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A coupled cell system is a network of dynamical systems, or ‘cells’, coupled to-
gether. Such systems are represented schematically by a directed graph whose
nodes correspond to cells and whose edges represent couplings. Symmetry of cou-
pled cell systems can lead to synchronized cells. We show that symmetry is not
the only mechanism that can create such states in a coupled cell system. The first
main result shows that robust synchrony is equivalent to the condition that an
equivalence relation on cells is ‘balanced’. The second main result shows that ad-
missible vector fields restricted to synchrony subspaces are themselves admissible
vector fields for a new coupled cell network, the ‘quotient network’.

1. Introduction

Basic questions in the study of symmetric differential equations include:

1) What is meant by symmetry for a differential equation?
2) What kinds of symmetry can solutions to differential equations have?
3) How does the symmetry of solutions change as parameters are varied?

We limit the discussion to autonomous systems ẋ = F (x), where x ∈ Rn

and F : Rn → Rn. A symmetry is a linear map γ : Rn → Rn that takes
solutions to solutions; equivalently, γ satisfies the equivariance condition
F (γx) = γF (x). The set of symmetries forms a group Γ. Progress can
be made on answering questions (2) and (3) only when the group Γ is
specified first. That is, answers to these questions are found for the space
of all Γ-equivariant differential equations.

There is a parallel theory for coupled systems of differential equations
where ‘synchrony’ takes the role of symmetry. Indeed, we attempt to answer
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the three questions with synchrony replacing symmetry and coupled cell
systems replacing systems of differential equations.

In our discussion we use the term cell to indicate an autonomous system
of ODEs. A coupled cell system is a set of cells with coupling. The salient
feature of a coupled cell system is that the output from each cell is consid-
ered to be significant in its own right4. In particular, the output signals can
be compared, and this observation leads to various notions of ‘synchrony’.
A solution x(t) has synchrony if there are (at least) two cells i and j that
have identical outputs, that is, xi(t) = xj(t) for all t. We are particu-
larly interested in cell systems that exhibit robust synchrony — whenever
a solution has synchronous initial conditions it exhibits synchrony for all
time. For surveys on synchrony (which include a variety of definitions) see
Boccaletti et al.1 and Wang10.

In this paper we review recent work9,5,2 that addresses the question:
What features of the typical dynamics in coupled cell systems are products
of network architecture? By the architecture of a coupled cell system we
mean: which cells influence which, which cells are ‘identical’, and which
couplings are ‘identical’.

It is known3,4 that synchrony in coupled cell systems can be produced
by network symmetry. However, the proper coding of system architecture
is done in terms of the network’s symmetry groupoid9,5 and this structure
leads to a much larger class of synchronous dynamics. We describe two
theorems that follow from the groupoid formulation:

• Patterns of synchrony are determined by balanced equivalence rela-
tions on the set of cells.
• The restriction of a coupled cell vector field to a polysynchronous

subspace is itself a coupled cell system, the quotient system, and
every quotient system lifts to a system on the original network.

2. Coupled Cell Systems and Symmetry

Systems of two identical cells (with coordinates x1, x2 ∈ Rk) have the form

ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1)

(2.1)

where the same function f governs the dynamics of both cells.
Informally, the ‘network’ of a coupled cell system is a finite directed

graph whose nodes represent cells and whose edges represent couplings.
Nodes are labeled to indicate ‘equivalent’ cells, which have the same phase
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space; edges are labeled to indicate ‘equivalent’ couplings. The graph as-
sociated to (2.1) is given in Figure 1. Since cells 1 and 2 are the same
and arrows 1→ 2 and 2→ 1 are the same, we can interchange cells 1 and
2 without changing the graph. We assume that the same is true for the
system of differential equations and that the system has the form (2.1).

1 2

Figure 1. A two-cell network.

