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A Torus Bifurcation Theorem with Symmetry
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A general theory for the study of degenerate Hopf bifurcation in the presence
of symmetry has been carried out only in situations where the normal form
equations decouple into phase/amplitude equations. In this paper we prove
a theorem showing that in general we expect such degeneracies to lead to
secondary torus bifurcations. We then apply this theorem to the case of
degenerate Hopf bifurcation with triangular (D,) symmetry, proving that in
codimension two there exist regions of parameter space where two branches of
asymptotically stable 2-tori coexist but where no stable periodic solutions are
present. Although this study does not lead to a theory for degenerate Hopf
bifurcations in the presence of symmetry, it does present examples that would
have to be accounted for by any such general theory.
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1. INTRODUCTION

One of the more interesting features of degenerate Hopf bifurcations in the
presence of symmetry is the appearance, via secondary bifurcation, of
quasiperiodic motion on a torus. In this paper we concentrate on two-
parameter systems of ODE and prove theorems that allow us to find and
compute the direction of branching for some of these tori. The advantage
of our approach is that we determine this information using only the
Taylor expansion of the vector field at the point where degenerate Hopf
bifurcation occurs.

The simplest form of Hopf bifurcation with symmetry group I occurs
as follows. We assume that [" is a compact Lie group acting absolutely

! Department of Applied Mathematics, Universiteit Twente, P.O. Box 217, 7500 AE,
Enschede, The Netherlands.
2 Department of Mathematics, University of Houston, Houston, Texas 77204-3476.

133
1040-7294/90/0400-0133806.00/0 © 1990 Plenum Publishing Corporation

865/2/2-2



134 van Gils and Golubitsky

irreducibly on a vector space V, that is, the only matrices on V' which
commute with I” are multiples of the identity.
Let

dzjdt=f(z,)), zeV@®V=V®C (1.1)

be a system of ODE where f is I-equivariant. In complex coordinates,
absolute irreducibility implies that

flz, )=a(l)z+ --- (1.2)

where a(1) e C. We say that (1.1) has a Hopf bifurcation at 1 =0 if a(0) is
purely imaginary.

The standard Hopf theorem (V' =R, I'= 1) states that if the eigenvalue
crossing condition

d
—> Re(a)(0) #0 (1.3)

holds, then there exists a unique branch of periodic solutions to (1.1).
Moreover, if a certain coefficient y, involving the second- and third-order
terms in f satisfies

Hy #0 (1.4)

then the direction of branching (supercritical or subcritical) and the
asymptotic stability of these periodic solutions are determined. We call a
Hopf bifurcation degenerate if either (1.3) or (1.4) fails. Such singularities
are studied by Takens (1974) and Golubitsky and Langford (1981).

In Hopf bifurcation with symmetry we have a degeneracy if either the
direction of branching or the asymptotic stability of a branch of periodic
solutions is not determined at the lowest order that it could have been. We
are interested in such degeneracies because they may be unavoidable in two
parameter systems. Degenerate Hopf bifurcations with O(2)-symmetry have
been studied extensively for the past few years and the results concerning
this specific case are discussed in Section 2.

We now explain why one should expect invariant tori to be produced
by perturbing certain of these degeneracies. To do this we recall some of
the theory of Hopf bifurcation with symmetry. We assume that f is in
Birkhoff normal form, that is, we assume that

fis I'x S'-equivariant (1.5)
where for x®ce V®C we have (y, )(x®c)=(yx)® (ec). The S!
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symmetry comes from phase shifts. We detect branches of periodic
solutions by choosing a subgroup X < I"x S' such that

dim Fix(Z) =2 (1.6)
where
Fix(2)={zeV®C:0oz=2zYoel} (1.7)

In normal form f:Fix(2)x R - Fix(2). Thus, the differential equation
{1.1) restricted to Fix(ZX) satisfics the hypotheses of standard Hopf bifurca-
tion. In particular, if (1.3) and (1.4) hold for the restricted system, then
there exists a branch of periodic solutions for (1.1) in Fix(2) and the
direction of branching (in 4) is determined. [Golubitsky and Stewart
(1985) show that the assumption that f is in Birkhoff normal formal is not
needed to prove these points. ]

Stability of these solutions, however, is not determined by the
standard Hopf theorem, since the Floquet multipliers corresponding to
eigenvectors in Fix(X)* also enter into this determination of stability. In
this paper we focus on degeneracies produced when determining stability
along known branches of periodic solutions obtained using (1.6).
Specifically, suppose that one tracks along a branch of periodic solutions
and that at some special value 2 = 1, the periodic solution loses stability by
having a simple complex conjugate pair of Floquet multipliers cross
through the unit circle with nonzero speed. The torus bifurcation theorem
(see Tooss, 1979) guarantees the existence of invariant tori. Suppose now
that (1.1) depends on a second parameter u and that the critical value 4,
also depends on u. We can imagine a situation where as u is varied 4,
moves into the origin, say at u=0. When this happens we will find a
degenerate Hopf bifurcation with symmetry. Moreover, it seems reasonable
that the speed of the Floquet exponent that crosses through zero and the
direction of branching of the branch for tori can be determined from the
Taylor expansion of f at the origin and with A and p set to zero. Our
results are summarized in Theorems 4.5 and 4.6.

