equivariant map- 

ping where r acts absolutely irreducibly on [w “. It 

follows that f(0, X) = 0 (that is, for all X, 0 is a 

r-invariant fixed point of f) and 

We assume that the fixed point 0 is asymptotically 

stable when h < 0, that is, la(X)1 < 1, and that 0 

loses stability at A = 0. A bifurcation of fixed 

points occurs when a(O) = + 1 and a period-dou- 

bling bifurcation occurs when a(O) = - 1. 

Bifurcation of fixed points is analogous to bifur- 

cation of stationary points for vector fields. This 

issue is discussed in Chossat & Golubitsky [1988], 

Lemma 2.1. In particular, there is a branch of 

fixed points corresponding to each isotropy sub- 

group 2 whose fixed point space Fix(Z) has di- 

mension one. In the case r = D,,, and n = 2, the 

lattice of isotropy subgroups is: 

m even m odd 

where [w’=C, K(Z)=,? and R,(~)=e*~~/~z. 

Moreover, the dimensions of Fix@ *([)) and 

Fix(z*(~R,) are both equal to one. Thus, there 

are bifurcating fixed points with a reflectional 

symmetry and, in fact, generically no other fixed 

points. (See Golubitsky et al. [2].) 

For the remainder of this section we discuss the 

bifurcation of period two points, that is, we as- 

sume u(O) = - 1. As we remarked in Chossat and 

Golubitsky [4], lemma 2.2, period two points are 

fixed points of the second iterate f2 =f 0 f. Thus 

there are period two points with isotropy Z*(K) 

for all m and ZZ(~R,) when m is even. In fact, 

we claim that there is also a second family of 

period two points when m is odd. 

Using a theorem of Iooss [6], the normal form h 

for f commutes with the linear part of f. In this 

case, this means that h commutes with - I,. Group 

theoretically, let Z 2 = { _t1,} and suppose -I, is 

not in the representation of r on R”. Then the 

normal form h will commute with r @ Z,. It 

follows from the previous discussion that the nor- 

mal form will have period two points correspond- 

ing to every isotropy subgroup Z of r $ i2 2 whose 

fixed point subspace has dimension one. In the 

case of r = D,,, (m odd), - I2 is not in D,,,, and 

the action of D, CB Z z is isomorphic to the action 

of D,,. 

a. 

b. 

C. 

We address three questions: 

Do the period two points found in the normal 

form h persist in the original mapping f? 
What are the isotropy subgroups of r @ Z z 

and how can we compute the dimension of the 

fixed point subspaces? 

In the case of r = D,,,, when are the bifurcating 

period two points asymptotically stable? 

The answers to these questions are: 

Theorem 4.1. Assume that r acts absolutely irre- 

ducibly on R”, that (d,f )0,0 = -I,,, and that 

dim Fix(Z) = 1 for a subgroup 2 c r $ h *. Then 

generically, there exists a branch of period two 

points for f bifurcating at the origin and tangent 

to Fix(E) at 0. If 1 c r, then the branch lies in 

Fix( 2). 

Lemma 4.2. (i) Let 2 be an isotropy subgroup of 

mz,. Then, either 2cT or Z={K,I,}U 

{ H - K, -I,, } where H is a subgroup of r, K = 

2 n r and the index of K in H is two. 

(ii) In the latter case, dim Fix(Z) = dim Fix( K) 

- dim Fix( H ). 

The general mapping commuting with D,,, has 

the form 

f(z, A) =p(u, u, X)z + q(u, u, A)z”-‘, (4.1) 

where u=zZ and v=z”+Z”‘. 
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Proposition 4.3. There are two branches of period 

two points emanating from a period-doubling bi- 

furcation with D,,, symmetry, one having Z,(K) 

isotropy and the other either has Z *( KR,) isotropy 

when m is even or is a discrete rotating wave (in 

the sense that f(z) = -z) when m is odd. 

Both branches are supercritical if 

sgn( ~~(0)) = - w( p,(O)) 

and subcritical for the opposite sign. For either 

branch to consist of asymptotically stable period 

two points it is necessary that 

P,(O) ’ 0. 

The HZ(~) branch is asymptotically stable if, in 

addition, Z > 0 while the other branch is asymp- 

totically stable if Z < 0, where 

4(O) (m even), 

z= q(O)[mP,(O)q(O) + 2mp,(O) + kL(o)1 

++4q,(o) (m odd). 

Sketch of proof. When m is even this proposition 

is proved in the following manner. We write the 

D,-equivariant mapping g = f 0 f - id in the form 

(4.1), namely, 

g(z, X) = P(u, u, X)z+ Q(u, u, A)?‘-‘. 

Note that period two points for f correspond to 

zeroes of g. So we can use standard steady state 

bifurcation techniques, such as in Golubitsky et al. 

[2], to obtain the direction of branching and stabil- 

ity of solutions in terms of the Taylor expansion 

of P and Q. The final step is to determine these 

Taylor coefficients in terms of p and q. The 

results are recorded in proposition 4.3. 