The permutation σ(x1, x2) = (x2, x1) is a symmetry of (2.1). Indeed,
every σ-equivariant system of differential equations on Rk × Rk has the
form (2.1). Two consequences follow from this remark. First, synchrony in
two-cell systems (solutions such that x1(t) = x2(t) for all time t) is a robust
phenomenon and should not be viewed as surprising. Second, time-periodic
solutions can exhibit a kind of generalized synchrony in which the two cells
oscillate a half-period out of phase.

The first consequence can be restated: the diagonal subspace V = {x1 =
x2} ⊂ Rk ×Rk is flow-invariant for every system (2.1). The second conse-
quence is related to general theorems about spatio-temporal symmetries of
time-periodic solutions to Γ-symmetric systems of ODEs3,4,6. These theo-
rems imply the existence of functions f having time-periodic solutions of
period T satisfying

x2(t) = x1(t+ T/2) (2.2)

as long as the phase space of each cell has dimension k ≥ 2.

A Three-Cell Network and Multifrequencies. The three-cell network
in Figure 2 corresponds to systems of differential equations of the form

ẋ1 = f(x1, x2)
ẋ2 = g(x2, x1, x3)
ẋ3 = f(x3, x2)

(2.3)

where g(x2, x1, x3) = g(x2, x3, x1), x1, x3 ∈ Rk, and x2 ∈ R`. Sys-
tems (2.3) are equivariant with respect to the permutation τ(x1, x2, x3) =
(x3, x2, x1), and synchronous solutions (where x1(t) = x3(t)) occur robustly
because the subspace W = {x : x1 = x3} is flow-invariant for (2.3).

There are two differences between the networks in Figures 2 and 1.
First, not all τ -equivariant systems on Rk ×R` ×Rk have the form (2.3),
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1 2 3

Figure 2. A three-cell network with transposition symmetry.

since in the general τ -equivariant system f can depend nontrivially on all
xj . So there is additional structure in coupled cell systems that does not
correspond directly to symmetry. Second, the half-period out of phase
periodic solutions satisfy x3(t) = x1(t + T/2) and x2(t) = x2(t + T/2). In
particular, the oscillations in cell 2 are forced by symmetry to occur at twice
the frequency of those in cells 1 and 3. So multirhythms3 can be forced by
network architecture.

Another Three-Cell Network. Robust synchrony is possible in net-
works that have no symmetry. The network in Figure 3 has no symmetry,
but the network structure still forces Y = {x : x1 = x2} to be flow-invariant.
To verify, observe that coupled cell systems associated with this network
have the form

ẋ1 = f(x1, x2, x3)
ẋ2 = f(x2, x1, x3)
ẋ3 = g(x3, x1)

(2.4)

where x1, x2 ∈ Rk and x3 ∈ R`, and restrict (2.4) to Y .

1 2

3

Figure 3. A three-cell network without symmetry.

There is a precise sense in which cells 1 and 2 are equivalent within this
network. Define the ‘input set’ of a cell j to be cell j and all cells i that
connect to cell j and all arrows from cells i to j. See Figure 4. Using input
sets we can now see why Y is flow-invariant: the input sets of cells 1 and
2 are isomorphic via the permutation β that maps (1 2 3) → (2 1 3). The
system (2.4) is not equivariant with respect to β, the third equation in (2.4)
changes on application of β. However, the third equation is the same on
the space Y ; so the restriction of (2.4) to Y is β-equivariant. This is enough
to make Y flow-invariant.
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Figure 4. Input sets for three-cell network without symmetry.

3. Coupled Cell Networks

As in5 we define a class of coupled cell networks.

Definition 3.1. A coupled cell network G consists of:

(a) A finite set C = {1, . . . , N} of nodes or cells.
(b) An equivalence relation ∼C on cells in C.
(c) Associated to each node c is a set of input terminals I(c). Each

i ∈ I(c) is the receptacle for one edge (τ(i), i) that begins in tail cell
τ(i) and ends in terminal i. Let E denote the set of all arrows.

(d) An equivalence relation ∼E on edges in E.
(e) Equivalent edges have equivalent tails and heads — if (τ(i), i) ∼E

(τ(j), j) where i ∈ I(c), j ∈ I(d), then τ(i) ∼C τ(j) and c ∼C d.