It is important to understand what the effect of the S’ symmetry is,
that is, what will happen when this symmetry is broken at high order. In
this respect it is notable that the two frequencies of the 2-torus are of
different orders of magnitude. This disparity often occurs in resonance
problems and here, due to spatial symmetry, we have 1:1 resonance. Hence
a quotient of the frequencies will vanish at A= u=0. Nevertheless, generi-
cally we can independently control the variation of these frequencies.
Although standard theorems of dissipative KAM theory do not apply
directly, this control seems sufficient to conclude that invariant 2-tori will
persist on a Cantor set of large measure. See van Gils er al. (1989).
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We note that several authors have considered the bifurcation of tori
from branches of periodic solutions. See Renardy (1982), Rand (1982), and
Ruelle (1973). An important point here is that the Floquet matrix itself
commutes with the isotropy subgroup 2, and as a result the Floquet multi-
pliers may be forced by symmetry to have high multiplicity. See Chossat
and Golubitsky (1988). Thus the assumption above that the Floguet multi-
pliers are simple may not always be satisfied.

The scenario that we described above does happen in the case of O(2)
symmetry. However, as we explain in Section 2, there is a relatively simple
way to analyze the resulting tori (the torus bifurcation theorem is not
needed there). In addition, the resuiting flow on the torus is particularly
simple. Symmetry forces the flow to be linear.

A more interesting example occurs in Hopf bifurcation with D, sym-
metry. Here the generic Hopf theory has been worked out (Golubitsky and
Stewart, 1986; van Gils and Valkering, 1986). Because in this case
dim V=2, it follows that dim Fix(Z)" =2 and the Floquet multipliers
discussed above must be simple. It is this example (itself motivated by
considering rings of oscillators) that has motivated our theorem. In
Section 3 we discuss the general results for Hopf bifurcation with D,
symmetry, while in Section 5 we illustrate our theorem by explicitly
calculating the direction of branching of tori in the D, case. Bifurcation
diagrams corresponding to degenerate Hopf bifurcation with D; symmetry
are presented in Section 6.

In Section 4 we present our hypotheses and theorems. This section can
be read directly after the Introduction since explicit knowledge of the O{2)
and D, examples is not needed for the general theory. The general theorem,
however, is obtained by abstracting aspects of these D, examples. In
Section 5 we show how to find two-frequency motions by applying
standard Hopf bifurcation results to a certain normal vector field whose
existence is determined in Section 4.

2. DEGENERATE HOPF BIFURCATION WITH 0O(2) SYMMETRY

We begin by surveying some of the results on degenerate Hopf bifurca-
tions with O(2) symmetry. This problem has been studied by Erneux and
Matkowsky (1984), Knobloch (1986), Chossat (1986), Golubitsky and
Roberts (1987), Nagata (1986), and Crawford and Knobloch (1988).

The action of O(2) on R*=C@®C is generated by

0(z1, z,) = (€%z,, €”z,), VO e SO(2) (2.1a)
K(zy, 23) = (24, 23) (2.1b)
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Consider the O(2)-equivariant system of ODE

dz
;l;t—=f(z, A), f(0,2)=0 (2.2)

depending on a bifurcation parameter 2. We assume that (2.2) has a Hopf
bifurcation at /= 0; due to symmetry the eigenvalues (1) & iw(4) of (df )o 4
are each of multiplicity two. By Hopf bifurcation we mean that ¢(0)=0,
w(0)=w, #0.

van Gils and Mallet-Paret (1984), Chossat and Tooss (1985),
Golubitsky and Stewart (1985), and others have shown that if

a'(0)#0 (2.3)

then two branches of periodic solutions z(z) bifurcate from the origin, and
moreover, these solutions may be detected by their symmetry. They are

rotating waves (RW): 8z(¢) = z(1 — 0) (2.4a)
standing waves (SW): kz(¢) = z(1) (2.4b)

Generically, the exchange of stability for such systems goes as follows.
Assume that x=0 is asymptotically stable when 2 <0. Then for either
branch (2.4) to consist of asymptotically stable periodic solutions, both
branches must be supercritical, and then precisely one branch consists of
stable solutions. More precisely, there are two coefficients, derived from the
third-order terms of f, which determine the direction of branching of solu-
tions (2.4), with stability being determined by which coefficient is larger.

