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SIAM J APPL. MATH. ? 1991 Society for Industrial and Applied Mathematics 
Vol. 51, No. 1, pp. 49-72, February 1991 005 

TIME-REVERSIBILITY AND PARTICLE SEDIMENTATION* 

MARTIN GOLUBITSKYt, MARTIN KRUPAt, AND CHJAN LIM? 

Abstract. This paper studies an ordinary differential equation (ODE) model, called the Stokeslet model, 
and describes sedimentation of small clusters of particles in a highly viscous fluid. This model has a trivial 
solution in which the n particles arrange themselves at the vertices of a regular n-sided polygon. When 
n =3, Hocking [J. Fluid Mech., 20 (1964), pp. 129-139] and Caflisch et al. [Phys. Fluids, 31 (1988), pp. 
3175-3179] prove the existence of periodic motion (in the frame moving with the center of gravity in the 
cluster) in which the particles form an isosceles triangle. The study of periodic and quasiperiodic solutions 
of the Stokeslet model is continued, with emphasis on the spatial and time reversal symmetry of the model 
(time reversibility is due to infinite viscosity and spatial (dihedral) symmetry is due to the assumption of 
identical particles and the symmetry of the trivial solution). For three particles, the existence of a second 
family of periodic solutions and a family of quasiperiodic solutions is proved. It is also indicated how the 
methods generalize to the case of n particles. 

Key words. bifurcation, symmetry, time-reversibility, sedimentation, Lyapunov Center Theorem 

AMS(MOS) subject classifications. 58F22, 70K15, 76D07 

Introduction. Jayaweera, Mason, and Slack [JMS] and Hocking [H] study the 
sedimentation of small clusters of small spheres in a highly viscous fluid experimentally 
and analytically. Experimentally, Jayaweera, Mason, and Slack find that when the 
cluster consists of fewer than seven falling particles, the spheres arrange themselves 
in a regular polygon. When the cluster consists of seven or more spheres, they find 
that the regular polygon is unstable. When the cluster size is three, they also find 
evidence for periodic motion where the spheres arrange themselves at the vertices of 
(a time-varying) isosceles triangle, at least on a short-to-moderate timescale. This 
periodic motion takes place in a frame moving with the center of gravity of the cluster. 

To explain the transition in observed phenomena when the cluster size reaches 
seven, Hocking [H] studies an ordinary differential equation (ODE) model called the 
point particle or Stokeslet model. In the Stokeslet model, spheres are replaced by point 
particles with gravity acting as a delta function, Stokes flow for individual particles is 
assumed (an infinite viscosity limit), and an interaction between particles is assumed 
(caused by the flow fields of the individual particles). In this model, the regular polygon 
is an equilibrium. By direct calculation of the Jacobian matrix at the regular polygon, 
Hocking [H] shows that this equilibrium is elliptic (all eigenvalues on the imaginary 
axis) when the cluster size is less than seven and hyperbolic for cluster sizes between 
seven and 12, with the implication that the equilibria are hyperbolic for all cluster 
sizes greater than seven. Stability is equated with ellipticity. Hocking also constructs 
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50 M. GOLUBITSKY, M. KRUPA, AND C. LIM 

the periodic solution for the three particle Stokeslet model consisting of time-varying 
isosceles triangles. 

Caflisch et al. [CLLS] continue the study of the sedimentation problem by 
analyzing the motion of three spheres in a Stokes fluid. They show that when the 
cluster size is three, the periodic solution where the particles arrange themselves as 
isosceles triangles also exists in this model. The [CLLS] proof of existence of the 
isosceles triangle periodic solution uses time-reversibility as does the proof in [H]. 
One interest of [CLLS] in finding this periodic solution is to use its existence to test 
for numerical codes developed to solve the more complicated finite sphere model. 

Independently, Pickard and Tory [PT] have found a periodic solution in the four 
sphere model where the projection of the spheres in a horizontal plane forms a 
time-varying rhombus. 

In this paper we continue the study of periodic and quasi-periodic solutions for 
the Stokeslet model for all cluster sizes. In our work we emphasize the existence of 
both time-reversal and spatial symmetries in the Stokeslet model. The time-reversal 
symmetry is due to the assumption of infinite viscosity and the spatial symmetries are 
due to the assumption of identical particles with symmetric coupling. 

Using symmetry arguments, we will show that, when the cluster size is three, there 
are two families of periodic solutions to the Stokeslet model and one family of 
two-frequency motions. The periodic solutions form isosceles triangles; in one family 
the vertices of the side of unequal length move synchronously and in the other family 
these vertices move with a half-period phase shift. The family of two-frequency motions 
consists of equilateral triangles whose vertices move with a third of a period phase lag 
while rotating slowly on a circle (ponies on a merry-go-round). Our theory shows, 
moreover, that only two calculations using the Stokeslet model are needed to actually 
prove the existence of these solutions: one is the computation of eigenvalues done in 
[H], and the other is the verification of a transversality condition showing that'ponies 
actually rotate on the merry-go-round. 

Our methods enable us to show that solutions corresponding to the three solutions 
just described should exist for the n particle cluster. To actually prove this existence 
we would have to verify nonresonance on the linear terms (using the results in [H]) 
and verify the transversality condition for general n (to show that the ponies actually 
rotate). This we have not attempted. 

Moreover, since our methods depend mainly on the abstract structure of the 
equations, identical results should hold for models with finite, but small, particle size. 
The calculations, however, will be more complicated. 

The mathematical theory we develop is one of time-reversible systems with spatial 
symmetries. We begin in ? 1 by describing Devaney's [D] Lyapunov center theorem 
for reversible systems following the proof given in Vanderbauwhede [V]. This theorem 
assumes both simple imaginary eigenvalues and nonresonance in the Jacobian matrix, 
neither of which is valid for the Stokeslet model. In ?? 2 and 3 we generalize this 
theorem to include zero eigenvalues in the Jacobian and 1: 1 resonances caused by 
symmetry. Our main result is summarized in Theorem 3.1. Our method follows ideas 
in [GSt] for finding periodic solutions in symmetric systems undergoing Hopf bifurca- 
tion and ideas in [MRS] for finding periodic solutions in symmetric Hamiltonian 
systems. 

In ? 4 we describe in detail the symmetries of the Stokeslet model (whose derivation 
is described briefly in an Appendix) and in ? 5 we describe how these symmetries 
affect the linear (Jacobian) analysis. The basic group theory of the Stokeslet model is 
presented in these sections. In ? 6 we describe how to use Theorem 3.1 and symmetries 
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TIME-REVERSIBILITY AND PARTICLE SEDIMENTATION 51 

to find periodic solutions for the Stokeslet model. We emphasize here how the sym- 
metries of the model determine the nature of the periodic solutions we find. The 
periodic solutions for n 6 are described in ? 7. 

In ? 8 we show how the two-frequency ponies on a merry-go-round are formed. 
Here we use results of Krupa [K] on bifurcation from group orbits of equilibria to 
organize the discussion. The remainder of this paper is devoted to the three particle 
Stokeslet model. The calculations mentioned previously verifying that the ponies 
actually rotate when n = 3 are also given in this section. Genericity arguments tell us 
that this result is expected; indeed, we expect the corresponding statement concerning 
ponies in the n particle case to be valid. 

Finally, in ? 9 we comment on the linearized stability of the three families of 
solutions for n = 3. We prove that generically one of the two families of isosceles 
triangles is elliptic and the other hyperbolic and that the family of ponies is always 
elliptic. These remarks are based on theoretical normal form calculations (which 
introduce a temporal phase shift symmetry), spatial symmetries, and time-reversal 
symmetry. Our linear stability results are similar to those of [MRS]. 

1. Lyapunov center theorem for time-reversible systems. Vanderbauwhede [V] 
proves a Lyapunov center theorem for time-reversible systems. We sketch his proof 
here so that we may generalize it to systems with spatial symmetries. 

Consider the system of ODEs 

dx 
(1.1) -=f(x), xEV, 

dt 

where f: V - V is C' and V DRn for some n. A time-reversal symmetry of (1.1) is a 
reflection R: V-- V satisfying 

(1.2) f(Rx) = -Rf(x). 

Thus, when x(t) is a solution to (1.1) so is 

(1.3) (TRx)(t) Rx(-t). 

We assume that x0 is an equilibrium of (1.1) that is invariant under the time-reversal 
symmetry, i.e., 

(1.4) f(xo) = 0 and Rxo = xo. 