Observe that self-coupling (τ(i) = c for a terminal i in cell c) and
multiple arrows (τ(i) = τ(j) for two terminals in cell c) are permitted.

Definition 3.2. The relation ∼I of input equivalence on C is defined by
c ∼I d if and only if there exists an arrow type preserving bijection β :
I(c)→ I(d). That is, for every input terminal i ∈ I(c)

(τ(i), i) ∼E (τ(β(i)), β(i)) (3.5)

Any such bijection β is called an input isomorphism from c to d.

The set B(c, d) denotes the collection of all input isomorphisms from
cell c to cell d. The set

BG =
⋃

c,d∈C

B(c, d)

of all input isomorphisms is a groupoid7, which is like a group, except that
the product of two elements is not always defined. We call BG the groupoid
of the network.

Remark 3.1. Suppose that a cell c has two input terminals i, j ∈ I(c)
whose receiving arrows (τ(i), i) and (τ(j), j) are ∼E equivalent. Then the



November 10, 2003 9:54 WSPC/Trim Size: 9in x 6in for Proceedings symsynch

6

transposition β = (i j) is an input isomorphism in B(c, c). Note that B(c, c)
is a group, called the vertex group.

Vector Fields on a Coupled Cell Network. We now define the class
FPG of vector fields corresponding to a given coupled cell network G and
that definition depends on a choice of ‘total phase space’ P . This class
consists of all vector fields that are ‘symmetric’ under the groupoid BG .

For each cell c in C let the internal cell phase space Pc be a finite-
dimensional vector space of dimension ≥ 1. We require that Pc = Pd
whenever c ∼C d. The corresponding total phase space is P =

∏

c∈C Pc;
employ the coordinate system x = (xc)c∈C on P .

More generally, suppose that D = {d1, . . . , ds} is any finite ordered
subset of cells in C. In particular, the same cell can appear more than once
in D. Define PD = Pd1 × · · · × Pds and write

xD = (xd1 , . . . , xds)

where xdj ∈ Pdj . Finally, suppose that D1,D2 ⊂ C are subsets, and that
β : D1 → D2 is a bijection such that β(d) ∼C d for all d ∈ D1. Define the
pullback β∗ : PD2 → PD1 by (β∗(z))j = zβ(j) for all j ∈ D1 and z ∈ PD2

We use pullbacks to relate different components of the vector field as-
sociated to a coupled cell network. For cell c the coupling phase space is

Pτ(I(c)) = Pτ(i1) × · · · × Pτ(is)

Definition 3.3. A vector field f on P is G-admissible if:

(a) For all c ∈ C the component fc(x) depends only on the internal phase
space variables xc and the coupling phase space variables xτ(I(c));
that is, there exists f̂c : Pc × Pτ(I(c)) → Pc such that

fc(x) = f̂c(xc, xτ(I(c))) (3.6)

(b) For all c, d ∈ C, β ∈ B(c, d), and x ∈ P

f̂d(xd, xτ(I(d))) = f̂c(xd, β∗(xτ(I(d)))) (3.7)

It follows that an admissible vector field is determined by one mapping f
for each input equivalence class of cells, and each component fc is invariant
under the vertex group B(c, c).

4. Balanced Relations and Quotient Networks

Suppose that ./ is an equivalence relation on cells that refines input equiv-
alence. We visualize ./ by coloring all ./-equivalent cells with the same
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color. This equivalence relation is balanced if the sets of colors of input
cells for two ./-equivalent cells consist of the same colors with the same
multiplicities. Theorem 6.5 of 9 states

Theorem 4.1. The subspace

∆./ = {x ∈ P : xi = xj if i ./ j}

is flow-invariant for all G-admissible f if and only if ./ is balanced.

A solution in ∆./ is synchronous in the strong sense that the time series
from cells of the same color are identical; the synchrony is robust in the
sense that it holds for any choice of f . We call ∆./ the polysynchrony
subspace corresponding to ./.