Ernecux and Matkowsky (1984) observed that when such systems
depend on two parameters,

dz

it is possible to arrange for a distinguished value of u, say u=0, where
both cubic coefficients are equal. They show that invariant 2-tori exist in
(2.5) for u near 0. The types of bifurcation diagrams which may occur are
shown in Fig. 5.3 of Golubitsky and Roberts (1987). [The direction of
branching and the stability of the 2-tori depend on fifth- and seventh-order
terms in /]

In retrospect the existence of these 2-tori can be understood in a
relatively simple way. First, assume that (2.5) is in Birkhoff normal form,
which means that now f may be assumed to be O(2) x S'-equivariant (cf.
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Golubitsky and Stewart, 1985). In normal form, (2.5) splits into phase-
amplitude equations where the amplitude equations have the form

dfr Jr . ¥

21|t v ateaoe-m|

{ Iz rZ _—r2
(2.6)

where r; = |z;|. Nontrivial equilibria (r,, r,) of (2.6) correspond to standing
waves (r;=r,), rotating waves (r,r,=0), or invariant 2-tori (r, #r,,
rir, #0).

Thus the Erneux and Matkowsky 2-tori are on the same footing as the
periodic solutions in the study of degenerate Hopf bifurcation with O(2)
symmetry. Swift (1984) noted that the amplitude equations (2.6) have
D, -symmetry [generated by (r,, r,)— (r;, —r;), (—ry,ry) and (r,, r)].
Therefore, degenerate O(2) Hopf bifurcations can be studied using D,-
equivariant singularity theory just as degenerate Hopf bifurcation without
symmetry can be studied by Z,-equivariant singularity theory (see
Golubitsky and Langford, 1981). The D ,-classification was carried out up
to (topological) D,-codimension two by Golubitsky and Roberts (1987).
See also Crawford and Knobloch (1988) or Golubitsky er al. (1988).

It should aiso be noted that these 2-tori have a special structure due
to the O(2) x S symmetry of normal form. The flow on the 2-tori is linear.
Chossat (1986) has shown that this property persists, even if f is not
assumed to be in Birkhoff normal form. His technique is to use a
Liapunov-Schmidt reduction to look for two frequency solutions of the
form

2(1)=e“R,.q (2.7)

whjere R, is the rotation matrix corresponding to 8 € SO(2). The function
(2.7) has two independent frequencies if w/y is irrational.

3. GENERIC HOPF BIFURCATION WITH D, SYMMETRY

When #n = 3 the group D, has two-dimensional irreducible representa-
tions. Thus, in systems with D, symmetry, Hopf bifurcation from a
D, -invariant steady state may occur by eigenvalues of multiplicity one or
two crossing the imaginary axis. In this section we review the results of
Golubitsky and Stewart (1986) and van Gils and Valkering (1986) about
generic D,-Hopf bifurcation in the double cigenvalue case. See also
Golubitsky ez al. (1988).
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Without loss of generality we may assume that the action of D, on
R?=C is generated by

y.z=e"z where y=2n/n (3.1a)

K(z)=12 (3.1b)

It is possible to choose coordinates on C? such that the action of D, x S’
is generated by
V(2 2) = (€721, €"2,) (3.2a)

(zy,22) = (25, 2y) (3.2b)
| 0z,) (3.2¢)

K .
9'(21922)=(ei921> €
It can be shown that for each n, there are precisely three (conjugacy
classes of) isotropy subgroups whose fixed point subspaces are two-dimen-
sional. There exists a unique branch of periodic solutions for each of these
subgroups in D,-symmetric generic Hopf bifurcation. There are a discrete
analogue of a “rotating wave” and two discrete analogues of “standing
waves.”
The rotating wave has isotropy subgroup

Z,={(y,7):v€Z,}

The standing waves each have isotropy subgroups isomorphic to Z,. The
symmetry of one of the standing waves is generated by x; the symmetry of
the other standing wave is generated by (x, 1) e D, x S’ at least when n # 0
mod 4. See Golubitsky and Stewart (1986) for details.

The exchange of stability for these branches goes as follows. Suppose
the D,-invariant steady state is stable subcritically and loses stability by
having eigenvalues cross the imaginary axis with nonzero speed. When
n#4, no branch is stable unless all branches are supercritical. There is
one third-order term that determines whether the rotating waves are super-
critical and another third-order term that determines whether the standing
waves are (jointly) supercritical. No branch consists of stable trajectories
unless all branches are supercritical, in which case precisely one branch
consists of stable solutions.

