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SYMMETRY AND STABILITY IN
TAYLOR-COUETTE FLOW*

MARTIN GOLUBITSKY" AND IAN STEWART $

Abstract. We study the flow of a fluid between concentric rotating cylinders (the Taylor problem) by
exploiting the symmetries of the system. The Navier-Stokes equations, linearized about Couette flow, possess
two zero and four purely imaginary eigenvalues at a suitable value of the speed of rotation of the outer
cylinder. There is thus a reduced bifurcation equation on a six-dimensional space which can be shown to
commute with an action of the symmetry group 0(2)S0(2). We use the group structure to analyze this
bifurcation equation in the simplest (nondegenerate) case and to compute the stabilities of solutions. In
particular, when the outer cylinder is counterrotated we can obtain transitions which seem to agree with
recent experiments of Andereck, Liu, and Swinney [1984]. It is also possible to obtain the "main sequence" in
this model. This sequence is normally observed in experiments when the outer cylinder is held fixed.

Introduction. The flow of a fluid between concentric rotating cylinders, or
Taylor-Couette flow, is known to exhibit a variety of types of behavior, the most
celebrated being Taylor vortices (Taylor [1923]). The problem has been studied by a
large number of authors: a recent survey is that of DiPrima and Swinney [1981]. The
experimental apparatus has circular symmetry, and the standard mathematical idealiza-
tion (periodic boundary conditions at the ends of the cylinder) introduces a further
symmetry. As a result the Navier-Stokes equations for this problem are covariant with
respect to the action of a symmetry group 0(2)SO(2). It has become clear that the
symmetries inherent in bifurcating systems have a strong influence on their behavior. In
this paper we study a series of bifurcations that occur in Taylor-Couette flow placing
emphasis on the role of symmetry. (Schecter [1976] and Chossat and Iooss [1984] have
also studied the problem from this viewpoint, and we discuss the relations between our
work and theirs below.)

DiPrima and Grannick [1971] have found that when the outer cylinder is rotated
in a direction opposite to that of the inner cylinder, the Navier-Stokes equations,
linearized about Couette flow, possess six eigenvalues on the imaginary axis. It follows
that aspects of the dynamics can be reduced (either by Lyapunov-Schrnidt or center
manifold reduction) to a vector field on R6; furthermore, this vector field commutes
with an action of 0(2)S0(2). Moreover, as we explain in 7, recent experimental
results due to Andereck, Liu, and Swinney [1984] seem to confirm the existence of the
six-dimensional kernel.

We point out in particular that the six-dimensional kernel is a codimension one
phenomenon, and hence it is not surprising that it should be possible to find it by
varying only one parameter. Indeed, this degeneracy should occur relatively often in
various circumstances, and so deserves detailed analysis.

We study the general class of bifurcation problems on R6 having this 0(2) SO(2)
symmetry. We derive the general form possible for the vector field, and by classifying
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250 MARTIN GOLUBITSKY AND IAN STEWART

the possible ways to break symmetry, obtain equations for the bifurcating branches
(subject to certain nondegeneracy conditions). We also obtain the (linearized orbital)
stabilities of these branches.

By introducing an additional parameter et we split the kernel R6 into two subspaces
R2 and R4 corresponding to a steady-state and a periodic bifurcation respectively.
Depending on the sign of a, one or other of these bifurcations occurs first.

By inspecting the symmetries of the physically observed solutions we may tenta-
tively identify them with various branches: in particular the flows known as Taylor
vortices, wavy vortices, twisted vortices, helices (or spirals) seem to correspond natu-
rally to solution branches; and there is also a branch described by DiPrima and
Grannick [1971] as the "nonaxisymmetric simple mode".

The experimental results of Andereck, Liu, and Swinney may be summarized as
follows. In the weakly counterrotating case (that is, when the speed of the outer
cylinder 2o is slightly less than the critical speed 2 where the six-dimensional kernel
appears) the following transition sequence is observed as 2i, the speed of the inner
cylinder, is increased.

Couette flow Taylor vortices wavy vortices

where the final state obtained when the wavy vortices lose stability seems not to be one
representable in the six-dimensional kernel. In the strongly counterrotating case (that
is, when f0 is slightly greater than fl) the observed transition sequence is:

Couette flow ---, spiral cells wavy spiral cells.

We shall show in [}7 that it is possible to make a nondegenerate choice of vector
fields on R6 having 0(2)S0(2) symmetry which produces the same transition se-
quences in the following sense. It is possible to determine constraints on the Taylor
expansion of this vector field, given only by inequalities on coefficients in this Taylor
expansion, so that the solutions corresponding to these states are (orbitally) asymptoti-
cally stable and lose stability in a way that should produce the desired transitions.
Moreover, when these inequalities are satisfied, no other solutions are asymptotically
stable.

We also show in [}7 that it is possible to choose these constraints differently, so
that the "main sequence" of transitions occurs, namely,

Couette flow Taylor vortices wavy vortices

modulated wavy vortices

This transition sequence is usually observed when the outer cylinder is held stationary
(20 =0). What we show is that it is possible for the "wavy vortex solutions" to lose
stability to a torus bifurcation, where two Floquet exponents cross the imaginary axis.
This tertiary bifurcation has never been demonstrated theoretically hitherto. At this
point, however, we cannot prove that the branch of "modulated wavy vortices" is
asymptotically stable, though we hope that the results of Scheurle and Marsden [1984]
will provide the techniques required to carry out this computation. We do show,
moreover, that no other solutions are asymptotically stable when these constraints hold.
In particular, stable spiral cells should not occur in this experimental situation.

The paper is organized as follows. In 1 we describe some of the flows observed in
the Taylor experiment and review the evidence for the existence of a six-dimensional
kernel. In [}2 we discuss the symmetries that act on the six-dimensional kernel, and in
3 we discuss the symmetries of the observed flows. In [}4 (and the Appendix) we
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 251

discuss the reduction procedure and derive the exact form of the reduced mapping (or
vector field) on the six-dimensional kernel prescribed by those symmetries. We classify
the (conjugacy classes) of isotropy subgroups (which describe the type of symmetry-
breaking that occurs at bifurcations). The heart of the paper is 5, where we analyze the
branching equations and the stability of branches. In 6 we use these to obtain a list of
the sixteen inequalities that must be imposed to ensure (what we mean by) nondegener-
acy. Finally, in 7, we compare the six-dimensional model with experimental observa-
tions in both the counterrotating case and the case when the outer cylinder is held
fixed.

1. The Taylor problem. By the term "Taylor problem" we mean the study of both
the possible states of fluid flow between two rotating concentric cylinders, and the
transitions between these states. The Taylor problem provides a beautiful example of a
bifurcation problem with symmetry. In this paper we discuss how these symmetries
affect the structure of the bifurcating solutions.

We denote the angular velocities of the inner and outer cylinders by fi and 0
respectively. To specify a direction, we assume that i >_-0. In the standard experiments
the outer cylinder is held fixed (f0 0) and the inner cylinder is speeded up in stages
from i =0, at each stage allowing the flow to settle into a stable pattern; see Taylor
[1923], Gollub and Swinney [1975]. Experiments have been performed in both the
corotating case (0>0), see Andereck, Dickman and Swinney [1983], and the counter-
rotating case (f0 <0), see Andereck, Liu, and Swinney [1984]. (These papers cite the
earlier experimental work.) The experiments begin by rotating the outer cylinder at
constant speed, and allowing the flow to stabilize; then the inner cylinder is speeded up
as before. The experiments reveal a large number of fluid states, only some of which are
understood on theoretical grounds. There can exist multiple steady states whose ex-
ploration requires different experimental procedures; see for example Coles [1965],
Benjamin [1978a, b], Benjamin and Mullin [1982]. In our discussion we shall assume a
fixed (but unspecified) value of 0, and treat fi (or the corresponding Reynolds
number) as a bifurcation parameter. Our main concern will be with the series of
bifurcations that occurs as i is increased steadily. We mention this because many
numerical computations fix the ratio f0/fi, and hence do not correspond directly to
the usual experimental procedure--a fact that, in the presence of multiple states, raises
some problems of interpretation.

In the standard experiments, with f0=0, the first transition is from Couette
(laminar) flow to (Taylor) oortices. Both flows are time-independent. This transition
was first described, in terms of a steady state bifurcation, by Davey [1962]. He showed
that as fi is increased, the Navier-Stokes equations linearized about Couette flow have
a double zero eigenvalue at the first bifurcation. At this eigenvalue Couette flow loses
stability, and a branch of vortex solutions bifurcates. Davey’s observations have been
reproduced by several authors in different contexts, cf. the survey by DiPrima and
Swinney [1981, 6.3]. Note that the appearance of a double zero eigenvalue might be
surprising were it not for the existence of symmetries (which can couple eigenvalues
together and force a degeneracy).

Again, in the standard experiments with 0 0, a second transition is observed, in
which vortices lose stability to a time-periodic state known as wavy vortices. Presumably
this transition takes place by way of a Hopf type bifurcation in which several eigenval-
ues (governing the stability of vortices) cross the imaginary axis as fi is increased.
However, this presumption has never been established directly. What has been shown
(in Davey, DiPrima, and Stuart [1968]) is that along the Couette branch of solutions
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252 MARTIN GOLUBITSKY AND IAN STEWART

several eigenvalues of the linearized Navier-Stokes equations cross the imaginary axis
as 2 is increased. In particular the next set of eigenvalues to cross the imaginary axis is
a complex conjugate pair of purely imaginary eigenvalues, each of multiplicity two.
Again, it would be surprising to see four eigenvalues crossing the imaginary axis
simultaneously were it not for the symmetry. We note in passing (and amplify these
remarks below) that the 0(2) symmetry which couples these four eigenvalues together
forces the occurrence of two branches of time-periodic solutions bifurcating from the
(unstable) main Couette branch: see Schecter [1976], and Golubitsky and Stewart
[1985]. However, neither of these solutions can correspond to wavy vortex states, since
their symmetries do not match those of wavy vortices. In fact, one of them has the
symmetries of spiral cells (helices).