Observe that (1.4) coupled with differentiation of (1.2) leads to the antisymmetry 

(1.5) (df)XOR = -R(df) xo 

Hence, if A is an eigenvalue of (df)xo with eigenvector v, then -A is an eigenvalue 
with eigenvector Rv. Note that if n = 2, then A must be either real or purely imaginary 
(depending on the sign of det (df)xo). 

This eigenvalue dichotomy occurs frequently in higher dimensions, especially 
when spatial symmetries are present. In this section we assume: 

(1.6) ?cooi are simple eigenvalues of (df)xo, and 

kcwoi is not an eigenvalue of (df)xo (k = 0, 2, 3,** ). 

The Lyapunov center theorem is the following. 
THEOREM 1.1. Assuming (1.2), (1.4), and (1.6) there exists a smooth one-parameter 

family of periodic solutions Xa (t) of ( 1.1 ) with periods near 2 iT/I o where xo(t) xo. 

This content downloaded by the authorized user from 192.168.52.78 on Wed, 14 Nov 2012 10:48:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


52 M. GOLUBITSKY, M. KRUPA, AND C. LIM 

Proof. The proof of this theorem is an adaptation of the Lyapunov-Schmidt 
reduction proof of Hopf bifurcation where the role of a bifurcation parameter is 
replaced by time-reversibility. We follow the exposition in [V, Chap. 7, ? 5.3] and [GS, 
Chap. VIII, ? 2]. 

Begin by rescaling time in (1.1) so that ?i are eigenvalues of (df)_0. Define 
F: V27 X R 62, by 

dx 
(1.7) F(x, r) = (1 + r) _-f(x), 

dt 

where 627 is the Banach space of V-valued, 2XT-periodic mappings and 16'T consists 
of those x(t)W C 62 that are continuously differentiable. Observe that solutions to 
F(x, r) = 0 correspond to 21T/(1 + r)-periodic solutions of (1.1). 

We solve F=O by Lyapunov-Schmidt reduction. Hypothesis (1.6) implies that 
ker (dF)_O is two-dimensional, being spanned by Re (etv) and Im (etv) where 
(df)xov = iv. Indeed, we can identify ker (dF)xo with C by z -- Re (z etv). Lyapunov- 
Schmidt reduction proves the existence of a smooth mapping 

whose zeros are in 1:1 correspondence with the (near 21T)-periodic solutions of (1.1). 
An essential ingredient in the proof of both Hopf bifurcation and of this theorem 

is the existence of S' phase shift symmetry in the reduced equations 4. Observe that 
o E S1 acts on x(t) E 62, by 

(1.8) 0 x(t) = x(t - 0), 

and that F is S1-equivariant with respect to this action. Hence, when the Lyapunov- 
Schmidt reduction is done correctly, the reduced function / is also S1-equivariant. 
The action induced on ker (dF)xo 0 by (1.8) is just the natural action 

(1.9) 0 z = eioz. 

It follows from (1.9) and S1-equivariance that 

(1.10) 4(z, r)=p(zz-, r)z+q(zz-, r)iz, 

where p and q are smooth, real-valued functions. See [GS, Chap. VIII, Prop. 2.3]. 
The details of Lyapunov-Schmidt reduction show that 

(1.1 1) p(0, 0) = 0, q (0, 0) = 0, q7(O, 0) # 0. 

In Hopf bifurcation f and hence F, 0, p, and q depend smoothly on a bifurcation 
parameter g. Solving / =0 for nontrivial solutions (z # 0) is equivalent by (1.10) to 
solving p = q = 0. By (1.1 1) and the implicit function theorem the equation q = 0 can 
be solved locally near the origin for r =r(zz-, ), leading to the single equation 
p(zz-, r(zz-, ), ) = 0. Finally, in Hopf bifurcation, we show that p, (O, 0, 0) # 0 if 
complex conjugate eigenvalues of dF cross the imaginary axis with nonzero speed as 
jg is varied. Thus, the implicit function theorem can be applied once again to solve 
p = 0 locally for g = (zz-), thus giving the desired branch of periodic solutions. 

In this theorem we use the existence of the time-reversible symmetry R to solve 
=0. Observe that F, as defined in (1.7), anticommutes with TR, as defined in (1.3), 

that is, 

(1.12) F(TRx, r) = -TRF(x, r). 
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Differentiation of (1.12) leads to the anticommutativity 

(1.13) (dF)X0,OTR =-TR(dF)X,O O 

and hence that TR: ker (dF)xo0o - ker (dF) x0ov. Let R' = TR I ker (dF) x0o. 
We assert that R' and S' do not commute on ker (dF)xo0,, and hence that R'0 S1, 

since S1 is commutative. To prove this assertion we let x(t) be in 162, and compute 

(0 TR x)(t) = (TR x)(t-0) = Rx(-t+ 0), 

(TR 0 x X)(t) = R( 0 x)(-t) = Rx(-t-0). 

Thus, as long as x(t) # 0 and 0 # 0 or r, 0 TR X-# TR 0 X. 
Since R' and S' act orthogonally on C, they generate 0(2). In follows that there 

exists 0 E S' such that R" = 0 R' acts as complex conjugation on C. If we define 
T'= 0 TR acting on '2T, then T' is also an antisymmetry of F. 

With these comments, it is now straightforward to check that Lyapunov-Schmidt 
reduction respects time-reversible symmetries, that is, 

(1.14) 0(0 r) = -4(Z, r). 

Identity (1.14) applied to (1.10) implies that p 0, that is, 

(1.15) 0 (z, T)= q (zz, T) iz. 

It follows from (1.11) and (1.15) that =0 can always be solved, using the implicit 
function theorem, for r = r(zz), r(0) =0. This solution translates to a one-parameter 
family of periodic solutions to (1.1) parametrized by the amplitude zz. 

2. Lyapunov center theorem with zero eigenvalues. As noted in ? 1, eigenvalues of 
(df)XO come in pairs ?A. When Rv = v, where v is an eigenvector with eigenvalue A, 
A must equal zero. For this reason, time-reversibility often leads to zero eigenvalues, 
but usually when R ker(df)xo is the identity map. In this section, we generalize 
Theorem 1.1 to include this possibility. 

Define V0 ker (dF)xo and let m = dim V0. 
THEOREM 2.1. Assume that (1.1) satisfies (1.2), (1.4), 

(2.1) ?co0i are simple eigenvalues of (df)xo, and 

kwoi is not an eigenvalue of (df)xo (k = 2, 3, * 

and 

(2.2) RI VO = IvO0 

Then there exists a unique (m + 1) -parameter family of periodic solutions Xa (t) of ( 1.1 ) 
with period near 2iTt/coo. 

Remark. Hypothesis (2.2) was used by Scheurle [Sc] when developing a KAM 
theory for reversible systems. See also Sevryuk [Se]. 

Proof. The proof of this theorem is similar to the proof of Theorem 1. 1; we indicate 
the changes. 

Assumption (2.1) implies that 

(2.3) ker (dF)xo,o = Vi (e Vo, 

where Vi is the two-dimensional real eigenspace of (df)xo associated with the eigen- 
values ?i and, as in ? 1, can be identified with C. Note that SI phase shift symmetry 
acts as in (1.9) on Vi and trivially on Vo (since V0 consists of constant functions). 
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54 M. GOLUBITSKY, M. KRUPA, AND C. LIM 

Hence, the Lyapunov-Schmidt reduction leads to a smooth S1-equivariant 
mapping 

(2.4) (:Cx VOx1R -Cx VO 

whose zeros are in 1:1 correspondence with the desired periodic solutions to (1.1). 
Writing 0 = (0,, O) in coordinates and using S1-equivariance leads to 

(2.5a) 4i(e'oz, w, r) = e'04i(z, w, r), 

(2.5b) 4o(eioz, w, r)= O(z, w, r). 

From (2.5) we see that the w-coordinates may be treated as parameters. Hence / has 
the form 

(2.6a) 4i(z, w, r)=p(zf, w, r)z+q(zf, w, r)iz, 

(2.6b) O0(z, w, r)= r(zz, w, r), 

where p, q, and r are smooth, real-valued functions. 
Next, we consider the effects of the time-reversal symmetry R. As in ? 1, k 

anticommutes with the action of TR on ker (dF)0,,O which after a possible phase shift, 
we may write as 

(2.7) R" (z, w) = (f, w). 

Hence 

(2.8a) i(f, w, r) =-4(z, w, r), 

(2.8b) b0(z, w, r) =-0(z, w, r). 

It follows from (2.6) and (2.8) that 

(2.9a) 4j(z, w, r) = q(zz, w, r)iZ, 

(2.9b) OO(z, w, r) =0. 