Supposing that all branches are supercritical, then it can be deter-
mined at third order whether the rotating wave or one of the standing
waves is stable. If a standing wave is to be stable, then which one is stable
is determined by a coefficient of order

:{n+2 n odd (33)

(n+2)2 neven
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In Section 5 we show that the conditions for our torus bifurcation
theorem (Theorem 4.5) may be satisfied when, in a two-parameter system,
there is an isolated value of the parameters where a Hopf bifurcation
occurs and the bifurcating branches are neutrally stable at third order.

The remainder of this section is devoted to discussing these results in
more detail. The notation we set here is used in Section 5. We begin by
describing the D, x S invariants and equivariants.

Recall m as defined in (3.3) and define

N=|z]*+z,)? (3.4a)
P=z,|*|z,]? (3.4b)
S=(2,2,)"+(2,2,)" (3.4c)
T=i{lz)* — |z:|*} {(2,2,)" = (2,2,)"} (34d)

Proposition 3.1. Let D,x S" act on C* as defined by (3.2).

(a) Every smooth D,x S'-invariant germ f: C> - R has the form

f(ZI’ZZ):h(N’PaSa T) (35)

for some smooth germ h: R* > R.
(b) Every smooth D, x S'-equivariant germ g: C* — C? has the form

- sm—1_m m+1_m
g:A[21]+B[‘f]+c[z;_m‘?l]+1)[z_}ﬂ 2 (3.6)
Z, 752, 7z A4
where A, B, C, D are complex-valued D, x S'-invariant germs.
We consider the system of ODE
dz
7= glz, 4) (3.7)

where g: C>xR — C? is D, x S'-equivariant. That is, we assume that we
are studying Hopf bifurcation with D,-symmetry for a system of ODE
which is already in Poincaré-Birkhoff normal form to all orders.

In TableI we present the equations determining the branching of
solutions for each of the three isotropy subgroups mentioned above. These
results are taken from Golubitsky and Stewart (1986).

The asymptotic stability of these solutions is determined by the signs
of the real parts of the eigenvalues of dg evaluated at the solution. The
actual computation of these eigenvalues is aided substantially by the
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Table I. Branching Equations for Maximal Isotropy

Solution type (z,, z,) orbit rep. Branching equation
Rotating wave (4, 0) Re(4 + Bu?) =0
Standing wave 1 (u, u) Re(A + Bu? + Cu? 2+ D™y =0
Standing wave 2
n#0mod 4 (u, —u)
n=0mod 4 (u, e*™/my) Re(A4 + Bu? — Cu?" 2 — Du*™)=0

existence of the D,x.S' symmetry. In particular, for each of the three
isotropy subgroups X, the space C* may be written as

Fix(2) ® Fix(Z)* (3.8)

where X acts nontrivially on Fix(2)*. Since dg evaluated at a solution
commutes with X, it follows that both Fix(2') and Fix(2)™* are dg invariant
subspaces. Thus, the eigenvalues of dg are obtained in each case by finding
the eigenvalues of two 2 x 2 matrices. Moreover, the S' symmetry forces
one cigenvalue of dg|Fix(2) to have real part zero. Also, for rotating
waves when n#4, the group Z, acts on Fix(Z,)* as nontrivial rotations
and forces dg|Fix(Z,)" to itself be a scalar multiple of a rotation matrix.

Using this group theoretic information, it is possible to compute the
signs of the real parts of the cigenvalues of dg. These results are
summarized in Table II.

The directions of branching and the asymptotic stability of the
branches discussed above follow from Tables I and II assuming that the
nondegeneracy conditions

Re(Ay + B) #£0 (3.9a)
Re(B) #0 (3.9b)
Re(24 y+ B) £0 (3.9¢)
Re(BC) #0 (3.9d)
Re(4,)#0 {(3.9¢)

hold when evaluated at the origin. Observe that these branches are all
neutrally stable at third order if

Re B(0,0)=0 (3.10)

It is this coefficient that may vanish in a two-parameter system and that
must be zero in order to aply our torus bifurcation theorem.
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Table II. Signs of Eigenvalues of dg Along Primary Branches

Solution type EV of dg| Fix(2) EV of dg | Fix(2)*
Rotating wave —Re(Ay+ B)+ O(u) —Re B
Standing wave 1 —Re(24 5+ B) + O(u) tr=Re(B— (m+1) Cu® ~*) + O(u?"~?2)
det= —Re(BC) + O(u)
Standing wave 2 —Re(244+ B)+ O(u) tr=Re(B+ (m+1) Cu® %)+ 0>~ ?)

det =Re(BC) + O(u)

4. THE TORUS BIFURCATION THEOREM

In this section we prove the existence, direction of branching and
asymptotic stability of certain invariant 2-tori in codimension two bifurca-
tions occurring in a class of symmetric systems of ODE. The general
Theorems 4.5 and 4.6 are complemented by explicit formulas for computa-
tion that are derived in Section 5. A number of hypotheses are needed to
prove our theorem and we describe them now. These hypotheses abstract
properties of the D, -equivariant systems described in Section 3. We return
to D, symmetry in Sections 5 and 6, where the results of this section are
applied.