When m is odd, the normal form of D,,,-equiv- 

ariant mappings at a period-doubling bifurcation 

is D ,,-equivariant and the even m part of propo- 

sition 4.3 applies to the normal form mapping. In 

addition to those computations needed for the 

proof of Proposition 4.3, the only computations 

that are necessary when m is odd consist of calcu- 

lations interpreting the coefficients of P and Q in 

terms of the Taylor expansion of (4.1). This type 

of calculation is typical of normal form calcula- 

tions (and no less painful) and is, in this sense, 

straightforward. n 

Sketch of proof of theorem 4.1. Let fN be the 

normal form of f up to order N. Thus, fN( -x, A) 
= -fN(x, A). Write g = f 0 f - id and recall that 

zeroes of g are period two points for f. We now 

discuss the zeroes of g. 

The absolute irreducibility of r acting on R ’ 

implies that 

(d,f) (0.X) = G)L 

where a(O) = - 1. Now use Taylor’s theorem to 

decompose g into 

g(x, A) = g,v(x, A> + R,(x> A), 

where gN(. , A) is a polynomial of degree N com- 

muting with r @ Z, and R, is the remainder. 

Observe that - id @ Z and therefore g,]Fix(E) is 

odd in x. In particular, 

g&u, A)]Fix(E) = (a*(h) - 1 + bt*)tv, 

where u is a nonzero vector in Fix(Z). Under the 

generic nondegeneracy conditions a’(0) # 0 and 

b # 0, there is then a unique branch of nontrivial 

zeroes of g, bifurcating from the origin. 

At this point we would like to apply the implicit 

function theorem to conclude that there is a unique 

branch of zeroes of g tangent to Fix(E) at the 

origin. There is a difficulty. To apply the implicit 

function theorem we need to know that (d,h)(,,, 

is nonsingular, where h is g/Fix(Z) X Iw. This ma- 

trix, however, may be forced by symmetry to be 

singular. To avoid this difficulty, we instead choose 

N large enough so that 



where x(X) parametrizes the unique branch of 

nontrivial zeroes of g,]Fix(Z) x R. (This difficulty 

occurs, for example, in the case of D,,, when m is 

odd.) 

Now we can use the implicit function theorem 

by writing x = x(X) + Y and resealing each coor- 

dinate in a basis formed by the eigenvectors (or 

generalized eigenvectors) of (d,gh,)c,cx,,h,. The 

resulting system of equations will have nonsingu- 

lar Jacobian at (Y, X) = (0,O). An alternate method 

would be to apply the theory of normally hyper- 

bolic sets in Hirsch et al. [5]. (For a fixed point, 

normal hyperbolicity is just the assumption of a 

nonsingular derivative for the ‘unperturbed’ map 

g, along the branch. Then R, can be viewed as a 

smooth ‘perturbation’ of gN and the main theo- 

rem of Hirsch et al. gives the existence of a zero of 

g near x(A). q 

Proof of lemma 4.2. (i) Assume that 2 Q r. Let 

?r:T$Z 2 + r be projection; note that ker r = Z 2. 

As observed above an isotropy subgroup cannot 

contain - id. Therefore, H = ~(2) is isomorphic 

to 2. Let K = Z n T. Then the index of K in H is 

two since the index of K in ,Z is two. In particu- 

lar, E= {K,id} U {H- K, -id}. 

(ii) The following trace formula holds for any 

isotropy subgroup .Z: 

dimFix = & Ogltr(u), 

where ]_Z( is the number of elements in z’. Cf. 

Golubitsky et al. [2], theorem XIII, 3.2. A similar 

formula holds for continuous Lie groups. Using (i) 

we can write 

dimFix@)=&, O;/‘“‘+O,,HFK, id) 
[ 

tr(a) 

I 

But the second summand equals 

- C tr(a) = - C tr(u) + C tr(u). 
OEH-K GGII UEK 

Therefore, using 1 H I= 121 and 1 K I= ]4/2, we de- 

rive the desired formula. n 

Fig. 7. Pictures of symmetric attractors with triangular symmetry. (a) h = ~ 1.75, a = 2.00. /? = -0.20. y = 1.00. 

m = 3, Iterates = 137435; (b) X = 1.52, a = - 1.00, p = 0.10. y = - 0.80, m = 3, Iterates = 156879. 
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Fig. 8. Pictures of symmetric attractors with pentagonal symmetry. (a) A = 2.60, n = ~ 2.00, p = 0.00. y = ~ 0.50, nz = 5, Iterates = 

116241; (b) X = ~ 1.30, a = ~ 1.00, /? = 0.10, y = -0.80, m = 5, Iterates = 262114. 

Fig. 9. Pictures of symmetric attractors with hexagonal symmetry. (a) X = - 2.70, a = 5.00, /3 = 2.00. y = 1.00, m = 6. Iterates = 
143943; (b) X = - 2.585, (Y = 5.00, fi = 2.00, y = 1.00, m = 6, Iterates = 15036X. 



is=-- a 

Fig 10. Pictures of symmetric attractors with higher symmetry. (a) h = -2.065, a = 1.00, fi = 0.04, y = 0.10, tit = 7. Iterates = 
175119; (b) X = -2.60, a = 4.00, p = 2.00, y = 1.00, m = 9. Iterates = 116495. 

5. Selected pictures with D,,, symmetric attractors 

We have collected here some of the attractors 

that we have seen in the dynamics of mappings 

with D,,, symmetry, when m = 3,5,6,7,9. These 

pictures are given in figs. 7-10, respectively. All 

attractors are shown only after symmetry-increas- 

ing bifurcations have occurred. All are obtained 

by iterating equation (3.3). 
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