Thus q(0) = 0 and q,(0) # 0 together with the implicit function theorem allow us 
to solve 0 = 0 for r =r(zz, w). This yields the desired (m + 1)-parameter family of 
solutions. 

3. Lyapunov center theorem with spatial symmetry. In this section we generalize 
Theorem 2.1 to the situation wheref in (1.1) commutes with a compact group of spatial 
symmetries F. That is, 

(3.1) f(yx)=yf(x) VyE F. 

We also assume 

(3.2) yxo=xo VyEF. 

The existence of spatial symmetries often causes the eigenvalues of (df),O to be 
multiple. This arises from the commutativity relation 

(3.3) (df)xoy=y(df)xo VyErF, 

which is obtained from (3.1) by differentiation. 
The prototypical situation occurs when 

V= W? W 
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TIME-REVERSIBILITY AND PARTICLE SEDIMENTATION 55 

and F acts absolutely irreducibly on W. (Absolute irreducibility means that the only 
linear maps on W commuting with F are scalar multiples of the identity.) Since (df),0 
commutes with F, absolute irreducibility implies 

(df )0 = (aI bI\ 
? cI dlI 

Hence the eigenvalues of (df)x. are the eigenvalues of (a b), each with multiplicity 
equal to dim W. 

Suppose now that R commutes with F. Then the ?1 eigenspaces of R are invariant 
under F. Assuming that both eigenspaces are nontrivial allows us, after a linear change 
of coordinates, to write R(w,, w2) = (w,, -w2). Anticommutativity of (df )x, with R 
implies a = d = 0. Hence the eigenvalues of (df )xo are either real or purely imaginary. 
This is the generalization of the eigenvalue dichotomy referred to in ? 1. 

In our generalization of Theorem 2.1, we assume 

(3.4) Vi = WE DW, 

where F acts absolutely irreducibly on W. See [GSS, Chap. XVI, ? 1]. The idea 
behind this assumption is the generalization of Hopf bifurcation to systems with 
symmetry obtained by detecting solutions by their symmetries [GSS, Chap. XVI, Thm. 
4.1]. Their symmetries, however, contain both a spatial (F) component and a temporal 
(S1) component. More precisely, (y, 0) c F x S' acts on x(t) by 

(3.5) (y, 0) * x(t) = yx(t - 0), 

and the group of symmetries of a periodic mapping is a subgroup : c F x S'. 
Observe that Vi ED V0 is F x S1-invariant. The S1 -invariance follows from the 

discussion in ? 2, while the F-invariance follows from the fact that (3.3) implies 
F-invariance of the eigenspaces of (df)x,. Let Y. c F x S1 be a subgroup. Define 

(3.6a) Fix () = {v E Vi ED V0: (v = v Vo- CE }, 

(3.6b) Fixi (Y) = Fix (i) n vi, 
(3.6c) Fixo (1) = Fix (E) n Vo and let m = dim Fixo (E). 
Then Fix (Y) = Fixi (E) E Fixo (s). 

We now prove the generalization of Theorem 2.1 to F-equivariant systems that 
we will use in later sections. For completeness we restate all hypotheses here. 

THEOREM 3.1. Assume that the F-equivariant system of ODE (1.1) 

dx 
- =f(x) dt 

has a F-invariant equilibrium xo. Assume 

(3.7) :?oi are nonzero eigenvalues of (df),0, and 

kwoi is not an eigenvalue of (df ),o (k = 2, 3, 

Assume that the generalized eigenspace Vi corresponding to the eigenvalues :?ooi has the 
form (3.4) 

vi= WEW, 

where F acts absolutely irreducible on W. 
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Assume that (1. ) has a time-reversal symmetry R that fixes xo and let I c F x S1 
be a subgroup satisfying: 

(3.8a) dim Fixi (1) -2, 

(3.8b) R(Fixi (1)) = Fixi (1), 

(3.8c) R I Fixo () =I. 

Then there exists an (m + 1) -parameter family of periodic solutions to (1.1) with period 
2 1T/Io and symmetry 1, where m = dim Fixo (1). 

Proof. The proof of this theorem is similar to that of Theorem 2.1; we indicate 
the changes. 

The Lyapunov-Schmidt reduction leads to a smooth F x S1-equivariant mapping 

(3.9) b: Vi x VO x R - Vi x VO, 

the F-equivariance following as in the proof of [GSS, Chap. XVI, Thm. 4.1]. This 
F x S1-equivariance implies that 

(3.10) 0: Fix (1) x 1R -- Fix (1). 

Writing Fix (1) = Fixi (1)? Fixo (1), we see that the hypotheses of Theorem 2.1 are 
satisfied if we identify Fix, (1) with C in Theorem 2.1 and Fixo (1) with V0. [ 

Remarks 3.2. (a) Let H be the projection of I c F x S in F. Since S acts trivially 
on V0, we see that 

Fixo (Y) = Fixo (H)-{v E VO: hv = v Vh E H}. 

Thus, we have an alternative way of computing m in Theorem 3.1. 
(b) The hypotheses of Theorem 3.1 involve both I and R. Therefore, it is possible 

to find an appropriate I but to have the conditions (3.8b), (3.8c) on R fail. In these 
cases, R can sometimes be replaced by a time-reversal symmetry R'= yR for some 
y E F where R' satisfies (3.8b), (3.8c). 

4. Abstract structure of the Stokeslet model. Let X1, , Xn C 3 denote the con- 
secutive edges of an n-sided polygon in 3. Thus, the 3n-vector (xI,.* , xn) lies in 
the space 

(4.1) V (xI, Xn) E R3: x1 + +Xn = ?} 

Let e,, e2, e3 be an orthonormal basis of R 3 where e, indicates the vertical direction. 
The Stokeslet model, whose derivation is sketched in the Appendix, is 

n-2 

(4.2) Xi = E [ U(X+l + Xj+k)- U(xj-1 + **+ Xj-k)] 
k=I 

for j 1, , n where the indices are taken mod n and where 

e, ~x3 (4.3) U(x)= +(e,, x)- x E-R3. 

U is called the Stokeslet. Note that gravity is assumed to act in the xl-direction. 
We make three observations concerning this model. 
(i) Dn x 0(2) is a group of symmetries of (4.2). 
(ii) Regular horizontal n-gons are equilibria that are fixed by a subgroup F c: Dn x 

0(2) isomorphic to Dn. 
(iii) There is a time-reversal symmetry fixing regular n-gons. 
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We discuss these points in order. 
An action of 0(2) on D3 is generated by 

1 0 0 
(4.4a) Ro= (0 cos (0) -sin (0) V0 E SO(2), 

0 sin (0) cos (0) 
I 0 0 

(4.4b) K= 0 1 0 

O O -1 

This action extends to V by 

(4.5a) 0- (xl, * , xn) = (Rox1, , RoXn), 

(4.5b) K (X1, * Xn) = (KX1,, 9 KXn). 

The dihedral group Dn, the symmetries of a regular n-gon, has 2n elements and 
is generated by an element of order n and a reflection of order 2. An action of Dn on 
V is defined by 

(XI, *** Xn ) (X2 9 , Xn , XI), 

(4.6) 
(XI, *** Xn)e (Xn, Xn-1 , X1). 

The Stokeslet model (4.2) is equivariant with respect to these actions of 0(2) and 
Dn. This is clear for the permutation symmetries (4.6). 0(2)-equivariance is verified 
by first observing that 

(4.7) U(yx) = yU(x) Vy E 0(2). 

Using this group action it is simple to write down the regular n-gon. Let 

(4.8) On = 2%r/ n, 

fix xl in the horizontal e2, e3 plane, and set 

(4.9) xj+1 = Ro,,x, (j = 1,*I , n - 1). 

Using (4.7) it is now a simple matter to show that the regular n-gon (4.9) is an 
equilibrium for (4.2). 

The precise subgroup of Dn x 0(2) fixing (4.9) depends on the choice of xI, though 
it is always isomorphic to Dn. Henceforth, we assume 

X1 = Ro,,12e3 

and call the symmetries of this regular n-gon F. F is generated by 

(4.10Oa) W(X1 , Xn) = (-Own) * (X29 *. **I Xn, XI), 

(4.10Ob) 3(XI, Xn) = -K - (Xn, Xn-1, Xl). 