Definition 4.1. Given a coupled cell system G = (C,∼C , E ,∼E) and a
balanced equivalence relation ./, define the quotient cell system G./ =
(C./,∼C./ , E./,∼E./) as follows:

(a) Let c denote the ./-equivalence class of c ∈ C. Then C./ = {c : c ∈
C}. Thus C./ is the quotient C/ ./.

(b) Define c ∼C./ d ⇐⇒ c ∼C d. The relation ∼C./ is well-defined
since ./ refines ∼C .

(c) The edges in the quotient network are the projection of edges in the
original network, that is,

E./ = {(τ(i), i) : (τ(i), i) ∈ E} (4.8)

(d) Two quotient edges are equivalent when the original edges are equiv-
alent, that is,

(τ(i1), i1) ∼E./ (τ(i2), i2) ⇐⇒ (τ(i1), i1) ∼E (τ(i2), i2) (4.9)

where ij is a terminal head in cell cj .

Note that input isomorphisms of G project onto input isomorphisms of
G./. The following is from 5.

Theorem 4.2. Let ./ be a balanced relation on a coupled cell network
G. The restriction of a G-admissible vector field to ∆./ is G./-admissible.
Moreover, every G./-admissible vector field on ∆./ lifts to a G-admissible
vector field.

Consider the five-cell network in Figure 5 (left). The phase space has the
form P = (Rk)5 for some k. Since all cells are input-equivalent the diagonal
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(x, x, x, x, x) is polysynchronous. There is another polysynchronous sub-
space ∆./ associated to the balanced relation in Figure 5 (center), namely,

∆./ = {(x, y, x, y, z) : x, y, z ∈ Rk}

1

2

3

4

5

1

2

3

4

5

x

yz

Figure 5. A five-cell network with a balanced relation leading to a quotient three-cell
bidirectional ring with D3-symmetry.

Observe that the quotient network G./ has D3 symmetry even though
the original network has none. It is known6,3 that D3-equivariant vector
fields can support solutions where two cells are out of phase while the third
cell has twice the frequency of the other two when k ≥ 2. Since all vector
fields in the quotient lift, these solutions are also solutions to the original
five-cell system. Typical simulations are shown in Figure 6.
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Figure 6. Simulations in five-cell network in Figure 5: (left) double frequency in cells
2 and 4; (right) double frequency in cell 5. The two solutions are symmetry related
solutions on the quotient.

5. Synchrony-Breaking Bifurcations

The study of synchrony-breaking bifurcations is just beginning. We present
two examples from 2 that illustrate some of the intriguing possibilities.
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A Three-Cell Feed-Forward Network. We consider the three-cell feed-
forward network in Figure 7. We observe that one-parameter synchrony-
breaking leads naturally to nilpotent normal forms in these networks and to
solutions that are equilibria in cell 1 and periodic in cells 2 and 3. Surpris-
ingly, the amplitude growth of the periodic signal in cell 3 is to the power
1
6

rather than the expected 1
2

power of amplitude growth with respect to
the bifurcation parameter in Hopf bifurcation.

1 2 3

Figure 7. Three-cell linear feed-forward network.

This network has a new feature: the first cell is coupled (externally) to
itself. The corresponding coupled cell systems have the form:

ẋ1 = f(x1, x1)
ẋ2 = f(x2, x1)
ẋ3 = f(x3, x2)

(5.10)

Note that x1 = x2 = x3 is a polysynchronous subspace and we consider a
synchrony-breaking Hopf bifurcation from a synchronous equilibrium. We
assume that the cell dynamics is two-dimensional and that (0, 0, λ) is a
stable equilibrium for cell 1.