There are three additional facts which suggest that there might be a relatit)ely
simple local explanation for many of the observed states in the Taylor problem, at least
in the counterrotating case 20 < 0. First, as observed in DiPrima and Grannick [1971],
and Krueger, Gross, and DiPrima [1966], there is a critical speed of counterrotation

f < 0 such that, as 2i is increased, Couette flow loses linearized stability by having six
eigenvalues cross the imaginary axis. These six eigenvalues are obtained by amalgamat-
ing the double zero eigenvalues and the complex conjugate pair of purely imaginary
eigenvalues of multiplicity two, described above. Further, when 20 is slightly less than
f, the first bifurcation from Couette flow occurs when four eigenvalues (a complex
conjugate pair each of multiplicity two) cross the imaginary axis; and there is a double
zero eigenvalue at a higher value of

Second, in experiments in which 20 is sufficiently negative, the primary bifurcation
is not to the time-independent Taylor vortices, but to time-dependent spiral cells, see
Andereck, Liu, and Swinney [1984].

Third, it is possible to produce a solution from the interaction of the four-
dimensional center manifold (associated with the purely imaginary eigenvalues) and the
two-dimensional center manifold (associated with the double zero eigenvalues) that has
the same symmetry as wavy vortices. This suggests that it might be possible to prove
the existence of a Hopf-type bifurcation from vortices to wavy vortices as a secondary
bifurcation. This was observed by DiPrima and Sijbrand [1982] and again by Chossat
and Iooss [1984].

Given these three facts, it would appear reasonable to study the Taylor problem in
terms of perturbations of the degenerate case f0 2, using either a center manifold or
a Lyapunov-Schmidt reduction from the Navier-Stokes equations. We call this degen-
eracy the six-dimensional kernel since the linearized equation has a kernel of dimension
six and the reduced problem may therefore be posed on R6. The hope raised by the
above facts is that one might be able to find a six-dimensional model which explains
the observed prechaotic states and transitions in the counterrotating Taylor problem.

Let us consider the reduction in more detail. Rigorously, one can use the center
manifold theorem to reduce the (infinite-dimensional) dynamics of the Navier-Stokes
equations, near f0 f and near Couette flow, to the study of some vector field g on a
six-dimensional center manifold. Alternatively, one can focus only on time-independent
and time-periodic solutions and use a reduction of the Lyapunov-Schmidt type to
show the existence of a smooth (i.e. C) mapping h: R6R6 whose zeros are in
one-to-one correspondence with the small-amplitude time-periodic (and time-indepen-
dent) solutions of the Navier-Stokes equations. In either case, to study the dynamics
+/-= g(x) on R6 or to solve h(x)=0 in R6 would be a highly nontrivial taskmwere it not
for the symmetries in the Taylor problem. Both reduction procedures can be performed
so as to respect these symmetries. Therefore, g and h will commute with an action of
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 253

the symmetry group O(2)xS as we explain below. This places considerable restric-
tions on the form that g and h may take. When, as here, we are studying only steady
and periodic states, it is sufficient to use the simpler Lyapunov-Schmidt reduction.
This is our approach. For a complete study of the dynamics, the same restrictions’ on
the form of g will be true provided a smooth center manifold exists. (It is plausible that
the symmetry might imply this, but we have not attempted to address this issue here.)

In this paper we give an explicit representation for all smooth mappings that
commute with this action of 0(2)S1. We use the symmetries to show how to solve the
equation h 0 (in the Lyapunov-Schmidt interpretation), and to determine (in most
instances) the signs of the eigenvalues of the 6 6 Jacobian matrix dh[h__ 0. In particu-
lar we compute these eigenvalues for the solutions corresponding to wavy vortices.

In this respect our results resemble those of a recent paper of Chossat and Iooss
[1984]. However, instead of working on the six-dimensional kernel, Chossat and Iooss
track the bifurcations step by step using the symmetry in the primary bifurcation to
analyze the possible types of symmetry-breaking at secondary bifurcations, in terms of
the linearized eigenfunctions. The types of solution that they find can all be expressed
as combinations of the six linearized eigenfunctions that make up the six-dimensional
kernel; but no reduction to R6 is used explicitly. Thus, although the various pieces of
the bifurcation diagram are studied, their overall arrangement (and consistency) is not.

In our approach group theory is used to provide a coherent framework that
organizes the analysis and in particular the computation of stabilities, leading to more
detailed results. In particular we confirm, in our setting, a conjecture made by Chossat
and Iooss [1984] about tertiary bifurcation to modulated wavy vortices. We show that
(with suitable parameter values) the branch of wavy vortices loses stability by a torus
bifurcation. In experiments this transition is observed, the new state being called
modulated wavy vortices. See Rand [1982], Gorman, Swinney, and Rand [1981], Shaw et
al. [1982].

The analysis of the simplest (nondegenerate) O(2)Sl-symmetric bifurcation
problems on the six-dimensional kernel leads to a picture that includes branches
corresponding to a variety of the observed flows: Couette, vortices, wavy vortices,
twisted vortices, spiral cells, modulated wavy vortices, wavy spirals and an unstable
flow found numerically by DiPrima and Grannick [1971] which they call the "non-
axisymmetric simple mode." By "correspond" we mean that the, solutions we find on
the six-dimensional kernel appear to have the same symmetries as the experimentally
determined states. As we indicated in the introduction, it is further possible to choose
parameters in the model to mimic the observed transition sequences when the outer
cylinder is held fixed, and also in the counterrotating case.

DiPrima, Eagles, and Sijbrand [1984] are currently making numerical calculations
of certain of the Taylor coefficients of the vector field g obtained by a center manifold
reduction. These or similar numerical results should make it possible to determine to
what extent the six-dimensional model reflects the expected transitions in the Taylor
problem, at least in the counterrotating case.

2. Symmetries on the six-dimensional kernel. Symmetries are introduced in the
Taylor problem in three distinct ways:

(1) by the experimental apparatus,
(2) by the mathematical idealization,
(3) by the mathematical analysis.

Since each of these ways introduces a circle group of symmetries the result may seem
confusing at first. However, these symmetries do affect the mathematically determined
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254 MARTIN GOLUBITSKY AND IAN STEWART

solutions and, moreover, seem to be present in the experimentally determined states.
The symmetries arising through the apparatus would appear to be the most

natural. All formulations of the Taylor problem are invariant under rotation in the
azimuthal plane, a plane perpendicular to the cylindrical axis. Rotation through O in
this plane moves one fluid state to another. We denote these symmetries by SO(2).

Next we discuss the symmetries introduced by the mathematical idealization. In
the experiments, when vortex flow is observed these vortices tend to have square
cross-sections; that is, the height of each vortex is approximately equal to the distance
between the cylinders. As a result, in an apparatus whose cylinder length is long
compared with the distance between the cylinders, many vortices form at the initial
bifurcation. Moreover, the vortex flow appears to be invariant under translation along
the cylindrical axis by two band-widths, at least away from the ends of the cylinder. (In
the cross-sectional regions vortex flow alternates between clockwise and counterclock-
wise.)

Thus in the mathematical idealization we assume that the cylinders have infinite
length and look only for periodic solutions of period equal to two band-widths. As a
result, the Navier-Stokes equations are invariant under both translations along the
cylindrical axis and reflection of the cylinder through the azimuthal plane. Periodicity
implies that translation by two band-widths acts as the identity. Thus the effective
action of this group is by the (compact) group 0(2).

Finally, we consider a circle group of symmetries which is introduced into this
problem by the technique we use to analyze the bifurcation structure. We use a
Lyapunov-Schmidt reduction to determine time-periodic solutions of the Navier-Stokes
equations which lie near Couette flow and the parameter values yielding the six-dimen-
sional kernel. The circle group S1, acting by change of phase on periodic functions,
introduces symmetries into this problem. The addition of these S symmetries by the
Lyapunov-Schmidt procedure, to the symmetries mentioned above, is described in
Sattinger [1983] and Golubitsky and Stewart [1985].

We summarize our discussion here as follows. The full group of symmetries of the
Taylor problem on the six-dimensional kernel is:

(2.1) 0(2) S0(2) S

where 0(2) acts by translation and flipping along the cylindrical axis, SO(2) acts by
rotation of the azimuthal plane and S acts by change of phase of periodic solutions.
For simplicity of notation we assume that the period of the cylindrical translations is
2 rr and that the period of patterns around the cylinder (in the azimuthal plane) is also
2rr. In particular, rotation of the cylinder by half a period is rr SO(2). Moreover, we
assume that solutions are 2 r-periodic in time.

These assumptions do not affect the group-theoretic formulation of the problem,
or its analysis; but they must be correctly interpreted in connection with the observed
flows. Since the situation is potentially confusing, a few clarifying remarks may be in
order. There is no problem in arranging period 2 rr for translations: we merely scale the
distance along the axis. For periodic solutions in the azimuthal direction a little more
caution is required. For example, it is commonly observed in experiments that wavy
vortex solutions may appear with wave numbers 3 or 4 (say); that is, with 3 or 4
complete periods relative to a single turn of the cylinder. Provided only one such mode
is present, we may scale the azimuthal angle to "factor out" this additional periodicity.
The angle 2r then represents one period (2rr/3 or 2r/4 on the physical cylinder). In
group-theoretic terms, an action of SO(2) for which 0 SO(2) produces a rotation by
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 255

kO, k an integer, can be viewed as the standard (k= 1) action of SO(2)/Zk and this
group may be identified with S0(2).

On the six-dimensional kernel, only one such periodic mode occurs, and this
procedure may be followed. If two modes with different wave numbers occur, it would
be necessary to make S0(2) act by kO and 10 (where k, are the respective wavenum-
bers) on the corresponding spaces of eigenfunctions and to carry out the analysis for
the appropriate action of 0(2) S0(2) Sx. See Chossat [1985].

3. Observed solutions and their symmetries. In the experiments a number of pre-
chaotic states are observed. In this section we discuss the symmetries of each of the
following states: Couette flow, Taylor vortices, wavy vortices, spiral cells, and twisted
vortices.

Both the Couette and vortex flows are time-independent. As noted above, vortex
flow produces bands along which the flow is in the azimuthal plane. See Fig. 3.1(a).

When fl0__<0, vortex flow loses stability, and a time periodic state called wavy
vortices appears. See Fig. 3.1(b). This periodic flow has the special form of rotating
waves. More precisely, the solution u(t) is a rotating wave if u(t + 0) RoU(t) where R 0

denotes rotation by angle 0 in the azimuthal plane. We shall see in {}4 that all periodic
solutions obtained from the six-dimensional kernel must be rotating waves.