Finally, 

R1 ) 

extends to a time-reversal symmetry of (4.2) by 

(4.11) R tt(xl R fe r rXn) = (Rxe r h a n Rxn)g 
Note that R fixes regular horizontal n-gons. 
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5. Group theoretic restrictions on (df),0. Spatial and time-reversal symmetri'es 
greatly restrict the form of the matrix 

(5.1) L= (df )XO. 

In this section we use the specific group structure described in ? 4 to analyze L. This 
analysis is based on the following commutativity properties: 

(5.2a) Ly =yL Vy E F, 
(5.2b) LR =-RL. 

Recall from [GSS Chap. XII, ? 2] that an isotypic component of V corresponding 
to an irreducible representation W of F is the sum of all irreducible subspaces of V 
that are F-isomorphic to W. Standard theorems show that L can be block diagonalized 
with respect to the isotypic decomposition of V into isotypic components. To describe 
these isotypic components we begin by listing (up to isomorphism) all of the irreducible 
representations of Dn. See Miller [M] for a proof that what follows is a complete list. 

The irreducible representations of F Dn are either one- or two-dimensional. The 
actual number and type of these representations depends on the parity of n. When n 
is even there are four nonisomorphic one-dimensional irreducible representations of 
F, determined by whether 16 and J (see (4.10)) act by +1 or -1. We denote these 
representations by W?^ where 16 acts by EI and J acts by 8L (Of course, 8, E = ?1.) 
W++ is the trivial representation. 

When n is odd there are only two nonisomorphic one-dimensional irreducible 
representations of F, namely, W++ and W,. This follows since 16 is a group element 
of order n and hence (C = I. Thus, if (C acts by -I, then (-_)n must be one, that is, 
n must be even. 

There are [(n - 1)/2] distinct two-dimensional irreducible representations of F. 
We denote these by Wk C for k = 1, ,[(n - 1)/2]. On Wk 

(5.3a) 'Cz = e Z 

(5.3b) 3/z = z-. 

Note that F acts absolutely irreducibly on each Wk, and that W-k, using the obvious 
extension to negative k in (5.3), is F-isomorphic to Wk. 

The isotypic decomposition of V is given by Theorem 5.1. 
THEOREM 5.1. (a) When n is odd 

V W++ W+ W W( ? W23 * W3)/2 

(b) When n is even 

V- W+? W+? W__ ( WI+?( W 3 ED ... W(n2)/2 

(c) On the repeated components WS, the time-reversal symmetry R acts by -I on 
the first copy of W and +I on the remaining copies. R acts as +I on the other (one- 
dimensional) representations. 

Before proving Theorem 5.1 we describe explicitly the consequences of Theorem 
5.1 for L=(df)xo. 

THEOREM 5.2. (a) L= 0 on W++, W+-, and W_. 
(b) LIWI? has a pair of simple eigenvalues ?A, where A is either real or purely 

imaginary. 
(c) LI Ws has a pair of eigenvalues ?A, each of multiplicity two, where A is either 

real or purely imaginary. When s = 3, L has a pair of zero eigenvalues and R I (ker L n 
W) = +I. 
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Remark. It follows that L has [n/2] +1 zero eigenvalues forced by symmetry and 
[n/2] independent pairs of eigenvalues with each pair either real or purely imaginary. 
In the generic case, when all of these independent eigenvalue pairs are nonzero, 
R Iker L= +I. 

Proof. Since L commutes with F, L leaves isotypic components invariant (see 
[GSS, Chap. XII, Thm. 3.5]). 

(a) As observed earlier (5.2b) implies that L has eigenvalues ?A. On a one- 
dimensional space A must equal zero. 

(b), (c) Suppose that y acts absolutely irreducible on W and diagonally on the 
isotypic component WS. Then Li WS has the form 

a11I ... a!sIN 

asiI ... assi/ 

where each aq1 e 1R. It follows that the eigenvalues of LI Ws are just the eigenvalue of 
the s x s matrix 

all ... a,, 

.S *-- 1S 
as I ... as 

each with multiplicity dim W Theorem 5.1(c) states that R(w1, w2, , Ws= 
(-wI, w2, I , ws). Thus (5.2b) implies that 

0 a12 ... a,, 

A 21. 

Any vector in (a1 2,* a, al ' c R ss- 1 yields two null-vectors for L I W'. Moreover, these 
null-vectors lie in the second through sth components of Ws and hence R +I on 
these null-vectors. 

Thus there is only one set of nonzero independent eigenvalues in A and since 
tr A = 0, these eigenvalues must be ?A where A is either real or purely imaginary. 0 

The remainder of this section is devoted to the proof of Theorem 5.1. 
Proof of Theorem 5.1. We begin by decomposing V= V1I ( V2 

(5.4a) VI = { (xi, *** xJ) E V: xj = ajel}, 
(5.4b) V2 = {(xi, **x) c V: xj - e = 0}. 

Observe that V1 and V2 are F-invariant subspaces, and that R= -I on V1 and +I 
on V2. 

We divide the proof of Theorem 5.1 into two lemmas. 
LEMMA 5.3. (a) When n is odd 

V2-W??? W? W1I W2 * W 2 

(b) When n is even 

V2 W+@ W+(3 W+(3 __@ WI 3 W2(G3 _ ED We2,_,. 

LEMMA 5.4. (a) When n is odd 
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(b) When n is even 

V1 = W-+? W1) * *(E W(n -2)/2 

We prove both of these lemmas by explicitly producing the irreducible subspaces 
making up V1 and V2 and counting the number of isomorphic representations. 

For 1 _ _ n -I define 

(5.5) V2,e= {(xI, ,xn) E V2: xj+l = Rto,xj}. 
Observe that 

(5.6) V2 V2 E . ** V2,e 

and that each V2 , is F-invariant. Indeed, if we identify a vector x C R 2 with x1 = x in 
V2[e, we may explicitly compute the action of W and - on V2,e. We find 

(5.7a) (x= R(f-1)0"x 

(5.7b) x =-KR_ o,,x. 
It follows from (5.7) that 16 acts trivially on V2,1 and that V2,1 decomposes into two 
one-dimensional irreducible representations (the eigenvectors of 3T) isomorphic to 
W++ and W+_. When n is even, 16 acts as -I on V2,n/2 and this space also decomposes 
into two one-dimensional irreducible representations isomorphic to W, and W_. 

F acts irreducibly on the remaining two-dimensional invariant subspaces in (5.6). 
Now (5.7a) shows that V2,e is isomorphic to We-, for f= 2, * * *, [(n - 1)/2] + 1; this 
yields one copy each of the distinct Wj's in V2. For f > [(n - 1)/2] + 1, the representation 
of F on V2[e is isomorphic to Wn11>1. (Here we use W-k -Wk.) Since 17? n -1 and 
n - f+ ?-2 it follows that W2 , W[(n(1)/2] each make a second appearance as 
irreducibles in V2. This proves Lemma 5.3. 

To prove Lemma 5.4 we define 

(5.8a) Vl k = R{v', v'}, where 

(5.8b) v' = (1, cos (k0), , cos ((n - 1)kO)), 

(5.8c) v' = (0, sin (kO),.*.*, sin ((n - 1)kO)). 

Here we use 0 = On = 27Tr/n. We assert that 

(5.9) VI = V1,1(3 * ... Vl,[n/2] - 

To verify (5.9) we first show that each V1,j c V1. Let (k = e ikO for 1 k n-1. Then 

v' = Re Fk and vk = ImM k 

where 

(1)k = (1, ?k ** k) 

Since kk # 1 is an nth root of unity 

I + (Pk +***+ k=? 

It follows that v,k v v C V1. 
Note that each V1 k is two-dimensional with the single exception that when n is 

even V1,n/2 is one-dimensional (since Vn/2 = 0). 
Next we show that each subspace V1,k is F-invariant and F-irreducible. Since all 

of the irreducibles are distinct representations of F, they must be linearly independent. 
Hence (5.9) will follow by a simple dimension count. 
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We compute: 

(5.1Oa) Wv' = cos (k0)v -sin (k0)v, 
(5.10b) Tv' = sin (k0) v + cos (k0)vk, 

(5.1Oc) Sv = -cos (k0)Vr+ sin (k0)vk, 

(5.1Od) SvT = sin (k0) V + cos (k0) v' 
It follows that each V1 k is F-invariant. Moreover, in the basis {Vk, vk}, '6 has the 
matrix form 

(cos (k0) sin (k0) 
k-sin (k0) cos (kO)! 

and hence the action of F on Vl,k is isomorphic to Wk. 0 
Remark 5.5. Let K be that part of ker (df),o that is forced to exist due to spatial 

and time-reversal symmetry. The space K consists of W++? W+ plus W__ if n is 
even plus the subspaces of Wj3 specified in the proof of Theorem 5.2(c). Observe that 
(5.11) FiXK ( ) = W++? W+_ 

since 6 acts nontrivially on W__ and by a nontrivial rotation on the relevant Wj'S. 