Specifically, we consider the two-parameter system of ODE

dz
:i;=f(z, As ) (4.1)

where f: C"x R* - C" is smooth. The roles of the parameters /. and p are
distinguished as follows. We assume that (4.1) undergoes a Hopf bifurca-
tion as the primary bifurcation parameter 1 is varied and that a secondary
torus bifurcates off of a primary branch of periodic solutions as 4 is further
varied. The role of the auxiliary parameter p is to allow the secondary
torus bifurcation to coalesce with the primary Hopf bifurcation as u is
varied. We study here the simplest instances of such a codimension two
bifurcation consistent with symmetry. We now state the hypotheses needed
to define this simplest setting.

Our intention is to make a preliminary and naive discussion of
degenerate Hopf bifurcations in the presence of symmetry. We do not
pretend to have a general theory. A general theory, however, will have to
include the examples and setting we study here.
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4.1. Hypotheses on the Primary Hopf Bifurcation

The simplest form of Hopf bifurcation in the presence of symmetry
occurs under the following hypotheses (see Golubitsky and Stewart, 1985).
We let I” be a finite subgroup of O(n) and let I" act on C"=R*@iR" by
v(x + iy)=7vx + iyy. The reason for restricting /" to be finite is discussed in
(H2) below. We assume that

I" acts absolutely irreducibly on R” {(H1)

that is, the only n x n real matrices commuting with 7" are scalar multiples
of the identity.

We assume that the f in (4.1) commutes with 7, undergoes a Hopf
bifurcation at A=0 when p =0, and is in Birkhoff normal form. The first
and third of these assumptions are summarized by

[ is I'x S'-equivariant (H2)

where the circle group S' is viewed as the complex numbers of modulus
one acting on C” by complex multiplication. Thus

floz, A, wy=af(z, 4, i) forall ocel xS

Hypotheses (H1) and (H2) imply

SO, 4, n)=0 (4.2a)
S=z 4 u)=—f(z, 4 p) (4.2b)
(df Yo, .0 = A(4, u)v forall veC” (4.2¢)

where A(4, u)e C. Hypothesis (H1) implies that I"'x S acts irreducibly on
C" and hence (4.2a) is valid. Since e S acts as —1 on C”, (H2) implies
(4.2b). (H2) also implies that (df), , , commutes with /"x S’, from which
(4.2¢) follows.

The assumption that (4.1) undergoes a Hopf bifurcation at 1=p=0
implies that 4(0, 0) is purely imaginary. We assume that periodic solutions
to (4.1) are generated from this Hopf bifurcation is as simple a way as
possible. We now describe this process. Begin by assuming that the eigen-
value A(/, 0) crosses the imaginary axis with nonzero speed, that is,

0
A, =— (R
3 5,1( e A)0,0)#0

Assumption (H3) implies that for each u near 0 there is a unique value A(u)
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at which A(A(u), i) is purely imaginary. For simplicity, and without loss of
generality, we assume that A(u)=0 so that

A(0, 1) = iwo(p) (H4)

where wy(0)#0. Thus, we assume that for each p a Hopf bifurcation from
the trivial steady state occurs in (4.1) at A=0.

Let S<=I'xS' be an isotropy subgroup. Golubitsky and Stewart
(1985) show that a unique branch of periodic solutions to (4.1) with sym-
metry group 2 can be found when

dim Fix(Z)=2 (H5)

Due to the assumption of Birkhoff normal form (H2), these periodic
solutions all have the form

z(t) =ee™'p (4.3)
where ¢>0 and

p e Fix(2) is chosen with |p| =1 4.4)

Moreover, these periodic solutions are found by solving the equation in
Fix(2)

and assuming (H3), (4.5) can be solved uniquely for
w=w*(e% u) = wo(p) + 0y(p)e? + wy(p)e* + 0(c°) (4.6a)
= 2*( 1) = Ao(p)e’ + Aa(u)e® + O(e%) (4.6b)

It follows from (4.6b) that this branch of periodic solutions is super-
critical (in 1) if 4,(0) >0 and subcritical if 1,(0) <0. We assume