When f0 fl, wavy vortex solutions lose stability, and a new quasi-periodic solu-
tion with two independent frequencies appears. This new state is called modulated wavy
vortices. It is interesting to observe, at this point, how the modulated wavy vortex
solution might be detected by our proposed method using a Lyapunov-Schmidt reduc-
tion. The idea is to compute the Floquet exponents along the wavy vortex branch of
solutions and show that certain of these exponents cross the imaginary axis. Then apply
the Sacker-Neimark torus bifurcation theorem to conclude the existence of quasiperi-
odic solutions. We show in 7 that this scenario is possible. A similar remark holds for
identifying wavy spiral states when fl0 < 0.

We note that the actual transition to chaos cannot be explained by our analysis.
Nevertheless, chaotic behavior may be present in our model and this point deserves
further investigation.

We also note here that in the corotating and counterrotating Taylor problems
solutions with different planforms are observed. For example, in the corotating case
Andereck, Dickman and Swinney [1983] have observed twisted vortices. See Fig. 3.1 (c).
In the strongly counterrotating case, Couette flow loses stability to a helicoidal pattern
called spiral cells, which are time-periodic rotating waves. See Fig. 3.1(d).

We can distinguish each of the states described above by their isotropy subgroups;
that is, by the subgroup of (2.1) which leaves the given state invariant. In Table 3.1 we
list the isotropy subgroups for each fluid state described above.

We now discuss the entries in Table 3.1. The steady-state solutions are invariant
under change of phase ($1); the periodic solutions are all rotating waves .and are
invariant under A since a change of phase may be compensated for by rotating the
cylinder. Couette flow is invariant under all symmetries. Taylor vortices are invariant
under all rotations (SO(2)) and the flip along the cylindrical axis r. We denote by
Z2(r) the two-element group generated by r.

Isotropy subgroups for the periodic solutions are obtained as follows. The helical
state, spiral cells, is invariant under SO(2) since a translation along the cylinder axis
may be compensated for by a rotation of the cylinder. Next observe that wavy vortices
are invariant under the group element obtained by composing the flip (r) with rotation
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256 MARTIN GOLUBITSKY AND IAN STEWART

(a) Taylor vortices (Ro= 1164, Ri= 1161). (b) Modulated wavy vortices Ro= 100, Ri= 350).
In a still photograph wavy vortices and modulated
wavy vortices have a similar appearance.

(c) Twisted vortices R 721, Ri= 1,040). (d) Spiral cells R 295, R 237).

FIG. 3.1. Observed flows in the Taylor experiment. Reynolds numbers for the inner (Ri) and outer (Ro)
.ylinders. Photographs kindly supplied by Harry Swinney and Randy Tagg. Similar photographs will appear in
Andereck, Liu and Swinney [1985].
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 257

TABLE 3.1
Isotropy subgroups of observedfluid states.

State Isotropy subgroup

Couette flow
Taylor vortices
Wavy vortices
Twisted vortices

Spiral cells

0(2)S0(2)S
Z2 Ic X SO(2) X S
Z_(x,r)A
Z2(/)A
so(2)xzx

a {(O, -O)SO(2)XS
0(2) is the flip z z along the cylindrical axis
SO(2) is rotation of the azimuthal plane by one-half period

SO(2) (+, k) 0(2) SO(2)

of the cylinder by half a period r SO(2). Finally, twisted vortices are invariant under
the flip .

It is worth noting that the first three bifurcations in the standard Taylor problem
(f0 0) break symmetry in a simple way. Couette flow to Taylor vortices breaks the
translational symmetries; Taylor vortices to waw vortices breaks the rotational symme-
tries (SO(2)); and wavy vortices to modulated wavy vortices breaks the rotating wave
symmetries (A).

4. Group theory and the six-dimensional kernel. In this section, we answer four
questions:

(1) What is the exact form of the six-dimensional kernel?
(2) What is the action of the symmetries of the Taylor problem on this kernel?
(3) What is the form of the reduced mapping h, obtained by the Lyapunov-Schmidt

procedure?
(4) What are the possible isotropy subgroups of points in the six-dimensional

kernel?
We answer the first question by referring to DiPrima and Sijbrand [1982]. Let

rl Ri/Ro be the ratio of the radii of the inner and outer cylinders. We quote:

Thus, for example, for /=0.95 and f0/f -0.73976, Couette flow is
simultaneously unstable to an axisymmetric disturbance with wave numbers
(X,m)=(3.482,0) and a nonaxisymmetric disturbance with wavenumbers
(X,m)=(3.482,1). We also note that...there are 6 critical modes with axial
(Z) and azimuthal (19) dependence as follows:

(4.1) cos)kZ, sin X Z, e +- io cos()kZ), e ---iO sin()Z).

The action of the translations in 0(2) on the eigenfunctions in (4.1) is generated by
translations of the axial (angle) Z and the flip (x) which acts by Z- -Z. Rotations in
the azimuthal plane act by translations in . (We have omitted the radial dependence
of the eigenfunctions here as the group 0(2)XS0(2) acts trivially in the radial direc-
tion.) Observe that the resulting action of 0(2)xS0(2) on the six-dimensional space
generated by the eigenfunctions in (4.1) leads to the following equivalent action. We
identify the six-dimensional kernel with

(4.2) V=a2 (R2(R) C)

and let elements of 0(2) act on R2 in the standard way and elements of SO(2) act by
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258 MARTIN GOLUBITSKY AND IAN STEWART

multiplication on C. That is

(0, )(v, w(R) z)= (Roy, ( Row)(R) (ei+z))
where Ro is the usual rotation of R2 through the angle 0. Similarly, the flip x acts by
(Kv, Kw (R) z), where K is the matrix (l). The action of the phase shifts S in V turns
out to be identical with the action of SO(2) on V. This fact can be verified by direct
computation. First observe that the R2 summand in Vis spanned by {cos(XZ), sin(XZ)},
a steady-state kernel. As such, S acts trivially on R2. Next, observe that S commutes
with 0(2)SO(2) and hence the actions of S and 0(2)S0(2) on R2(R) C commute.
Since the only matrices acting on R-(R)C commuting with 0(2)xS0(2) are scalar
multiples of matrices in SO(2) (see Golubitsky and Stewart [1985, Lemma 3.2]), it
follows that the elements of S act in a fashion identical to elements of SO(2). Without
loss of generality, we may identify the actions of SO(2) and S1.

One consequence of this identification is that the subgroup A= {(q,-q)
SO(2) x S } is in the isotropy subgroup of every element in V. Thus, we have proved"

LEMMA 4.1. Every periodic solution found in the six-dimensional kernel is a rotating
wave.

A second consequence of the identification of the actions of SO(2) and S is the
simple form that the reduction bifurcation equation h" V V, obtained via a
Lyapunov-Schmidt reduction, must take. (The function h depends on a number of
extra parameters, 20 for example. We suppress this dependence here.) Let the purely
imaginary eigenvalues of the linearized Navier-Stokes equations be + 0i. For simplic-
ity, use a scaling argument to assume = 1. Then the idea behind the
Lyapunov-Schmidt reduction is to look for small amplitude periodic solutions of
period near 2 r. One does this by rescaling time in the original equation by a perturbed
period parameter and looking for precisely 2r-periodic solutions to the scaled
equations. What results, after appropriate applications of the implicit function theorem,
is a reduction equation

where h: VR V is smooth and commutes with 0(2)S0(2)S. We claim that we
may assume that the dependence of h on is particularly simple. In fact,

(4.3) h(v,)=g(v)-(1

where J is the matrix form of the action by r/2 S on V.
To verify this claim, suppose for the moment that there exists a smooth center

manifold. Let g(v) be the reduction vector field on that center manifold. It was proved
in Golubitsky and Stewart [1985] that if the Lyapunov-Schmidt reduction is applied to
g, introducing r, then the resulting function h has exactly the form (4.3). This fact relies
on having the spatial symmetries SO(2) identified with the temporal symmetries Sa.

If we perform the Lyapunov-Schmidt reduction directly from the Navier-Stokes
equations, then the reduced function has the same form as (4.3), at least to first order in
r. In any case, the form (4.3) is used later only to solve certain equations for
explicitly. If higher order terms are present, then these equations may be solved
implicitly, which is sufficient for our purposes. Therefore we lose nothing by working
with h in the form (4.3). Moreover, we note that g commutes with the action of
0(2)S0(2)S on V and may be identified with the mapping on V obtained by a
center manifold reduction, at least up to any finite order in its Taylor expansion.
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 259

For the remainder of this section we describe precisely the form that mappings g
which commute with 0(2)S0(2)S must have. Note that a third consequence of
identifying the actions of SO(2) and S is that at this stage we may ignore one of them.
Henceforth, we assume that

(4.4) r=o(2)xs’
is our group of symmetries and turn attention to the action of F on V.

At this point we choose coordinates on V. First write V= V V2 where V1 R2 C
and V2= 112 (R) C---M(2, R), the space of 2. 2 matrices with real entries. Thus elements
of V have the form

(4.5) (z,A)
where

z=x+iyC and A=( a b)M(2 R)
c d

In these coordinates the group action of F O(2)S on (z,A) is defined as follows:

(4.6) (0, q)(z,A)= (eiz,RoAR)
where

Ro=(CosO sin0)sin 0 cos 0

is the rotation matrix. See Golubitsky and Stewart [1985, 3] for more detail.
We now answer the third question by describing in detail the invariant functions

and the equivariant mappings corresponding to this group action. (Recall that :
V V is equivariant if d(v)=,ld(v) for all 3,F, v V.) Proofs are found in the
Appendix.

PROPOSITION 4.2. Let q: VR be a smooth function defined in a neighborhood of the
origin which is invariant with respect to the action of F in (4.6). Then there exists a smooth
function h: R R defined near 0 such that

where

(v)=h(fl,N,82,7,o)

fl= z= x2 +y 2,
N=a2+b2+c2+d2,
=detA,, Re(z2),
o= ii Im( z2)

and

=a2 + b2-c2-d 2 + 2i(ac+ bd).