6. Two-dimensional fixed-point subspaces. Theorem 5.2 states that in the Stokeslet 
model the eigenvalues of (df)X0 are either real or purely imaginary. We expect, since 
it is true generically, that the real eigenspace Vi associated with a purely imaginary 
eigenvalue of (df)-0 will have the form (3.4), that is, Vi = WED W where the group 
F -D acts absolutely irreducibly on W. Moreover, in the Stokeslet model, the possible 
choices for W are any of the two-dimensional irreducibles Wk (1 c k - [(n - 1)/2]) 
and, when n is even, the one-dimensional irreducible W+. 

In this section we recall the classification-up to conjugacy-of all (isotropy) 
subgroups E c Dn x S' that have two-dimensional fixed-point subspaces. This 
classification is derived in [GSt] (see also [GSS, Chap. XVIII, ? 1]) and is implicit in 
[vGV]. We also describe briefly the implications of having symmetry I for each family 
of periodic solutions. 

When n is even and W = W-+ the eigenspace Vi is automatically two-dimensional. 
The symmetry of periodic solutions consists of those elements in Dn x S' that act 
trivially on W2+. By definition W acts by -1 and S by +1 on W,. Hence the group 
l generated by (W, r) and S acts trivially on W+ and I is the group of symmetries 
of the associated periodic solutions. Note that E is isomorphic to D,. 

These symmetries force solutions (xl(t), . .. , xn(t)) to have the form 
(6.1) (x, -R2eKX, R2x, -R4eKX, R40X, * * *,-KX) 

for all time t, where 0 = 2gr/n. To verify (6.1) observe that if (X, r) fixes a 2Xi-periodic 
solution, then 

Roexk+l(t+ r) = Xk(t) 

and solutions have the form 

(X( t), Rgx( t + v), R20X(0t,* R(n- I)OX( t + v))- 

Invariance under .- implies -KR(-,)6x(t+ T) = x(t). Thus 
x(t+ Tr) = -RKX(t). 

Substitution yields (6.1). 
Note that when n = 4 and x- e, = 0 (6.1) reduces to the rhombus 

(X, KX, -X, -KX). 
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In general, for n = 4, the horizontal projection of this periodic solution is a (time- 
dependent) rhombus whose opposite vertices move synchronously in the vertical 
direction e1. For general even n, these types of solutions project onto n-gons in the 
horizontal plane with sides of equal lengths, and alternate vertices move synchronously 
in the vertical direction e1. The actual horizontal n-gon, however, may be somewhat 
complicated. 

Next we consider solution types that may be associated with two-dimensional 
irreducible representations of D,. To simplify the discussion we first consider the case 
n = 3 and then indicate some of the differences when n > 3. The subgroups of D3 X S1 
that have two-dimensional fixed point subspaces are classified in [GSS, Chap. XVIII, 
Table 1.1 ] and are: 

(6.2) Z2(3fi), Z2(3, IT), Z3(W, 2X/13). 

Solutions (X1, X2, X3) having symmetry Z2(S) satisfy 

(6.3) X1=-KX3 and X2=-KX2. 

It follows that such solutions form isosceles triangles where the vertices of the side 
with unequal length move synchronously in the vertical direction. These are the type 
of solution found in the Stokeslet model by [H], [CLLS]. 

Solutions having symmetry Z2(3, '7) satisfy 

(6.4) Xl(t)=-KX3(t+ g) and x2(t)=-Kx2(t+I7)- 

Since IxII = Ix31 these solutions also form isosceles triangles. In this case, however, the 
endpoints of the side with unequal length move in the vertical direction with a precise 
half-period phase lag. 

Solutions having symmetry Z3AW, 2iX/3) satisfy 

(6.5) Roxj+I(t+2ir/3) = xj(t), j = 1, 2. 

Such solutions form equilateral triangles whose vertices move with precise one-third 
period phase lags. These solutions resemble three ponies on a (stationary) merry-go- 
round. 

Two complications arise when generalizing to the case n > 3. First, for the standard 
irreducible representation the isotropy subgroups differ slightly depending on whether 
n is odd or congruent to zero or two mod four. Second, there are [(n - 1)/2] different 
two-dimensional irreducible representations, each leading to solutions with slightly 
different geometric form. We consider these complications in order. 

Let W= W1 be the standard two-dimensional irreducible representation of D,. 
For each n 3 there are three (nonconjugate) isotropy subgroups of D, x S1 acting 
on W2 which have two-dimensional fixed-point subspaces and those are analogous to 
the n = 3 case. First, for all n there is a subgroup ;Z ( W, 2 iT/ n) whose solutions (as in 
the case n = 3) correspond to n ponies on a stationary merry-go-round. 

When n is odd there are solutions with Z2(S) symmetry. They have (n - 1)/2 
pairs of sides with equal lengths which move synchronously, the pairing of sides being 
given by S?. We call these solutions isosceles n-gons. The unpaired side has vertices 
that move synchronously. When n is even, the corresponding solution has symmetry 
7Z2(i) ?2( , r). So when n is even solutions are paired across a line connecting 
two opposite vertices and there is no unpaired side. Opposite sides (those with (n/2) - 1 
sides between them) move with a half period phase lag. 

Finally, when n is odd there are solutions with Z2(, IT) symmetry. Again sides 
are paired, as in the Z2(3f) case, but for these solutions paired sides move with a half 
period phase lag. When n 2 mod 4 solutions of this type persist but with symmetry 
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Z2(3, 17) i Z2( W"n/2 i). Again sides are paired across a line connecting opposite vertices 
and there is no unpaired side when n is even. Opposite sides move with a half-period 
phase lag. The two symmetries together force all but two (opposite) sides to come in 
quartets with two sides moving synchronously and two with the phase lag. When 
n-Omod4 isotropy of the third solution type is Z 2(1R27-,)n;2(rCn12I). Here 
solutions are paired across a line connecting the midpoints of two opposite sides. 
These pairs move synchronously while opposite sides move with a phase lag of one-half 
period. 

Periodic solutions corresponding to Vi = W2, where k > 1 differ from those with 
k = 1 in two ways. First when k divides n, egn/k acts trivially on Wk. Thus these periodic 
solutions all divide the n-gon into n/k groups of evenly spaced sides. All of the sides 
in each group move synchronously. The Dn symmetry reduces to Dn/k acting on these 
groups of sides-rather than individual sides. 

Second, when n and k are relatively prime, solutions behave similarly to the k = 1 
case with two exceptions. The ponies on a merry-go-round move to a different tune. 
You must move k ponies around to get to the one which is 2ii-/n out of phase. 
Similarly, when n is even, the sides which move with half-period time lag are not 
opposite but rather are separated by [- 1 sides where kf[ n/2 mod n. 

7. Periodic solutions in the Stokeslet model. In this section we apply Theorem 3.1 
to the Stokeslet model. It follows from Theorems 5.1 and 5.2 that there are [n/2] pairs 
of eigenvalues, ?A, of the Jacobian at an equilibrium regular n-gon which can be either 
real or purely imaginary. These eigenvalues have been computed by [H] for n ' 12. 
He finds that when n _ 7 there is at least one pair which is real and nonzero. In such 
a case the equilibrium regular polygons are saddles and are asymptotically unstable; 
this observation is consistent with experiments where the regular n-gons, for n _7, 
seem to break apart. For this reason, we focus here on the case 3 - n-' 6. 

To apply Theorem 3.1 with the isotropy subgroups described in ? 6 we need two 
additional pieces of information. First, the various distinct, purely imaginary eigen- 
values must be nonresonant. This point is trivially true for n = 3 and may be checked 
for the cases n = 4, 5, 6. It follows immediately that the simple eigenvalues correspond- 
ing to W+_ yield a family of periodic solutions when n equals four or six. 

Second, in the case of the two-dimensional irreducibles Wk, we need to observe 
whether the time-reversal symmetry R preserves Fixi (E). It turns out that R does 
preserve Fixi (E) for either E that is generated by reflections, but does not for -Zn. 
Consequently, using Theorem 3. 1, we will prove the existence of two families of periodic 
solutions (generalizing the synchronous and asynchronous isosceles triangles) for 
3 ' n-' 6. We will show in the next section that there are two-frequency, quasi-periodic 
solutions corresponding to n, but additional remarks are necessary to verify this point. 
These quasi-periodic solutions may be thought of as ponies on a (rotating) merry-go- 
round. 