V65é<(a3f)0,0,0(177 P, p) p*>#0 (H6)

where (due to Birkhoff normal form) p* = p is an eigenvector of (df )&
with eigenvalue wy(0)i. A calculation shows that

12(0)= —AG/AB (4~7)

To verify (4.7), substitute (4.6} in (4.5), set the coefficient of ¢* in (4.6) to
zero, and take the real part of the inner product with p*.
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4.2. Hypotheses on the Secondary Torus Bifurcation

The assumption of Birkhoff normal form allows us to reduce the
problem of finding periodic solutions of (4.1) to finding stationary solu-
tions of (4.5). With this assumption the problem of finding a secondary
torus bifurcation of (4.1) is reduced to finding a secondary Hopf bifurca-
tion of (4.5). We now discuss the group theoretic restrictions on the action
of I' which will admit the possibility of purely imaginary eigenvalues
occurring in the linearization of (4.5) along the nontrivial branch of
stationary solutions parametrized by (4.6).

Define

g(Z, /13 Hy CU) Zf(Z, }"’ lu) —iwz (48)

The linearization dg, evaluated at a solution (4.6), must commute with the
isotropy subgroup X< I'x S'. Let

C'=V,@V,® - @V (4.9)

be the isotypic decomposition under 2, that is, each of the /s is a sum of
isomorphic irreducibile representations under 2 and the irreducible
representations of X' appearing in distinct Vs are themselves distinct. Since
Fix(ZX) is the sum of all the trivial representations of X, we may take

v, =Fix(2) (4.10)

Suppose now that dg has a complex conjugate pair of purely
imaginary eigenvalues. Generically, we expect the (generalized) eigenspace
associated with these ecigenvalues to be in some V;; without loss of
generality we can take j=2. The simplest type of torus bifurcation occurs
when the purely imaginary eigenvalues are simple and the simplest way to
force this hypothesis to be valid is to assume

dim V,=2 (HT7)

Let L=dg|V, restricted to the branch of solutions parametrized by
(4.6). So

L=L( ) (4.11)
We comment on (4.11). Along the branch (4.6)
z=¢p, A=At ), and o=ow*( )

Moreover, by (4.2b) and (4.8) g is odd in z. Thus dg is even in z and hence
in ¢ and the form of L given in (4.11) is valid.
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By (H7) L is a linear mapping on a two-dimensional space. So L has
purely imaginary eigenvalues precisely when

tr(L)=0 and det(L)>0

We want to guarantee that for some p near 0, there are values of &* for
which L has purely imaginary eigenvalues. That is, we want to guarantee
the existence of solutions to the equation tr L(e* u)=0. Now observe that

(dg)o,o,u,o = (df)0,0,;t —iwo(u) =0

by (4.2¢) and (H4). Thus L(0, u)=0 and Taylor’s theorem allows us to
write

L(&?, u) =e*L(e% pn) (4.12)
In order to guarantee the existence of solutions to tr(L) =0, we assume
tr L(0,0)=0 (H8)

8
Ay=— (trL)(0,0) %0 (H9)

Hypotheses (H8) and (H9) along with the implicit function theorem
guarantee a unique solution to

tr L(e%, u) =0 (4.13)
given by
2 =E(u) (4.14)

Now solutions to (4.13) can exist only when E(u)>0. Thus, to ensure the
existence of such solutions, we assume

0
Ap=—(trL)(0,0)#0 (H10)
op
Implicit differentiation of (4.13) shows that

9 0)= 10/ (415)
du

Thus, a unique solution to (4.13) exists when u is near 0 and

sgn(p) = —sgn(4y) sgn(4 ) (4.16)
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Finally, in order for L to have purely imaginary eigenvalues, we must
assume
det L(E(u), ) >0 (H11)

for all y near O satisfying (4.16). Hypothesis (H11) is the subject of further
discussion below.

These 11 hypotheses describe the simplest situation where a secondary
torus bifurcation of the type discussed at the beginning of this section
might exist. In particular, these hypotheses guarantee the existence of a
Hopf bifurcation along a nontrivial branch of the steady-state equation
(4.5). However, as we now discuss, the existence of I'x S'-symmetry in
(4.1) ensures that the standard Hopf bifurcation theorem does not apply
since the S'-symmetry of normal form forces one eigenvalue of dg|Fix(X)
to be zero. Observe that the group theoretic argument which guarantees
that dg has one zero eigenvalue also implies that dg has dim '+ 1 —dim X
zero cigenvalues.

Next we make the observation that group-theoretically there are two
types of torus bifurcation. Consider the action of 2 on V,. The assumption
that L=dg|V, can have purely imaginary eigenvalues, coupled with the
fact that L commutes with X, places restrictions on the action of ZX.