THEOREM 4.3. Let b: V- V be a smooth F-equivariant mapping defined near O.
Then there exist F-invariant functions

p,q,r,s,p,p2, Q1, Q2, Q3, Q4,R1,R2,R3,R4,M3,M4
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260 MARTIN GOLUBITSKY AND IAN STEWART

such that

(4.8) ( 4

b(z,A) pz + qiz +r+si, E (SJK+ TL)
j=l

where

and

KI=( ac
(-cEl= a

d d c -c -d

b a a b L4__ ( -db

(4.10)

S1--p1,
S2=p -,
Tl=Rl+Ollm(z2),
T=R28+OIm(z2),
S 0 Re(-) +R38 Im() +M36 Im(2),
$4= Q4Re(2) + R4t Im() -[- M4i Im(2 ),
T Q3 Im(2) +R38 Re() +M31 Re(22),
T4= Q4 Im(:z) +R4 Re() -1- M41 Re(2).

a),

We shall exploit the form of q, in (4.8) to solve explicitly the reduced bifurcation
equation g 0. In order to understand what types of solutions one may find in g 0 we
answer the fourth question of this section. By determining, up to conjugacy, the set of
all isotropy subgroups of elements in V, we determine the symmetries that possible
solutions to the Navier-Stokes equations found by reducing to V may have.

The lattice (of conjugacy classes) of isotropy subgroups for I’ acting on V is given
in Table 4.1. Containment of one conjugacy class in another is indicated by arrows. In
Table 4.2 we list these isotropy subgroups along with the states in the Taylor problem
which have those symmetries. We use the notation Z2 to indicate a two-element group
and Z2(a) to indicate the two-element group generated by F.

We emphasize that the containments in Table 4.1 are of conjugacy classes. For
example, Z(xr,r) is not contained in Z2(/c)xS1. However, Z(xr,r) is conjugate to
Z2 ( x, r ) which is contained in Z(x) x St.

TABLE 4.1
Lattice of conjugacy classes of isotropy subgroups of F acting on V.

/, o(2)xs

z_ () s’ " so()

( z(,)z ) z(,) .,,

Note: Z is generated by , (,), (,).
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 261

TABLE 4.2
The symmetries associated with observedfluid states.

Isotropy subgroup Solution type

O(2)S
Z2()xS
so(2)

Z()

Couette flow
Taylor vortices

spiral cells
wavy vortices
twisted vortices

We derive the lattice pictured in Table 4.1 by first considering orbit representa-
tives. Begin by considering the action of 0(2) S on R2 (R) C M(2, R). Let A be a 2 2
matrix. As shown in Golubitsky and Stewart [1985, {}7], we can choose an element of
O(2)xS so that A is conjugated to the diagonal matrix () where a>__ d>__0. It is then
easy to show that there are four types of orbits as shown in Table 4.3.

TABLE 4.3

Orbit representatives of 0(2)S acting on M(2, R)

Orbit representative Isotropy subgroup

0

0
,a>0

(a O)’a>O0a

0
,a>d>0

o(2)xs

zi

SO(2)

Z2 (gr, qT"

Having put the matrices in M(2,R) into normal form, we now use the isotropy
subgroups of these matrices to conjugate the elements z C-= R2. In this way we obtain
representatives for all the orbits of 0(2)XS acting on R2 (R2(R) C). These results are
summarized in Table 4.4.

TABLE 4.4

Orbit representatives of 0(2)S acting on R (9 (R (R) C).
Orbit representative (z, A) Isotropy subgroup

0(2)S
Z2(K)S

z

SO(2)

z2(,)
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262 MARTIN GOLUBITSKY AND IAN STEWART

TABLE 4.5

Fixed-point subspaces of 0(2)S acting on I/.

0(2)S

Isotropy subgroup Fixed-point subspace Dimension

Zz()xS

z
so(2)

Z:(r,)

Z(,)

(x,0)

(0,(;

In the last table of this section we present the fixed-point subspaces of the various
isotropy subgroups. More precisely, let c F be a subgroup. Define

(4.11) Vy= (ve Vlov=v for allo2:}.

Observe that if " V V commutes with F, then maps V to itself (see Golubitsky
and Stewart [1985, (1.6)]).

5. Branching and stability. Let h (z,A, X, ) be the mapping on the six-dimensional
kernel obtained via the Lyapunov-Schmidt reduction. Note that h depends explicitly
on the bifurcation parameter and the perturbed period z. In addition, we know that h
commutes with the symmetries in the Taylor problem. We shall use the consequences of
this fact to explain how to compute both the solutions to h- 0 and the eigenvalues of
the 6 6 Jacobian matrix dh along branches of solutions to h- 0. One consequence of
the 0(2)S0(2)S symmetries is that the eigenvalues of dh determine the orbital
asymptotic stability of solutions.

Let us be more precise. Recall the form of h in (4.3) with its simple --dependence,
namely

h(z,A ,z)=g(z ,X)-(l+’)(O,(-bd a))c
where A =(,a.). In deriving this form we note that if the Navier-Stokes equations
admit a smooth center manifold then h will have exactly the form (5.1), where g is the
reduced vector field on that center manifold. We proved in Golubitsky and Stewart
[1985, Thm. 8.2] that the eigenvalues of dh determine the orbital asymptotic stability of
solutions to the vector field g on the center manifold. Moreover the center manifold
reduction implies that the stabilities of solutions to the vector field g are the same as the
stabilities of the corresponding solutions to the Navier-Stokes equations.

If there should not exist a smooth center manifold (which we doubt) then we are
computing the correct stabilities for g, accurate to any finite order, by using the
eigenvalues of (dh) h--0-
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SYMMETRY AND .STABILITY IN TAYLOR-COUETTE FLOW 263

We now describe how to compute the eigenvalues of dh. Recall that (4.8) restricts
the form of g in (5.1) to:

( 4

(5.2) g(z,A,,)= pz + qiSz +r+ sii2, E SJKj+ TJLj
j=l

where p,q,r,s and the coefficients p1,...,M4 appearing in (4.11) are invariant func-
tions, hence functions of the five variables fl, N,8 2, ,, o defined in (4.7) and . More-
over, since h is obtained via the Lyapunov-Schmidt reduction, the linear terms must
vanish. Hence

(5.3) p(0)=0, pI(0)=0, e2(0)=l.

Equivariance shows that to solve the equations h 0 we need only evaluate h on
typical orbit representatives. The resulting equations are listed in Table 5.1. See Table
4.4 for the list of orbit representatives and their isotropy subgroups.

Remarks. (i) The equations involving r serve only to determine the perturbed
period of the associated periodic solution. Note that (5.1) allows us to eliminate r by
solving these equations explicitly (or implicitly if there does not exist a smooth center
manifold, see 4 above).

(ii) Observe that r is indeterminate on the Z2(x)S branch, which is to be
expected since the bifurcation is to a "steady state."

(iii) Observe that the theoretical basis of our explicit calculations is given by (4.10):
fixed-point subspaces V are mapped to themselves by equivariant mappings. There-
fore we may restrict h to V and seek solutions to h V= O, considering each isotropy
subgroup Y in turn.

Table 5.1 also lists the coefficients that determine the signs of the (real parts of
the) eigenvalues of dh. We consider the branching equations briefly first, and then
describe in more detail the eigenvalue calculations.

By writing (4.9) in coordinates we obtain

a b))=(X,y,(5.4) h(x’Y’(c d

where

(a) X=px-qSy+ rxRe(f)+rylm(f)+sSyRe(f)-sSxlm(f ),
(b) Y=py + qSx ry Re(’) rx Im(’) +sSx Re(’) +sSy Im(’),
(C) A--(sX+S3)a+(-S2-S4)bnt-(-Tl+ T3)c+(T2-T4)d,
(d) B--(S2+S4)aq-(sX-t-S3)b+(-T2-t-T4)c+(-TI+ T3)d,
(e) C--(TI-t-T3)a+(-T2-T4)b+(S1-S3)c-t-(-S2nt-S4)d,
(f) D=(T2+T4)a+(TX+T3)b-t-(S2-S4)c+(S1-S3)d.

The branching equations always take the form X= Y A B C D 0, evaluated
on the appropriate orbit representative. The entries in the table follow readily. How-
ever, a few comments should be made regarding the last four entries of "unknown"
type.
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264 MARTIN GOLUBITSKY AND IAN STEWART

TABLE 5.1

Branching equations and eigenvalues for solutions with given symmetry.

Solution type"
Isotropy;
orbit

Couette flow
0(2)S
(0,0)

Taylor vortices
Z2(1) XS
(x,0)

unknown

spiral cells

S0(2)

Branching equations
(to be evaluated at
orbit representative
shown)

None

p=0

at’ (x-, 0, 0, 0, 0, X) Ill

p1 0
p2=l+z

at: (0, a2, 0, 0, 0, k

p1 + a2R =0

p2 a2R 1 + r

at: (0, 2a2, a4,0,O,k)

Signs of
eigenvalues

Pa _+ i(p2 1 -r)

0

(p1 + x2Q3)+i(Pp#2_ l_r + x2Q4)
(p2_ x2Q3)+_i(p2_ l-r- x2Q4)

0
p+ ra

p-- ra

PIN + a2p
R + a2R4

o
P _+_ iqa

2P + R + a2(p2 + 2R2N)+a4R22
(R2+2a2Ra)+i(R +2a2R4)

Multiplicity

2,2

1
1

1,1
1,1

1
1

1

1,1

1

1,1

wavy vortices
Z2(r,r)

twisted vortices
Z2()

((ax 0

p-a2r=O
pa _y2Q3 =0
p2 _y2Q4._ 1 + "

at: (y2,a2,0,- a2y2,0,k)

R2a2 + 2Q3y2 + ay2Q
+a4R4-a2y2M4

Ay
det =p/ pX (PN r)(PA Q3)+

trace=py +pa +

unknown
Z2(r,r)

o))
p+a2r=O
p1 + x2Q3__O
p2 + x2Q4 1 + r

0

R2a2-2Q3x

ax2Qt + a4R4+ a2x2M4

at: x a 2, O, a2x 2, O, ,

R2+(a2+d2)R4=O
plus others

at: (0, a + d a2d O, O, ))

X Xa ][2]A A,
det =pt P-(pN_+ r)(P Q3)+

trace=p/x +P}a +
not computed

1,1

1,1
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 265

TABLE 5.1 (continued)

unknown
1

Oa))
unknown
1

(x+iy,( a
0

unknown
1

q=0
plus others

at: (x2,2a2,a4,0,O,h)

r=0
plus others

at: (x +y2,a2,0,(x2-y2)a2,0,)
X=Y=A=B=C=D=O

at: x +y2, a + d, a2d
x -yZ)(a2 d),2xyad(a d2), k)

not computed

not computed

not computed

Notes: [1] The equations must be evaluated at (fl, N,82,’,o,)) where these in turn are evaluated on an
orbit representative to yield the form stated.