The proof that the time-reversal symmetry R preserves Fixi (E) when E = Z2(3) 
or Z2(3, iT) is straightforward since R commutes with all spatial symmetries, including 
X, and with the phase shifts 0 and mr. This commutativity ensures that Fixi (E) is an 
invariant subspace for R. Note that R does not commute with (16, 2 Ir/n) and it is for 
this reason that Fixi (;n) is not invariant under R. 

In Table 7.1 we list all of those families of periodic solutions whose existences 
are proved by combining the calculations of [H] with Theorems 3.1 and 5.1. 

8. Quasiperiodic solutions in the Stokeslet model. Krupa [K] considers bifurcation 
from group orbits of equilibria and, indeed, in the Stokeslet model the basic equilibrium, 
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TABLE 7.1 
Periodic solutions determined for n particles in the Stokeslet model with 3 _ n 6. 

(See ? 8 for quasi-periodic solutions.) 

n W Solution type Isotropy 

3 WI Synchronous isosceles triangles 22(fq 

Asynchronous isosceles triangle Z2(J, rr) 
4 W-. Synchronous rhombus D4((W, IT), ) 

WI Rectangles Z2( 3R,/2) 
Isosceles quadrilateral Z2(y) 

5 WI Synchronous isosceles pentagon 1 Z2(y) 
Asynchronous isosceles pentagon 1 2( , rr) 

W2 Synchronous isosceles pentagon 2 Z2(y) 
Asynchronous isosceles pentagon 2 2(J, rr) 

6 W_+ Synchronous equilateral hexagon D6(( , Ir), r) 
WI Synchronous isosceles hexagon 1 22u ) 

Asynchronous isosceles hexagon 1 Z2(3, rr) 
W2 Synchronous isosceles hexagon 2 Z2(y) @ 2( 63) 

Asynchronous isosceles hexagon 2 Z2(3, 7T)? 2( 3) 

the regular n-gon, lies on an 0(2)-orbit of such equilibria. Until now, we have neglected 
these symmetries having needed only to concentrate on the discrete Dn symmetry to 
obtain our results. We will use Krupa's results to reduce the dimension of the Stokeslet 
model by one-essentially we quotient by the space W+_ in the isotypic decomposition 
of Theorem 5.1. On this reduced space, we use Theorem 3.1 to prove the existence of 
the periodic ponies on stationary merry-go-round solutions. Finally, we show that the 
periodic ponies correspond to two-frequency trajectories in the full phase space. These 
solutions may be interpreted as ponies on a rotating merry-go-round. 

We begin by describing Krupa's results along with their adaptation to the time- 
reversible situation. Let A be a compact Lie group acting linearly on lRn. Let f(x) be 
a smooth A-equivariant vector field with equilibrium xo. Let X = Axo be the group 
orbit of equilibria containing xo and let F be the isotropy subgroup of xo in A. 

THEOREM 8.1. There exists a A-invariant tubular neighborhood N of X and a 
decomposition on N 

(8.1) f =fT +fN, 

where 
(i) fT andfN are smooth and A-equivariant, 
(ii) fT is tangent to group orbits of A, 

(iii) fN is normal to X. 
Remark. By "normal to X" we mean the following. Let 17: N -- X be the projection 

associated with the tubular neighborhood and let Nx be the fiber I7-1(x) for all x C X. 
(We can certainly choose N so that Nx is normal to X in ln.) Then "fN is normal to 
X" means that fn (y) c N,(Y) for each y c N. 

The second result concerns the relationship between solutions of the differential 
equations dx/dt=f(x) and dy/dt=fN(y). 

THEOREM 8.2. Let x(t) be the solution to dx/dt =f(x) with initial condition x(O) = 
yo E Nxo. Let y(t) be the solution in Nxo to dy/dt =fN (y) with the same initial condition 
Y(O) = Yo. Then there exists a smooth curve 8(t) c A with 8(0) = 1 satisfying 

x(t) = (t)y(t). 
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Remarks 8.3. (a) We can think of 8(t) as representing a drift in the solution x(t) 
along the group orbit through y( t). In the Stokeslet model, group orbits of A = 0(2) x D" 
are finite unions of circles. So if y(t) is periodic and 8(t) is nonzero, we expect x(t) 
to be a flow on a 2-torus. 

(b) In general, 8(t) can be chosen to be a one-parameter group in A. Hence, the 
closure of the image of 8 is Abelian and hence a torus. 

(c) Whether drifting actually occurs (8(t) # 1) depends on whetherfT is nonzero 
on y(t). Generically, it can be determined from group theoretic calculations alone 
whether drifting is possible. For any given f, however, such as the Stokeslet model, 
we need to check explicitly thatfT is nonzero. Not surprisingly, for the Stokeslet model, 
these algebraic conditions show that drifting is not possible (that is, fT(y(t)) 0) for 
the periodic solutions constructed in ? 7. We show below that fT # 0 for the ponies on 
a merry-go-round solution. 

We now show how the decomposition (8.1) respects time-reversibility. We assume 

f(Rx) = -Rf(x) 

for some orthogonal matrix R that commutes with A. We also assume Rxo = xo for the 
equilibrium xo off We assert: 

(8.2a) R(TxAx)= TRxA(Rx) and RNx = Nx, 

(8.2b) fN (Rx) =-RfN (x), 

(8.2c) fT(Rx) = RfT(x). 

We actually prove (8.2) only when the dimension of group orbits in N is constant, 
though this restriction is not necessary. To verify (8.2a) let z(t) = 8(t)x be a curve in 
the group orbit of A through x. The typical element of Tx Ax is v = dz/dt(O). Observe 
that 

Rv = d R8(t)x = d - (t)Rx c TRX ARx, 
dt dt 

since R commutes with A. Note that Rx = x since Rxo = xo and R commutes with A. 
Hence R(TxX) = TX and since R is orthogonal R(Nx) = Nx. 

To verify (8.2b) observe that 

0 = Rf(x) +f(Rx) = [RfN(x) +fN(Rx)] + [RfT(x) +fT(Rx)] 

where the first sum lies in N,(,) and the second sum lies in TRXA(Rx). By assumption 
these spaces are transverse; hence each sum is zero. 

Remarks 8.4. (a) In the Stokeslet model fT is tangent to SO(2) group orbits. 
Tangent vectors to such orbits are horizontal, that is, perpendicular to e1. R acts 
trivially on fT. Thus (8.2c) is fT(Rx) =-fT(x). 

(b) Indeed, if we define 

(8.3) dRe 
dO 0=0 

then tangent vector fields all have the form a(x)Jx where 

(8.4) a(x) f(x) Jx 
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Note that by abuse of notation 

Jx = (Jx, JxJ, where J= 0 0 I 
O -1 0 

In the Stokeslet model, we fixed an equilibrium regular n-gon x0 by (4.9) and 
(4.10). For this equilibrium the isotropy subgroup F- D, is defined by (4.11). It is 
easy to check that the A = D, x 0(2) group orbit through xo is one-dimensional and 
the tangent space to this group orbit is W,. (To verify this assertion we show that W 
acts trivially on the tangent space while 3? acts as -L) Thus Nx. is the sum of all 
isotypic components of V under F as listed in Theorem 5.1 except for W+_. We now 
show, using Theorem 3.1, that there is a family of periodic solutions for fNINx. 
corresponding to isotopy E = ;Z,(W, 2i-/ n). These are the ponies on a stationary 
merry-go-round. 

As indicated in the last section, we cannot use the time-reversal symmetry R to 
prove directly the existence of the periodic solutions. The obstacle is that R does not 
leave the subspace Fix, (E) invariant. To see this, observe 

(8.5) R - (W, 2,gl n) = (W, -2,g n) R. 

Hence, if v c Fixi (E), then Rv is fixed by ( X, -2ir/ n). As shown in [GSS, Chap. XVIII] 
the subgroups E and '= Z(, -2ir/n) are conjugate (indeed 3?: Fix (1) -> Fix (')) 
and Fix (1)IFix (E'). 

We now apply Theorem 3.1 to the time-reversal symmetry R'= JR. This time- 
reversal symmetry does leave Fix (E) invariant, but now we must check that (3.8c) is 
valid for R'. Namely, we must verify that 

(8.6) R'l Fixo (E) = L 

Remark 3.2 implies that Fixo (1) = Fixo (W) and Remark 5.5 states that Fixo (W)= 
W++3 W,. Clearly, R'l W++ = I since both R and J act trivially on W++. The same 
is not true for W, since J acts nontrivially on W+_; that is why we are obliged to 
use the normal vector field fN and Theorem 8.1. Indeed, W+_ is not in the domain of 
fN and (8.4) is satisfied forfN. Thus, ponies on a stationary merry-go-round exist forfN. 