Let K(X2) be the kernel of the action of 2 on V, and let T(2)=
Z/K(Z). As observed by Golubitsky and Stewart (1985) either

(a) V,=R@®R, where T(X) acts absolutely irreducibly on R, or
(b) T(Z) acts irreducibly, but not absolutely irreducibly, on V.

Moreover, since ¥, N Fix(X) = {0} we know that 7(X) acts nontrivially on
V,. Hence in case (b), T(2)=Z, for some g >3, since these are the only
finite groups which act faithfully, irreducibly, and not absolutely
irreducibly on R and in case (a) T(2)=Z,.

Definition 4.1. When T(2)x~Z, we call the tori resulting from the
secondary torus bifurcation standing tori and when T(X)=7, (g=3) we
call these rotating tori.

Observe that (H11) simplifies in the rotating tori case. There L(?, u)
commutes with Z, and is hence a multiple of a rotation. Thus group
theoretic restrictions force det L(&?, 1) = 0 and (H11) simplifies to

A%, =L(0,0)#0 (H11),

The situation for standing tori is more complicated, as group restrictions
may force L(0, ) =0. In this case we find in examples that

L(e% ) = > D(e2, ) 4.17)
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where m depends on " and X but not, in general, on the particular f in
(4.1). For standing tori we replace (H11) with

A3, =det D(0, 0)>0 (H11),

Note that (4.17) is valid for rotating waves; there D=L and m=1.

We end this section by explicitly constructing the action of Z' on V.
Observe that each V; is invariant under S, since S commutes with the full
group I"x §'. Since dim V, =2 by (H7), it follows that we may identify ¥,
with C and the action of 2 on ¥V, with a subgroup of S* acting on C. Thus,
the action of T(2) on C is generated by

Z—>€2ni/q2

for ¢ as defined above. (Note that standing tori correspond to g =2.)

4.3. Hopf Bifurcation with Zero Eigenvalues

In this section and Section 4.4 we prove a torus bifurcation theorem
for vector fields satisfying (H1)}-(H11). This theorem consists of two parts.
In the first we show that the extra eigenvalue forced to be zero by
symmetry in Hopf bifurcation causes no problems. Here we use results of
Krupa (1988). In the second part we show how the direction of branching
and the stability of the torus branch is determined by Taylor coefficients of
f at the origin. The computations in this section are example specific. We
note that both of these parts could have been done in one step, as shown
by looss (1983). We prefer the more geometrical exposition given here
which separates theory and calculation. Recall that f is assumed to be
I'x S§*'-equivariant and to have a periodic solution z(¢) = ge™’p.

We now concentrate on determining the form of f on a neighborhood
of the group orbit X = (I"x S')- p. The existence of the periodic solution
implies that f is tangent to X along X. We utilize two results from Krupa
(1988). Let N(X) denote the I'x S'-equivariant normal bundle of X = C”,
let N, denote the fiber over x, and let n: N(X) — X be the projection.

Theorem 4.2. There exist I' x S'-equivariant vector fields fr and fy
such that

f=fr+ /v (4.18)

where fr(y) is in the tangent space to the group orbit of I'x S* through y
and f(y)eN

n(y)*
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Theorem 4.3, Let x(t) be the trajectory in X = f(x) with x(0)= y and
let z(t) be the trajectory in z = fy(z) with z(0) = y. Then

x(t)=0(2) z(x) (4.19)
for some smooth curve §(t)e I’ x S* with 5(0) = identity.

It follows from Theorems 4.2 and 4.3 that a Hopf bifurcation to a
periodic trajectory z(f) for f, leads to a trajectory for f on the union of
group orbits through z(¢).

Remarks 4.4. (a) When 7 is finite, all group orbits are circles and the
flow is on 2-torus. The S'-action forces the flow to be conjugate to linear.
To lowest order, this flow has the form ge’z(¢). In perturbation theory
language the flow will have the form

8@ p 4 b)) (4.20)

where 0 e R and 4(t)e N, are small. Moreover, (1) is a solution of
dh ;
6—1;(1)=fN(P+h(l), A 1) (4.21)

To verify (4.21) let (4.20) be a solution to (4.1) and use the decom-
position (4.18).
(b) Observe that
gIN,=fI|N, (4.22)

where g is defined in (4.8). This follows since

g=f—iwz=fy+ fr—ivz

and fr and iwz vanish when restricted to N,,.

Theorem 4.5. Assume (HI)-(HI1). Then for fixed u satisfying
(4.15), there is a branch of periodic solutions to (4.1) parametrized by 1
which undergoes a torus bifurcation at A=12* as in (4.6b). When I is finite,
a unique branch of two-frequency trajectories bifurcate from the branch of
periodic solutions at A= A*.