[2] The remaining eigenvalues are those of the specified 2 2 matrix. Its determinant and trace are
shown to lowest order (omitting positive factors) to determine their signs.

When the isotropy group is Z2(r, r) we take two of the equations, namely A --0
D, which reduce to:

(aid S3)a+(T2- T4)d= 0,

(T2+ T4)a+(S1-S3)d=O.
Now observe that $1+ S and T2+ T4 have a factor d. Divide this out and subtract.
The result has a factor (a-- d2), and the entry in the table follows. We do not require
the remaining equations, because an appeal to nondegeneracy (6) now rules out this
case.

For the next two cases, the equations X= Y= 0 lead, among other things, to the
listed equation, which is also ruled out. by nondegeneracy. The final case is extremely
complicated and it remains possible that such a branch might occur: see 7 for further
discussion.

The computation of the eigenvalues, particularly those along the Z2(x) and
Z2(xr,) branches, is the most difficult part of this section. This computation is
facilitated by the use of several results in Golubitsky and Stewart [1985, 8b]. The first
is that along a solution branch (v0, 0, %) with isotropy subgroup Z, the derivative

(dh)v0,x0, commutes with Z. This implies (Lemma 8.4 of that paper) that (dh)vo,X0,
leaves invariant the subspaces W of V formed by adding together all subspaces of V on
which Z acts by a fixed irreducible representation. We use the Wj. to put dh into block
diagonal form.

The second fact is that (dh)o,x, vanishes on all vectors tangent to the orbit of v
under the action of 0(2) S1. These null-vectors are given by:

(5.6)
(a)

(b)

-1
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266 MARTIN GOLUBITSKY AND IAN STEWART

We now outline the explicit computation of the eigenvalues listed in Table 5.1.
(a) Z2 S (Taylor vortices). Decompose V= R2 (9 (R- (R) C) into irreducibles for

Z S1. We get V= Wo (9 W (9 W (9 W where

a b((0, (0 0))),
WI=((iyO)} W3=((0,(0 0)))c d

The actions are given by

-1 1
1 R

which are distinct irreducible actions. Therefore, dh leaves each invariant. Let
(j= dhlWj., so that dh has the block form:

y ab cd

0 0 0
(I)

0 (I)2 0

(I)

We evaluate the (I)j at the orbit representative (x, 0), with the following results.
(I)o= Xx=p +PxX=pxx since p=0 on this branch by Table 5.1. Now x > 0 so we

can divide it out.

(l Yy=p +pyy=O,

[aa hb]=[ sl+s3(= Ba Bb S- + S4 -S2-$4] [ pI+x2Q
SI + S p- l -,r + x2Q4

-(P-l-’+x2Q4)

Since a matrix ( -) has eigenvalues a + ifl, the entry in the table follows. Similarly

De Da $2-S4 S1- S =[ pI-x2Q3
p2 -1- ,r x2Q4

( p2-1- "r- x2Q4 )
x2Q

The entries for vortices in Table 5.1 follow. Note that (I)2 and (1) have to be scalar
multiples ( -,) of rotations since dh commutes with $1; direct calculation confirms
this.

(b) Z (unknown). We use the same decomposition V= Wo (9 W1 (9 W2 (9 W3 as in
(a). The actions are:

Wo Wa W2 W

x 1 -1 1 -1
(r, rr) -1 -1 1 1
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 267

So the irreducible components on these spaces are distinct. Therefore dh leaves each
invariant: set j= dhlW. We have

d#o =p + ra 2, b =p ra 2.

Now dh has one eigenvalue 0 on each of W2 and W3, so the remaining eigenvalues are
Tr 2, Tr3. Use (5.4) here. These are computed as follows.

Tr*2=Aa+Ba=(SI + S)+(Sa + S3a )a+(Sl + $3)+(Sa2+ S)a
since b c d 0 on the orbit. The branching equations show that S + S 0, so the
sign is given by S + S +S+ S. Now on the orbit we have z 0, 8 0, " a 2, 8 0,
8b=0. So by (4.11) we compute this as pl+p. But Nb=O on the orbit, so this
becomes P. 2a. Dividing by 2a > 0 gives the table entry. (From now on, we omit such
details from the calculation.)

Similarly,

Trd3=Cc+Dd=Sl-S2+(Tcl+ Zc3)a+(Sx-S3)W(Zf + Tff )a.
But S -[- S --0 on this branch, so this is

4SI + a( TI. + Tc3 + T+ T) a:ZRg- + a4R4.

(c) SO(2) (spiral cells). Let

a b }}
These are irreducible under S6(2); and (0,-0) S6(2) acts on W0 as e i, on W as
the identity, and on W2 as e2 (see Golubitsky and Stewart [1985, (10.5)]). Hence the
Wj. are invariant under dh. Let j= dhlWJ. as usual. We compute

which has the form (-) required to commute with SO(2). Now (I) has one zero
eigenvalue on W, so the other is

TrdPl =Aa +Ad+ Bb- B

by Golubitsky and Stewart [1985, (10.11)]. We compute this on the orbit (0, (g 0a)). The
result is

TRY1= 2a(Sa + Sa + Ta- Ta4+ S + Sd4+ Td2- Tff).

In deriving this, note that S + S + T3_ T4__ 0 by the branching equations. Also,
the b- and c-derivatives of the invariants are equal, so the b- and c-derivative terms
cancel. The a- and d-derivatives of/3, N, , ,, 0 are equal, whereas a 2a -’d. Hence
the only terms that remain, on dividing out positive factors, are

2pIN+ R2+ a(P2 + 2RN)+ a4R22.
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268 MARTIN GOLUBITSKY AND IAN STEWART

The matrix of (I)2 can be computed as

Aa-Ad Ab+Ac]Ba-Ba Bb+B

and must be of the form (-) by Golubitsky and Stewart [1985, 10]. Much as above,
we find that

Aa-Aa= 2a2(R2 + 2a-R4),
Ab+Ac= -2a2(Rl+2a2R4),

as required for the entry in the table.
(d) Zz(xr, r) (waoy oortices). We decompose V= Wo W1 where

W0 {y, a, b) + 1 eigenspace,

W (x, c, d) 1 eigenspace,

and take a basis in the order

y,a,b;x,c,d.

Let 9 dh[W. The null-vectors for the two zero eigenvalues of dh may be found from
(5.4) and are

0 0

0 and _0y
0 a
0 0

with respect to this basis, when evaluated on the orbit. So column b of dh is zero and
columns x, e are linearly dependent. Direct calculation yields Cx Dx=0, whence by
linear dependence C,. Dc= 0. So dh is of the form

y a b x c d
y 0 0 0 0
a 0 0 0 0
b 0 0 0 0

x 0 0 0
c 0 0 0
d 0 0 0

0 0
0 0

The eigenvalues of 2 are therefore

Xx=2ra 2,

Dd= aZR2 + 2yZQ + ayZQ+ a4R4 aZyZM4,

and those of I) are given by
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 269

Now

Yy=p +pyy ra 2 ryya - =pyy rya2y
Ya=pay-(aZra+2ar)y,
Ay=(Sy+S3y)a,
Aa=(SI+s3)o since $1 + $3 =0.

To evaluate the y- and a-derivatives, note that on the orbit,

Ny=O, fly=2y, (82)y=0, yy=-2ya2, oy=O,
Na=2a, fl=0, (2)a--0 "ya’---2ay 2, Oa=O.

The y-derivatives introduce a factor y, the a-derivatives a factor a. So the matrix is
of the form

[ 1e11Y
2

el2aY

e21ay e22a
2

for certain functions eij. We therefore evaluate the eij to lowest order. The result is

ellY

e21aY e2.a - (Sly+S3y)a (Sla+S3a)a

-[ 2pCy2 2(PN--r)ay

2(P-Q’)ay 2Pa2

The determinant and trace of therefore have the signs indicated in the table.
(e) Z2(x) (twisted vortices). This is similar to (d). The decomposition into invariant

subspaces is now V= W0 Wx where

W0 (x, a, b) + 1 eigenspace for x,

W (y, c, d ) 1 eigenspace for x.

We take a basis for V in the order

x,a,b;y,c,d.

Then dh has block form, and we let dhlW .
There are two zero eigenvalues of dh given by (5.4). In the basis above the

associated eigenvectors are

x 0 -y

ab ba c

--* 0
and x

d

i dc a
b

D
ow

nl
oa

de
d 

11
/1

5/
12

 to
 1

28
.1

46
.7

1.
16

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



270 MARTIN GOLUBITSKY AND IAN STEWART

Evaluation on the orbit representative (x, (g )) yields the eigenvectors

0 0

0 and 0
x

0 a
0 0

Therefore column b of dh is zero and columns y and c are linearly dependent. Putting
the zeros in column b, we get

x

a

dq= b

Y
c

d

x a b y c d

* * 0 0 0 0
* * 0 0 0 0
* * 0 0 0 0

0 0 0
0 0 0
0 0 0

Direct calculation, evaluating at y b c d 0, yields Cy 0, Dy 0, whence by linear
dependence of columns y and c we also have Cc= Dc= 0. So

(I)1"-- 0 0 Cd
0 0 Dd

This is triangular, so its eigenvalues are

O,
Yy=p- a2r 2ra 2,

Dd= a2R2- 2x2Q ax2Q+ a4R4 4- a2x2M4,

using the branching equations.
Since column b of 0 is zero, the eigenvalues of 0 are 0, together with those of

Now

Again the matrix is of the form

Xx =pxx + rxXa 2,

X=px+(a2G+2ar)x,
Ax=(S+S)a,
ao=(S +SJ)a.
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 271

and we may retain only the lowest order terms in the fij. The result is

[2px22(PN+r)ax ]2(P-Q3)ax 2Pva2
so the determinant and trace have the indicated signs.