In the remainder of this section we verify that these ponies drift around the 0(2) 
group orbits, as described in Theorem 8.2. To do this we must first give a precise 
definition of drift. Write the Stokeslet model abstractly as 

dx 
(8.7) d = F(X), dt 

where F = FN + FT, as in Theorem 8.1. Let y(t) denote ponies on a merry-go-round 
solution for FN which is T-periodic, and let x(t) denote the corresponding trajectory 
for F. It follows from Theorem 8.2 that there exists a curve 8(t) in SO(2) such that 
x(t) = (t)y(t). 

DEFINITION 8.5. Drift occurs on y(t) if 8(t) # 1. The net drift of y(t) is 8(T). 
If the net drift is unequal to one, then the solution x(t) will drift around a 2-torus. 

If 8(T) and T are rationally independent, then x(t) will be a true two-frequency 
motion and its trajectory will be dense on a 2-torus. 

So to determine whether x(t) has two-frequencies, we must compute 8(T). It 
follows from (8.7) that 

(8.8) d Y = AFT(y). 
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Using Remark 8.4(b), we write FT(y) = a(y)Jy for some smooth function a(y}. We 
can also rewrite 8(t) = R,(t) with 0 (0) = 0. This gives 8 explicitly as a curve in the 
action of SO(2). Direct computation using the definition of Ro leads to 

(8.9) dt R= RJ. 

Substitution of (8.9) into (8.8) yields 

(8.10) ) = -a(y(t)). 

Integration of (8.10) yields a formula for the net drift: 

(8.11) 0)(T)= - a(y((t)) dt. 
0 

Thus, to compute 0(T) we need formulas for a(y) and y(t). The formula for a 
in terms of F is given by (8.4); the more complicated part of this calculation involves 
finding an approximate formula for y(t). To simplify the exposition we restrict our 
attention to the three particle Stokeslet model. 

For n = 3, (4.2) states 

F(y) = ( U(y2) - U(y3), U(y3) - U(y1), U(y1) - U(y2)). 

Using (4.3) and (8.4), we find that 

a(y)= j [el,y< YI Y J(Y3-Y2) 

(8.12) 

+ el Y2 
J(Yl - Y3) + ey 3 Y3 

J(Y2-Yl)] 
JY2 3V I3 Y3~ 

Recall from (6.5) that ponies satisfy 

y(t)= (p(t), RoP t+-), R2op( t+-)), 

where 0 = 2-T/3. It follows that integrating each of the summands in (8.12) yields the 
same value. Hence 

1 2 
(8.13) O(T) = -3 X~ - (el, yl)(yl, J(Y3-Y2)) dt. 

Recall that Theorem 3.1 guarantees that FN has a continuous family of Ti-periodic 
ponies yE (t) with yo(t)-xo. Hence 

(8.14) YE (t) = xO + cz(coEt) + 0(c 2), 

where z(it) is 2iT--periodic, cE = T1/2iT, and from (4.9) 

(8.15) xO= (R0/2e3, R30/2e3, R5 /2e3)- (xl, X2, x3). 

Indeed, if we rescale time in the Stokeslet model so that the imaginary eigenvalues of 
(dF)XO are ? i, then the proof of Theorem 3.1 shows that TE = 21r + O(?2). 

THEOREM 8.6. ?)(TE) = K 2+ O(?3), where K $ 0. 
Remark. Theorem 8.6 implies that ?)(TE) is nonzero for small values of E and 

hence net drift is nonzero. Since both 4 and T vary continuously with 8, it follows 
that for most values of 8 near zero ?)(TE)/ TE is irrational. Hence, the corresponding 
trajectories x,(t) for the full Stokeslet model are dense in 2-tori. 
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The proof of Theorem 8.6 is based on the explicit calculation of z(t)- 
(zI(t), z2(t), z3(t)), which we summarize by Lemma 8.7. 

LEMMA 8.7. There exist a horizontal vector h and a 2iir-periodic function c(t) such 
that 

(8.16a) zl(t) = c(t)el + R,h, 

(8.16b) z2(t) = c(t + O)el + Rt+20h, 

(8.16c) Z3(t) = c(t+20)el +Rt,+h. 

Proof of Theorem 8.6. Since el - x4=0, ( (T,) is at least order E. Indeed, (T,) 
is of order at least E2 since from (8.16a) the order E term is 

rT 

c f c(cojt) dt = 0, 
0 

where C--xo * J(x?- xo) :# 0. 
Up to nonzero constant multiples, there are four terms contributing to the order 

2 term in (t(TE): 
(i) lfo el (order E2 term in Yl) dt, 
(ii) Jo c(wEt) * (order E term in Yi * J(Y3-y2)) dt, 
(iii) Jo c(Et) * (order E term in IJyK) dt, 
(iv) T c(wet) * (order E term in ly1l-3) dt. 

We show that the first three of these are zero and that the fourth is nonzero. 
To verify that (i) is zero, recall that y is in V and hence that Yi + Y2 + y3 = 0. Thus, 

from (8.12), the sum of the contributions of the three integrands is zero. 
To compute (ii), observe that the order e term in Y* J(y3-y2) is z *J(x4-xO)+ 

x4 J(z3 - z2) which, after substitution of (8.15) and (8.16), is identically zero. 
Contribution (iii) is shown to be zero by verifying that 

IJyI = 3+ 0(?2). 
Finally, we compute (iv). By direct calculation 

lyll3= 1-3rc(co,t)+O(r2). 

Since J0 C(WCt)2 dt > 0, we have proved the theorem. 0 
Proof of Lemma 8.7. The basic idea behind the Lyapunov-Schmidt reduction 

proof of the existence of periodic solutions in Theorem 3.1 is to restrict the reduced 
operator to the invariant subspace Fix (E) and to find solutions on that subspace. The 
difficulty in actually finding these periodic solutions in the phase space V occurs when 
E is a subgroup of F x S' having elements with a nontrivial temporal (Sl) part. Since 
S' does not act directly on V (it does act by phase shift on W2A, it is somewhat difficult 
to find Fix (;) in V. Indeed, for the ponies solutions, I= Z&(, +2ir/3), with either 
choice of sign possible. 

In the Lyapunov-Schmidt reduction, however, we find periodic solutions by 
implicitly solving certain equations for higher order terms that are functions of periodic 
solutions of the linearized equations. More precisely, let cW be the space of 2Vr-periodic 
solutions to du/dt = (dF),ou. That is, w is spanned by eitv where v is an eigenvector 
of (dF),0 with eigenvalue i. On the space V, S1 acts naturally by phase shifts and we 
can find Fix (E). Moreover, the periodic solutions in 3W are, after rescaling the period 
by Ct), the first order approximations to the actual periodic solutions of the Stokeslet 
model. Hence, we can prove the lemma if we can identify Fix (;) inside 'W. 
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Recall from Theorem 5.1 that (dF)XO has an invariant subspace isomorphic to WI, 
which is V1? V2,2 in coordinates. See (5.8), (5.6). According to Theorem 5.2, the 
eigenvalues of L -(dF)xol W are either real or purely imaginary, and the remaining 
eigenvalues are zero. Indeed, [H] shows that the nonzero eigenvalues are purely 
imaginary, and we have rescaled time so that they are ?i. In addition, Theorem 5.2 
implies that 

0 aAA 
L bA-1 o 

where A: V2,2-> V1 is a fixed F-equivariant isomorphism and ab =-1 since the 
imaginary eigenvalues of L are ?i. Replacing aA by -A, we see that 

l0 -A\ 
L=Q~ A 

The periodic solutions in cW are generated by 

(8.17) exp (tL)- (CosWlt -sin (t)AN 
\sin (t)A-1 cos (t)I / 

Note that (8.17) determines the action of S1 explicitly. 
We now use the symmetry of ponies solutions and (8.17) to determine the function 

z(it) explictly. Let (p, q) c V2,2? V1 and let 

(8.18) z(t) = e"L(p, q) 

be a periodic function in 'W. Then z((t) is a ponies periodic function if Wz(t+ 0) = (t) 
It follows that 

(8.19) e-L(p, q) = ((p, Wq). 