The Jacobian at the equilibrium (0, 0, 0) for (5.10) has the form




A+B 0 0
B A 0
0 B A



 (5.11)

where A = Duf(0, 0, λ) is the linearized internal cell dynamics and B =
Dvf(0, 0, λ) is the linearized coupling. We assume that A+B has eigenval-
ues with negative real part and that there is a Hopf bifurcation for cell 2
at λ = 0. It follows from (5.11) that purely imaginary eigenvalues of A
have multiplicity two as eigenvalues of the Jacobian. It is straightforward
to arrange for the equation

ẋ2 = f(x2, 0, λ)

to have a unique stable limit cycle when λ > 0.
Next we assume that f is in ‘normal form’ in the following sense. Iden-

tify the two-dimensional phase space of each cell with C, and assume

f(eiθu, eiθv) = eiθf(u, v) (5.12)



November 10, 2003 9:54 WSPC/Trim Size: 9in x 6in for Proceedings symsynch

10

Note that this is a special assumption. It follows that

f(u, v, λ) = a(|v|2, vu, |u|2, λ)u+ b(|v|2, vu, |u|2, λ)v (5.13)

where a and b are complex-valued functions. For this f we have assumed
above that Re(a(0)) = 0 and Re(aλ(0)) > 0. In addition, we make the
stability assumptions Re(b(0)) < 0 and Re(a3(0)) < 0.

Proposition 5.1. Under these assumptions, there is a unique asymptoti-
cally stable supercritical branch of bifurcating periodic solutions with cell 1
in equilibrium and the periods of cells 2 and 3 equal. The amplitude of the
periodic state in cell 2 grows as λ

1
2 ; the amplitude of cell 3 grows as λ

1
6 .

A simple example is f(u, v, λ) = (i + λ)u − |u|2u − v. The resulting
periodic solution is shown in Figure 8.
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Figure 8. Time series from three-cell network with and λ = 0.1: (left) first coordinate
time series of individual cells; (right) superimposed time series from all three cells. Note
that

√
λ = 0.32 and λ1/6 = 0.68 and that these values are the approximate amplitudes

of the periodic states in cells 2 and 3 respectively.

Two-Color Balanced Relations on Periodic Arrays. Consider a pe-
riodic 4n × 4n array of cells, with bidirectional nearest-neighbor coupling.
Figure 9 shows that patterned states may be found with two colors. The
left figure is a 4-periodic balanced coloring with two colors: black and
white. It is balanced because each cell receives two white and two black
inputs. We show that balanced coloring predicts the existence of equilib-
ria in codimension-one bifurcations with patterns of synchrony that have a
certain kind of spatial randomness.

To generate new equilibria, choose any diagonal that slopes upward to
the right, such as in Figure 9 (center). For cells on this diagonal interchange
black and white. The new pattern is also balanced, Figure 9 (right).
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Figure 9. Two-coloring polysynchronous subspaces of a 4n × 4n periodic array: (left)
basic pattern; (center) specified diagonal; (right) new pattern.

The equations governing black xB and white xW cells in Figure 9 are

ẋB = f(xB , xW , xW , xB , xB)
ẋW = f(xW , xB , xB , xW , xW )

(5.14)

where the overbar indicates invariant under permutation of the last four
variables. These equations are identical for both Figure 9 (left) and (right).
Hence solutions of the coupled system are taken to solutions by the par-
ity swap. Wang and Golubitsky 11 enumerate all two-color patterns of
synchrony for square arrays.

Parity swaps can generate ‘random’ spatial patterns in the sense that
on any column there is a polysynchronous subspace that corresponds to an
arbitrary sequence of black and white cells. See Figure 10.

Figure 10. Polysynchronous subspaces of a 2-color 64 × 64 periodic array. (Left) The
regular pattern. (Right) Dislocation pattern obtained by interchanging on a random
selection of 25 diagonals.

Suppose that the phase space for each cell is one-dimensional. The
synchronous subspace xB = xW is flow-invariant, so the Jacobian of (5.14)
has an eigenvector in the direction (1, 1)t. By symmetry it also has one in
the direction (1,−1)t. It is straightforward to arrange that the eigenvalue
associated with the symmetry-breaking eigendirection moves through zero
with nonzero speed. Therefore a pitchfork bifurcation to the patterned
solutions of Figure 9 can occur in a codimension-one bifurcation.
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