Notice the "duality" between wavy and twisted vortices. This completes the verifi-
cation of Table 5.1.

6. Nondegeneracy conditions. We now proceed to a detailed analysis of the solu-
tions to the branching equations, and the signs of the real parts of the eigenvalues along
branches, which determine (orbital asymptotic) stability. The main qualitative features
of the bifurcation diagrams, and their associated stabilities, depend upon the signs of a
number of coefficients. We therefore impose appropriate nondegeneracy conditions:
these coefficients should be nonzero.

Recall from 1 that in order to obtain the six-dimensional kernel we had to fix the
speed of counterrotation of the outer cylinder at some critical value f. At this speed
we found a two-dimensional eigenspace associated with zero eigenvalues, 112, coalescing
with a four-dimensional space associated with a pair of complex conjugate purely
imaginary eigenvalues, R2 (R) C. Thus, in order to model the effects of counterrotation in
the Taylor experiment, we must introduce a perturbation parameter a which will split
apart the bifurcations corresponding to R2 (vortices) and R2 (R) C (spiral cells and Z22).

We choose to do this by replacing p1 in (5.2) by a+P. If a <0, then the
bifurcation to vortices occurs second (in the bifurcation parameter k= f;); if a > 0, it
occurs first. Thus, we may think of a as f]0-f]. See Fig. 6.1.

vortices

Couette

vortices spiral cells

g h

a<O a>O

FIG. 6.1. Schematic rendition of the effect of the perturbation a. The directions of the branches are chosen

arbitrarily and secondary branches haoe been suppressed.

The nondegeneracy conditions we impose on h are stated when a 0 and when
z=O,A =0.

In Table 6.1 we list sixteen nondegeneracy conditions; a F-equivariant bifurcation

TABLE 6.1
Nondegeneracy conditions for h.

(a) Pt (h) R
(b) Px (i) 2P + R
(Cl) (P + Q3)Px PPB (j) 2(pNP-_Pvpx)-pxR
(ca) (p_Q3)px_pp (k) pp-(p +Q3)(Pu+r

p1() P O) p-(P-Q )(e-r)
(e) P (m) r

( P(p+r)-exP (n) Q3
() P(p-r)-exP (o) q
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272 MARTIN GOLUBITSKY AND IAN STEWART

problem h is called nondegenerate if these sixteen expressions are nonzero for h. In
Table 6.2 we list the lower order terms for each solution branch of h=0 and each
eigenvalue of dh along these branches. For nondegenerate h these lower order terms
determine the direction of branching (super or subcritical) and the (orbital) asymptotic
stability of each solution. In Table 6.1 we use the convention that all quantities are to
be evaluated at the origin. So, for example, PN means P(0,0,0, 0, 0, 0). The terms
(a)-(n) in Table 6.2 refer to the corresponding expressions in Table 6.1.

TABLE 6.2
Branching equations and eigenvalues to lowest order for nondegenerateproblems.

Couette flow
(O(2)S1)
(0, 0)

Taylor vortices

Z2 (/) XS

(x,0)

unknown

spiral cells

so(2)
a 0))

wavy vortices

Z2 (to q’/’,

Branching equations

None

a lx2

-1
h=’-[a + (d)a

x= _1___[
(e)

a+(i)a

(c2) y2+ (g)
a

(b)

(all !d a

Sign of real part
of eigenvalues

Multiplicity

(b)X
a+(e)X

(e)
(b)
(e)

0
(f)

a

(g)a+-a
(d)
(h)

0

(b) j) a2(e--- a+ -(i)
-(h)

(m)

2(n) y2 4- (h)a

det
Y"

=(l)Aa

=(a)y2+(d)a

(b)

0

(a)

Oq-
(Cl) X2

Oq-
(C2) X2
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 273

TABLE 6.2 (continued)

twisted vortices

o))

C1
X

(f)
a

b +-(- =a

a (ka2,_(a) +
C1 1

tr[ x

-(m)

2(n)x +(h)a

det[ XxAx

Z r, r) No solutions by (h)

02
Aa =(a)x2+(d)

No solutions by (m), (o)
except perhaps on the orbit

*The terms (a)-(o) are defined in Table 6.1 and required, by assumption of nondegeneracy, to be nonzero.

In our analysis of the bifurcation diagrams and the asymptotic stability of the
associated solutions, we use only the equivariant form of the bifurcation equations and
the implicit function theorem. Moreover, in each appeal to the implicit function theo-
rem we find a neighborhood of the origin in (z,A,?, a)-space on which its consequences
are valid. Since we use the implicit function theorem only finitely many times, all of our
conclusions hold simultaneously in some fixed neighborhood of (0,0,0,0) in
(z,A,?,a)-space. This neighborhood does depend, however, on the particular values
that enter into the nondegeneracy conditions.

The computation of the entries in Table 6.2 may be completed in a routine fashion
using the entries in Table 5.1. We give the flavor of these computations by presenting
the results for wavy vortices.

The branching equations for Z2(Kq/" q?) are

p ( y2,a, 0 2, a2y 2, O,2 ) -a2r( y2,a2, O, a2y 2, O,X) =0,
a + p(y2, a2, O,a2y 2, O, X)+y2Q3 (yZ,aZ, O, a2y, O, X) O.

See Table 5.1. (The third branching equation in that table is used only to eliminate -.)
Expanding to lowest order, we have

0 =pt(0)y2+(Pu(O) --r (0))a 2 +px(0)2 +...,

O=a +P(0) y 2 + PN(O)a 2 + Px(O) 2- Q3(O) y2 + ....
Using the implicit function theorem, we can solve for ) and y2 as a function of a 2 if

(o)( (o)), o.
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274 MARTIN GOLUBITSKY AND IAN STEWART

This is condition (c_) of Table 6.1. We then obtain

P(O)p#(O)- (PJ(O)- Q3(O))( pN(O)- r(O))
a2+ ...,

px(O) Px(O)p(O)-P,(O)( plN (0) r (0)) a2+ ....

Using the entries in Table 6.1 along with some rearrangement of terms, we obtain the
entry in Table 6.2.

7. Comparison with experiment. In this section we discuss how the above model
bifurcation problem(s) on the six-dimensional kernel compare with experimental ob-
servations in the two main settings.

(1) Experiments by Andereck, Liu, and Swinney [1984] in the counterrotating case,
including parameter values near a point at which the six-dimensional kernel ap-
pears to occur.

(2) The standard "main sequence" of bifurcations in the case where the outer cylinder
is held fixed:

Couette flow Taylor vortices wavy vortices modulated wavy vortices

We will show below that it is possible to make choices for the signs of the
coefficients that appear in Table 6.1 as nondegeneracy conditions, so that the resulting
bifurcation sequences are in qualitative agreement with the experimentally observed
bifurcation sequences. In the counterrotating case we have direct (numerical) evidence
for the existence of the six-dimensional kernel through the work of DiPrima and
Grannick [1971]; no evidence for this six-dimensional kernel currently exists when the
outer cylinder is held fixed. We hasten to add, however, that the existence of the
six-dimensional kernel is, because of symmetry, only a codimension one phenomenon;
it should occur frequently in various forms of Taylor-Couette flow. We also note that,
unfortunately, there are many different choices for the signs of the nondegeneracy
conditions in Table 6.1 (over 10,000), so many different bifurcation sequences are

possible besides the ones we consider here. However, the possibilities are not totally
arbitrary, as we see below.

7.1. The counterrotating case. In a private communication, D. Andereck gave us
the (qualitative) form of the experimental results for counterrotating Taylor-Couette
flow, which have since appeared in Andereck, Liu, and Swinney [1984]. We present
these results in Fig. 7.1. There are three features that deserve mention here.

(i) There is a critical speed of counterrotation f at which the primary bifurcation
from Couette flow changes from Taylor vortices to spiral cells. This corresponds to the
critical speed of counterrotation found numerically by DiPrima and Grannick [1971].
However, they presumably performed the calculations for values of the dimensions of
the apparatus which differ from those used by Andereck, Liu and Swinney [1984].

(ii) In the weakly counterrotating case f0<f--this corresponds to the case
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 275

(a > O) where our perturbation parameter a is positive--the observed bifurcation se-
quence is"

Couette vortices wavy vortices

See Fig. 7.2.

20

weakly
counterrotating

( > o) ao > a

( < o) 0 < "
strongly
counterrotating

Taylor

modulated

\ wav_y
waves

Couette flow -,vy spirals interpe.netrating

FIG. 7.1. Qualitative version of the experimental results of Andereck, Liu, and Swinney [1984] showing
observed transitions between stable states in the counterrotating Taylor-Couette system.

Couette

rtices

FIG. 7.2. Schematic bifurcation diagram when a > 0 corresponding to the observations of Andereck, Liu,
and Swinney [1984]. (Secondary branches may or may not join other branches, depending on the values of the

coefficients.)

If the speed of the inner cylinder is increased further, then the wavy vortices lose
stability to another state which does not appear to correspond to any state in our
model.

(iii) In the strongly counterrotating case where f0 is slightly greater than f--this
corresponds to our a < 0--the observed transition sequence is:

Couette spiral cells wavy spiral cells
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276 MARTIN GOLUBITSKY AND IAN STEWART

See Fig. 7.3.

Couette

rals "at*’
spiral,,

g ,,cel.s

FIG. 7.3. Schematic bifurcation diagram when a < 0 corresponding to the observations of Andereck [1984].

In order to reproduce qualitatively the experimental results, we demand the following:

(a) Couette flow is stable for 2 << 0.
(b) Vortices bifurcate supercritically and stably when a > 0.
(c) There is a secondary bifurcation from vortices to wavy vortices when

a>0.
(7.1) (d) Wavy vortices are supercritical and stable at the initial bifurcation from

vortices.
(e) Spiral cells bifurcate supercritically and stably when a < 0.
(f) Spiral cells lose stability to a Hopf bifurcation.

We claim that it is possible to choose signs for the nondegeneracy conditions in
Table 6.1 so that each of the conditions in (7.1) is satisfied. Moreover, we claim that
when these nondegeneracy conditions are satisfied, it follows that:

(7.2) Any bifurcation from vortices to Taylor vortices occurs
after the bifurcation from vortices to wavy vortices.