Using (8.17), we can parametrize solutions to (8.19) by 

1 
(8.20) p =- A(I+2W)q Aq', 

where q c V2,2 is arbitrary. 
Since q is in V22, it has the form (h, R6h, R26h) for some horizontal vector h. See 

(5.5). Using the action of W on V22 (see (5.7)) it follows that q' = Jq. We can now 
rewrite (8.20) as 

(8.21) p = AJq. 

Next, we use (8.17) and (8.18) to show that 

z(t) = (AJ (cos (t )I + sin ( t)J)q, (cos (t )I + sin ( t)J)q). 

Finally, we observe that on V2,2 

Rt = cos ( t) I + sin ( t)J. 

Hence, 

z(t) = (AJRtq, Rtq), 

which proves the lemma since the first component of AJR,q is both a periodic function 
in t and a vertical vector (being in V1), and the first component of Rtq is Rth and h 
is a horizontal vector. O 
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9. Remarks on stability. In this section we discuss the stability of the families of 
periodic and quasi-periodic solutions that we found for the three-particle Stokeslet 
model. Although many of our comments will be valid for the general n particle model, 
we consider here only the technically less complicated three-particle case. 

Our discussion will focus on linear stability, though we will remark briefly on the 
issue of nonlinear stability at the end of the section. Our results are similar to those 
of [MRS], who consider linear stability for periodic solutions of general Hamiltonian 
systems with spatial symmetry, and specifically consider D3 symmetry in the Henon- 
Heiles system. 

As in Hamiltonian systems, periodic solutions in time-reversible systems that are 
fixed by a time-reversal symmetry cannot be asymptotically stable, since if one trajectory 
approaches the cycle in forward time another must approach the cycle in backward 
time. Thus linear stability of such periodic solutions must correspond to Floquet 
exponents on the imaginary axis, the elliptic case, and instability to Floquet exponents 
with nonzero real part, the hyperbolic case. 

When n = 3 the Stokeslet model is posed on the six-dimensional space V= W++,D 
W+_ 0 W2 where W-C. In fact, continuous spatial symmetries force stability questions 
onto the four-dimensional subspace W2. Besides the rotational symmetry S0(2), whose 
tangent space at the equilibrium xo is W+, there is a scaling symmetry for the Stokeslet 
model (which until now has not been used explicitly): 

1 
(9.1) F(rx)= - F(x). 

r 
See (4.3) to verify (9.1). The tangent space to the scaling symmetry is W++, correspond- 
ing to equilibrium equilateral triangles of varying side length. Thus, when considering 
orbital stability, we need only view the stability of periodic solutions to the normal 
vector field FN (defined on W??03 W2) restricted to W2. 

Our discussion in ? 6 shows that there are three families of periodic solutions to 
FN: ponies on a merry-go-round, Z3(6, 2ir/3); synchronous isosceles triangles, Z2(J); 
and asynchronous isosceles triangles, Z2(J, IT). We prove the following theorem. 

THEOREM 9.1. Generically, Z3(%', 2Xg/3) periodic solutions are elliptic, and one of 
the isosceles triangles solutions is elliptic while the other is hyperbolic. 

Sketch of the proof. Our proof relies on many of the calculations presented in 
[GSS, Chap. XVIII], which we summarize here. The Poincare-Birkhoff normal form 
of FN on _2 has D3 x S1 equivariance-up to any finite order. Following [GSS, 
Chap. XVIII, Prop. 2.1] the normal form vector field has the form: 

r~~ir 2- - r 2~ 31 3 
(9.2) (ZI, Z2) =A[ Z2 J+2jZ + A3[ 3Z2 +A4 ZZ 

where the Aj are complex-valued functions of 
= lz112+ Z12, p = 1z1121z12, S = (z1f2)3+ (z2)3, 

(9.3) 
T= i(1zI12-_z212)((z If2)3-(fzIZ2))3. 

Normal form can be achieved respecting the time-reversal symmetry R(zl, Z2)= 
(z-1, Z2). The anticommutativity of (9.2) with respect to R implies that 
(9.4) Aj = aT+ iaj (j = 1, * * *, 4), 
where the aj and a, are real-valued functions of N, P, S since 

T =(4P-N 2)(S2 -4P 3). 

See [GSS, Chap. XVIII, (2.2)]. 
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For the normal form equations, the Floquet equations can be transformed to 
constant coefficient equations and solved explicitly [GSS, Chap. XVI, Prop. 6.4]. We 
denote the Floquet matrix for a periodic solution u(t) by Mu. 

By general theory, we know that both eigenvalues of MU restricted to the two- 
dimensional subspace Fix (E), where E is the isotropy subgroup corresponding to u, 
are zero. One zero eigenvalue corresponds to the eigenvector u'; the other zero 
eigenvalue follows from the fact that Fix (E) is foliated by periodic trajectories 
(Theorem 3.1). Thus, linear stability is determined in the two-dimensional E-invariant 
subspace VI transverse to Fix (E). 

For the Z3 solutions, MU is a rotation matrix on VI [GSS, Chap. XVIII, Table 3.4] 
and time-reversal symmetry implies that this rotation must be by Ii/2. Hence the 
eigenvalues of MU I VI lie on the imaginary axis. Assuming that these eigenvalues are 
nonzero, which is implied by a nondegeneracy condition on the third-order terms in 
the normal form equations g, the ponies are elliptic-at least in normal form. 

When normal form is broken at high order, the ponies still remain elliptic. The 
two zero eigenvalues of the Floquet equations are still forced by u' and the family of 
periodic solutions: by continuity the other two eigenvalues must be nonzero and close 
to purely imaginary. Time-reversal symmetry implies that these eigenvalues are ?A 
even when the equations are not in normal form, and hence these eigenvalues must 
remain purely imaginary. 

For the Z2(3f), Z2(, 1T) solutions, time-reversal symmetry implies that the trans- 
verse eigenvalues are ?A, and hence either elliptic or hyperbolic. Which occurs depends 
on the sign of det (MU I VI). These determinants are computed for normal form equations 
in [GSS, Chap. XVIII, Table 3.2] and, at lowest order, have opposite signs. Indeed, 
the sign of this determinant is determined by the sign of a2(O)a3(O), thus yielding a 
nondegeneracy condition involving terms of fifth order in the normal form equations. 
When normal form symmetry is broken at order greater than five, the argument given 
for the ponies solutions applies here also. Thus, generically, one of the isosceles 
triangles solutions will be elliptic and one hyperbolic. 0 

We end by discussing briefly nonlinear stability. As noted above, we know that 
these periodic solutions will never be asymptotically stable. There is, however, a KAM 
theory for time-reversible systems indicating the existence of invariant 2-tori for the 
normal vector field FN surrounding the periodic solutions. See Sevryuk [Se] and 
Scheurle [Sc]. These results do not apply to cases of 1:1 resonance in the eigenvalues 
of the Jacobian (dFN)XO. Because of D3 symmetry, this 1:1 resonance is forced. 

Let us speculate that the source of the multiple eigenvalues, the spatial D3 
symmetry, restricts the form of the equations sufficiently so that Scheurle's proof can 
be adapted to this symmetry case. Then, typical trajectories of FN would lie on invariant 
2-tori. We also speculate that due to the drift, computed in ? 8, 2-tori near the ponies 
for FN would lead to three-frequency motion in the full six-dimensional Stokeslet 
model. 

Appendix. Derivation of the Stokeslet model. Under the assumption of small 
Reynolds number based on sphere radius, the Stokes equations: 

(Ala) , Au - Vp = 0, 

(Alb) V * u = 0 

with appropriate boundary conditions, describe the sedimentation of solid spheres. In 
(Al) u is the fluid velocity, ,u is the viscosity, and p is the pressure. Let U be the 
fundamental solution (Green's function) of (Ala) given in (4.3). The fluid velocity at 
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position y due to a point load mge, at position x is given by the Stokeslet rU(y-x) 
where r = mg/ 8 iT)u. 

Consider a system of n identical spheres with radius a, sedimenting under the 
action of gravity. Let zj be the center of the jth sphere. If u is the velocity of the fluid, 
then Faxen's first law (cf. [CR], [HB]) states that the velocity v of a sphere with radius 
a, under the action of a force F, is given by 

v = u + F/67rtt a. 
Therefore, the relative motions of the system of n spheres are governed by 

dx 
dt 

where xj = zj+1 -zj; uj is the fluid velocity experienced by the jth sphere which depends 
on the positions of the other n - 1 spheres. In the point particle limit, i.e., a -> 0, and 
after rescaling time, the governing equations become (4.2). 
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