The assumptions in (7.1) correspond, in order, to the following nondegeneracy
conditions (cf. Table 6.1):

(a) (e) <0, (b)<0.
(b) (a)>0.
(c) > 0.

(7.3)
(d) (/)>0; (m)>0, (n)>0.
(e) (i) >0, (h) <0.
(f) (j)>0.

It is a simple matter to check that the conditions (7.3) are precisely the conditions
needed to satisfy (7.1). The only point which requires comment is asymptotic stability
of the wavy vortex branch. Observe that at the bifurcation from vortices to wa_vy
vortices, a 0 and y =# 0. It follows from Table 6.2 that the wavy vortices are stable if

(m)>0, (n)>0, (/)>0, and(a)>0.
However, (!) > 0 when the branch of wavy vortices is supercritical, and (a) > 0 has
already been assumed in (7.3b). Observe that the branch of wavy vortices can lose
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 277

stability if either

(7.4) (d)<0 or (h)<0.

If (d)< 0 then this branch will lose stability to a torus bifurcation. However,

(7.5) (d) ((i)- (h))/2,
and the assumption that spiral cells are stable implies that (i)> 0, (h)< 0 (cf. (7.3e)) so
this possibility cannot occur. Nevertheless, (h)< 0 is satisfied, and wavy vortices may
lose stability by a single real eigenvalue passing through zero. This observation verifies
(7.2a). It is possible that a new solution branch with isotropy subgroup 1 will appear at
this bifurcation, but we have neither confirmed nor eliminated this possibility. See
Table 5.1.

Finally, we verify (7.2b). The wavy vortex branch begins at )tw(a)/(c2) while a
branch of twisted vortices would begin at )t=(a)/(c2). We compute sgn()/-w).
Now

(7.6) sgn(X,-Xw)=sgn (cl) (c2)
since (a) > 0 by (7.3b). However,

(c2)- (cx) 2Q3px 2(n )(b) > 0

using (7.3a, d). Hence (7.6) implies that t>w as claimed in (7.2b). Observe that it is
possible, under different circumstances, for twisted vortices to bifurcate supercritically
and stably from vortices. Such a transition has been observed in the corotating case.
See Andereck, Dickman and Swinney [1983].

7.2. The main sequence. Here we verify that the main sequence of bifurcations
can also occur in the six-dimensional model. This sequence of bifurcations is observed
in experiments when the outer cylinder is held fixed. For this sequence to hold, we need
Couette flow to lose stability first to vortices. This happens in our model when a > 0,
and we concentrate on this case.

To obtain the main sequence, we need (7.1a, b, c, d) to hold. Of course, this is
possible precisely when the nondegeneracy conditions (7.3a, b, c, d) hold. If we wish to
show in this model that, in addition, the wavy vortex solutions lose stability to a torus
bifurcation, then two complex conjugate eigenvalues must cross the imaginary axis
along the branch of wavy vortices. This can happen only if (d)< 0. Note that if (d)< 0
then (7.5) implies that (7.3e) is not valid, and that spiral cells cannot be asymptotically
stable.

As we saw above, wavy vortices can lose stability by a real eigenvalue crossing
through 0. However, this eventuality cannot occur if (h)> 0, which is possible, since we
have assumed nothing about (i). Thus, assuming

(d) <0, (h)>0
leads to the main sequence. (See Fig. 7.4.) Other choices for the main sequence are
possible.

We conclude that both the main sequence and certain regimes in the experiments
of Andereck, Liu, and Swinney [1984] appear to be qualitatively consistent with our
six-dimensional model, for suitable values of the coefficients. (Note that aside from the
states discussed above, no other stable states occur except perhaps with isotropy group
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278 MARTIN GOLUBITSKY AND IAN STEWART

1, as mentioned.) Since the coefficients can in principle be computed by
Lyapunov-Schmidt reduction from the Navier-Stokes equations, further numerical
work should be able to provide a more stringent test. It would also be of interest to
determine, in terms of the physical parameters in the problem, the location of the
codimension one set of values at which the six-dimensional kernel occurs.

vortices

Couette 1

Vortices

FIG. 7.4. Schematic bifurcation diagram corresponding to (one occurrence of) the main sequence.

Appendix. Equivariant mappings on the six-dimensional kernel. Let V= R2 (R2 (R)

C) be the six-dimensional kernel described in [}4. Recall that I" 0(2) S acts on V by

( O, )( v, w(R) z)= (Roy, (Row) (R) (eiZ)).
For computational purposes we choose coordinates by identifying the first R2 with C,
and R (R) C with 2 x 2 matrices as described in 4, so that an element of V is written
(z, a) where

zC, A=( a b)c d’
a,b,c,dR.

Recall that a (smooth) function : R is incariant under F if

,()=,(), r, v,
and a (smooth) mapping : V Vis equivariant if it commutes with F, that is

The aim of this appendix is to describe completely these invariant functions and
equivariant mappings, as promised in 4 above. The main result, wch will yield
Theorem 4.3 when appropriate terms are collected together, is:

PROPOSITION A.1. (a) Every invariant function on V is of the

#r a smooth #nction h: R R, where

=Z=x2+y 2,
N=a2+b2+c2+d 2,

(A.2) 82=(ad-bc)2,
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 279

and

(A.4)

(A.3) ’= (a : + b:- c:z- d 2) + 2i(ac + bd ).
(b) Every equivariant mapping, V V is of the form

d (z,A) ( pz + qiSz +r+siS,

P Re(H) +P2 Re(H2)
+ Q11m( z 2g)lm(Hx) +eIm( zg)Im(H)
+O Re(e n )+e4Re(e .4)
+ RX8 Im(H)+R28 Im(H)+R38 Im(gH3) + R46 Im(gH4)

where

and

c+ ia d+ ib Ha= -c+ ia -d+ ib

d-ib c+ia H4= -c+ia

p,q,r,s,p1,p, 01, Q2, Q3, Q4,R1,R2,R3,R4,M3,M4
are invariant functions.

In more abstract language, Proposition A.1 says that the ring of invariant func-
tions is generated by fl, N,82,7,o; and that the module of equivariant mappings is
generated over the invariants by the twelve mappings in (A.4), whose coefficients are
p,q,r,s,P, .,M4. By standard results of Schwarz [1975] and Po6naru [1976] we may
assume q, and are polynomials when proving Proposition A.1.

The computation comes in two stages. First we compute the (polynomial) S-invariants and -equivariants; then we use this information and the O(2)-action to
obtain the O(2)S-invariants and -equivariants. Since S acts trivially on z R, we
need consider only the action on A R2 (R) C. We take complex coordinates

z =a+ ib, z=c+ id.

Then we may identify R2 (R) C with C C, where S acts diagonally:

O(Zl,Z2)=(eizl,eiz2).
LEMMA A.2. The real sl-invariants on C$C are generated by zl51, z252, Rez152,

Imz52. The Sl-equivariants are generated over the invariants by (z,O), (0,Zl), (z2,0),
(0,z_), (ix, 0), (0, i), (i2,0), (0, i2).

Proof. These results (which generalize easily to S acting on C") are no doubt well-
known, but for completeness we sketch a proof. The idea is first to find the complex
invariants and equivariants and then to read off the real ones.

Consider a C-valued polynomial functionD
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280 MARTIN GOLUBITSKY AND IAN STEWART

Since eig=e-i, we can use sl-invariance to exclude all terms other than those for
which

a-B+-=0.
So p is a polynomial in__z121, z222, 1z2, and z122. If p is to be real in a,b,c,d, then we
have p =, so Aav=A/v. This leads to the real invariant generators stated.

For the equivariants, we consider a pair of functions p,p_ of the above form.
Equivariance excludes all terms other than those for which

a-fl+7-3=l.
This yields equivariant generators which are complex scalar multiples of (z1, 0), (z2, 0),
(0,Zl), (0,z2). Taking real and imaginary parts, we obtain the stated real equivariant
generators.

In () coordinates, we have the invariant generators

z,x=a2+b,
._C2 2

(A.) zz +d

Re(z) ac + bd,

Im(z) be ad=

and the equivariant generators (a) ___>

(A.6) (a b)E2=(0 0)E3=(0 0)E4.__(C 0d)El= 0 0 a b c d 0

-b a 0) ET=( 0 0) E8=(-dEs=(0 0) E6=( 0b a cd

Note that there is a relation

(a 9- + b2)( c2 + d 2 ) (ac + bd )2 + (ad- bc)2.
We are now ready for the:

Proof of Proposition A.1 (a). The calculations are easier if we use complex notation.
Let

’= (a 2 + b2- C2- d 2) + 2i(ac + bd).
Then every real-valued function of the four invariant generators can be written in terms
of N=a2+bZ+c2+d 2, , , and 8. Note that N and 2 are O(2)-invariant. See
Golubitsky and Stewart [1985, 9].

Since S acts trivially on z R2, we can write the sl-invariants on R2 (R2 C) in
the form

+(z,5,N,,,6).
Under the O(2)-action these transform as follows:

z 8 N

x z
2io -8 N

0 eiz e-i e2i e- N

(The expressions " and " are introduced because of this pleasant transformation behav-
ior.)
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 281

Since z, ’, N, and 2 are O(2)-invariant, we can write the general O(2)S1-

invariant in the form

(A.7)

where a, b,-.. ,h C[z,N, 8 2]. (Note" ’g= N-42 SO no ’g terms are required.) Reality
of q, implies that

while r-invariance leads to

b=, e=h, /=g,

a=b, c=d, e=-h, f=-g.

Hence a, b, c, d are real and e,f, g, h are purely imaginary.
Finally we apply SO(2)-invariance. Since i is SO(2)-invariant and is independent

of z,2, ’, ’, we must have q0 and 1 separately SO(2)-invariant. This excludes all terms
other than

(A.8) a(z"a+") when a+ 2fl=0,

(A.9) b(z/+’) when a 2/3 0,

(A.10) ie(zO-) when a+2fl=0,

(A.11) if(z’l-) whena-2fl=0,

Now (A.8) and (A.10) imply a fl 0, giving nothing new. The others yield a 2/3.
We claim that only a 2, fl 1 yield new generators. For example

(ZX + 2fl+ ..[..,a+2fl+l)=(Zafl.4y,afl)(Z2..,2)__(Z,)2()(Zt-2fl-1 .+. a-2fl- 1).
Since b is real and f purely imaginary, we obtain generators

Re(2), ii Im(zZg)
in addition to z, N, 8 2. This proves part (a) of Proposition A.1.

Proof of Proposition A.1 (b). Write the general equivariant in the form

where

(z,A)

o" R2 (R2 (R) C) R2,
(I) R2 (R2 (R) C) R (R) C

We begin with o- Since the Sl-action on R2 is trivial, the Sl-equivariance condition
implies that o is Sl-invariant and hence can be written in the form (A.7) above.

However, this time there is no reality condition since we seek mappings into R2,
not R. The x-equivariance again implies a,b,c,d are real, and e,f,g,h are purely
imaginary. Replacing the latter by ie, if, ig, ih, we may assume all coefficients a- h are
real, and replace 8 by ii. Write o qo + ibl: again we can treat qo and ql separately.

Now SO(2)-equivariance excludes all terms other than

(A.12) zI, iSz; a+ 2fl= 1,

(A.13) z, iSz"; a- 2fl= 1,

D
ow

nl
oa

de
d 

11
/1

5/
12

 to
 1

28
.1

46
.7

1.
16

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



282 MARTIN GOLUBITSKY AND IAN STEWART

(A.14) $"’/, i8"’/; a + 2fl= 1,

(A.15) $", i8; -a- 2fl= 1.

In (A.12) we have a= 1, /3=0, yielding z and iSz. In (A.13) we have a= 2fl + 1. As
before, we may use the invariance of z$ and ’" to reduce the size of a and fl:

Thus we can reduce/3 by 1 and a by 2. The process stops when/3 1, a 2. But now

Thus we get new generators 5’, ii5’. In (A.14) we can similarly assume fl __< 2. But fl 2
gives

+
so no new generator arises; and/3= 1 gives 5’ which is already included. Finally (A.15)
is not possible.

Thus we have found four generators (z, O)(iSz, 0), (5’, 0), (i85’, 0) corresponding to
mappings of 112 (R2 (R) C) into R2.

Now we look at

V R (R (R) C) --, R (R) C.

Again complex notation is more convenient. Define (in a notation consistent with the
statement of Proposition A.1) the complex matrices

(A.16)

H1--(E14-E3)4-i(E2-E4)
H2= (E5+E7)+i(E6-E8),
n3= ( E E3)4- i(E+ E4)
n4= (E ET)-4-i(E6 4- E8).

Then the Sl-equivariants on 112(R) C are generated over C by Hk, /k (k= 1,..., 4) and
over R by the real and imaginary parts of Hk (k 1,-.., 4). Since S acts trivially on
zR2 we can think of the Sl-equivariants mapping R2(R2(R)C)-R2 as Sl-equiv
ariants mapping R2 (R) C-R2 parametrized by z and 5. Thus they are linear combina-
tions of Hk, Hk, (k= 1,.-.,4) with coefficients in C [N, , ’, ’; z,5].

We write the equivariance condition q(3,v)= 3’(v) in the form

(A.17) (v) =’/-x (,v).
Suppose

where p" R2 (112 (R) C) R, H: R2 (R2 (R) C)R2 (R) C. Then (A.17) is equivalent to

(A.18) 0(v) H(v) -lp(,v)H()’v) O(3’v)’/-1H(’v).
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 283

We compute this action on Hk (k=l,..-,4) when , O(2). Using (A.16) and noting
that

x(z,A)= ’ 0 -1

(z,A)=(eiq’z,Rq,A)
where

we find

(A.19)

sinp)Rq= sin+ cos+

H()

HI HI,
H: U
//3 H3
H4 U

e2in3
e2ie/H4

We can write the general Sl-equivariant (I) 1" R2 ( (R (R) C) ---) R2 (8) C in the form

(A.20) {4 )1 =Re E (Pk+Ok)Hk
k=l

where the Ok, k are polynomials over C of the form

Ok Pk(N,i, ’, ; z, ), ok=ok(N,8,,; z,5).

Since z2 and ’" are O(2)-invariant, we can write the Ok and ok as

(A.21) az’ + bz’ + cy,’ + dS’t

with a,b,c,d, C[N,(2].
We now apply x- and +-equivariance in the form (A.17), writing

o=o(z,A), ,=o(qz,qA).

Now x-equivariance (using (A.18) and (A.19)) implies that

(A.22) )k- k,

(A.23) Ok= --#k

and k-equivariance implies

(A.24) ( 0k (k= 1,2),
(A.25) tSk= t -2i4%e Vk (k= 3,4),

(A.26) ( ok (k= 1,2),
(A.27) 0k= I -2e iq’o

k (k= 3,4).
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284 MARTIN GOLUBITSKY AND IAN STEWART

Now write the Pk and % in the form (A.20) (we suppress unnecessary fine points of
notation in the interests of clarity). From (A.22) we get

(A.28) (for Ok) a=6, b=, c=?, d=a7,

and from (A.23)

(A.29) (for Ok) a=--, b=-, c=-, d=-a.

That is, the coefficients are real for Pk and purely imaginary for %. We therefore
replace ok by iOk, SO that Pk and ok are real: now (A.20) takes the form

(A.30) =Re (Pk +iSk)H,
k=l

The +-action multiplies z, ’, and Hk by complex constants e i+, e 2iq’, e 2ik respec-
tively. Hence we may consider each of the eight terms in (A.30) separately. From (A.26)
and (A.27) we obtain the following conditions on the exponents a, /3, required for
k-equivariance:

(A.31)
(A.32)
(A.33)
(A.34)
(A.35)
(A.36)
(A.37)
(A.38)

Real part of: k 1, 2 k 3, 4

a+2fl=0
a-2fl=0
-a+2fl=0
-a-2fl=0
a+2B=0
a-2fl=0
-a+2fl=0
-a-2fl=0

a+2fl= -2

a-2B -2
-a+2fl= -2

-a-2fl= -2
a+2fl= -2

a-2fl= -2
-a+2= -2

-a-2fl= -2

We deal with these terms case by case, first for k 1, 2; then for k 3, 4. So let k 1, 2.
(A.31) implies a =/3 0, leading to the generators

(A.39) Re(Hk), k=l,2.

(A.32) requires a 2fl, so we get

(A.40) z2ttHk +2k.

Similarly (A.33) requires c 2/3, and the result is

(A.41) -aaHk+ z2agak.
Forming the sum and difference of (A.40) and (A.41) we may replace them by

+ +

yfl__, ( Z2flfl__ , 2flfl )( Ok k)"
We observe the following identities"

x+= 2 Re(Z2)X--(222)X_ 1,

y# + x= 2 Re(z) y#- (zg)y#_ 1,
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SYMMETRY AND STABILITY IN TAYLOR-COUETTE FLOW 285

which have invariant functions as coefficients. Since

x0=2Re(H,), Yo=0, Xl=2Re(z2)Re(Hg),

and these may be obtained from the generators (A.39), an inductive argument shows
that only Yl need be retained in a list of generators. So we obtain the new generators

(A.42) Im(z2)Im(H,), k 1,2.

For (A.34) we have ct fl 0 and nothing new results.
For (A.35) we have et=/3= 0, leading to new generators Re(iSHk), or equivalently

(A.43) 8 Im(H), k 1,2.

From (A.36) and (A.37) we get a 2/3, yielding

Forming the sum and difference, we replace these by

v/= i8( z2O + $2t./)( H,-/k),
wt= i8(z2- e2/’/)( H/, +//,).

We note the identities

0,8 + 2 Re(z (z 0,8_1,

Wfl+ 2 Re(z2)w# (z22’)w/_ 1,

Wl=S Xm( z2 )Re( Hk).
It follows by induction that no new generators arise here.

Finally (A.38) leads to a=fl=0, and no new generators. This completes the
analysis for k 1, 2.

Next, we let k 3, 4. The calculations follow a similar pattern.

(A.31) is impossible.

(A.32) and (A.33)lead to

u#= 5#+ZaH, + zZ’+ 2#Hk,

Now

tfl + 1--" 2 Re(z2) t/- ( z 252’) tt_ 1’

2 2 Re(z2)t ()U0,
U/+ 2 Re(z2) ua- (z 252’) u/_ 1’

u 2 Re(z2) u0- ( z 22) x

(fl>__2),

(fl>=l),D
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286 MARTIN GOLUBITSKY AND IAN STEWART

Hence inductively the only new generators are ta and u0; that is,

(A.44) ’Hk + ’Hk, k 3,4,

2H+ z2/k, k=3,4.

However, we observe that the identities

NRe( H1) 2 Im(H2 ) Re(H3),
26 Im(H1)+NRe(H2) Re(n4)

are valid. Thus the generators .2Hk + z2k (k 3, 4) are redundant and can be omitted.
From (A.34) we have either a=0,/3= 1 or a= 2, fl=0. These lead to and u0

again.
For convenience we now consider (A.38), for which a 2, /3=0 or c =0, fl= 1.

These lead to new generators

(A.45)
i Im(H), k=3,4,

3 Im(2Hk), k=3,4.

Finally we take (A.36) and (A.37), yielding a= 2/3-2 (/3> 1) and c= 2/9 + 2
respectively. So we have terms

r13-- ia213-2f13Hk-- i213-213k (fl__> 1),

As usual, we find that

Taking (A.45) into account, we find no new generators.
This completes the analysis. We have found twelve generators (A.39), (A.42),

(A.43), (A.44), (A.45). Proposition A.l(b) now follows.
Note that the invariants (A.2) for 0(2) S do not form a polynomial ring: there is

a relation

02.._ (Z)2() .._/ 2(N- 432).

Further, the equivariants do not form a free module, although the relations have degree
9 or more. For example

[01[ 8 Im(H1) [821 [Im(z 2)Im(/-/) ].

(There are other relations too). In consequence, the singularity theory of O(2)xS on
the six-dimensional kernel would be extremely complicated to compute.
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Finally, we turn to the statement of Theorem 4.3. We obtain the form stated there
for the equivariants from that used in Proposition A.1, by defining

Kj.=Re(Hj), Lj.=Im(Hj.), j=1,2,3,4,

and collecting terms according to the matrices K, L that occur.
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