Proof. Under our hypotheses the complex conjugate pair of eigen-
values of L that cross through 0 as / is varied do so with nonzero speed.
In fact, when u is fixed,

oe?

8 d
—(trL)=— =
(L= (rL) = (4.23)

865/2/2-3
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Both of these factors are nonzero, the first by (H9) and the second by
(H3), (H6), and (4.7). It remains only to show that under the hypotheses
above, the normal vector field G = f| N, undergoes a Hopf bifurcation at
A= A* However, it is casy to show that the eigenvalues of dG at &p are just
the Floquet exponents of f at the periodic solution ge™’p minus iw. Thus
the eigenvalues of dG at ¢p are the eigenvalues of dg in the direction N,
[where g is defined in (4.8)]. Hence our hypotheses imply that f, under-
goes a (simple) Hopf bifurcation at 2 = A* and that the corresponding com-
plex eigenvalues cross the imaginary axis with nonzero speed. The standard
Hopf theorem coupled with Remark (4.4a) now applies. |

4.4. Direction and Stability of the Branch of Invariant 2-Tori

Next we consider the direction of branching of the branch of 2-tori by
determining the direction of branching of the branch of periodic solutions
in the Hopf bifurcation of G = fy| N,. Theorem 4.3 implies that asymptotic
stability of the periodic solutions of G in N, implies asymptotic stability of
the invariant 2-tori in (4.1).

We review the relevant discussion from the previous sections. Let y =
g(p+ h). There is a branch of equilibria of f, at

h=0 and  1=1%*(@% ) (4.24)

where p* is defined by (4.16). A Hopf bifurcation for £, occurs along this
branch of equilibria at

2= E(u) (4.25)

as defined in (4.14), since ¥V, = N,. Note that E(0)=0. In fact, L(e?, x) is
just dfu | Vs.

We assume that p has the correct sign so that (4.16) is valid, and
hence (4.25) has a solution for ¢*> when E(u) is positive. We have assumed,
moreover, that as A varies through 4*, the complex eigenvalues of L cross
the imaginary axis with nonzero speed, as noted in the proof of
Theorem 4.5.

The standard Hopf theorem asserts that there exists a single coefficient
4y, depending on terms of f through cubic order, that determines the
asymptotic stability of the periodic solutions (and their direction of
branching). Moreover, u, is defined at the point of Hopf bifurcation given
by (4.24) and (4.25). Thus

Ho = pa(u) (4.26)
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Theorem 4.6. Under the assumptions just described

pha(p) = p* M)

for some integer k. A formula for M(0) can be determined, in principal,
from the Taylor expansion of f at the origin and the sign of M(0) determines
the asympiotic stability and direction of branching of the branch of 2-tori
for (4.1). In particular, this branch is supercritical and consists of
asymptotically stable 2-tori when M(0) > 0 and the branch is subcritical when
M(0) <.

Our final (genericity) assumption is
M) #0 (H12)

The most difficult part of any calculation of invariant 2-tori is
determining M(0), that is, determining the direction of branching and
stability of the 2-tori. In principle, it might be possible to derive a general
formula for M(0) when k=1 using only terms in the Taylor expansion of
f. In our D, example in the next section we have chosen the computa-
tionally simpler route of just computing the secondary Hopf bifurcation on
f directly. One reason is that we find that £ =1 is valid for the standing
tori and k=2 is valid for the rotating tori. At this stage we do not under-
stand why certain isotropy subgroups force k to be greater than 1.

5. TORUS BIFURCATIONS WITH TRIANGULAR SYMMETRY
In this section we apply our torus bifurcation theorem to a vector field

d
T ez (5.1)

dt

in D, x S'-normal form, that is, we assume g has the form (3.6). As we
discussed in Section 3 (see Table I), generically there exist three primary
branches of periodic solutions to (5.1) corresponding to two-dimensional
fixed point subspaces. We need to determine when hypotheses (H1-H12)
are valid for each of these branches. Note that hypotheses (H1)-(H3),
(H(5), and (H7) are automatically valid in these cases.

In (3.6) the invariant functions 4-D are complex-valued and we
denote these functions by

A=a+in (5.2a)
B=b+if (5.2b)
C=c+iy (5.2c)

D=d+is (5.2d)
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Hypothesis (H4) states that a Hopf bifurcation occurs at 1 = p =0 and that
the complex eigenvalue crosses the axis with nonzero speed. We simplify
our analysis here by assuming

a =4+ {a function depending on z alone } (53)

and that «(0)=a,>0. Thus, we assume that the trivial steady state z=0
is asymptotically stable when A <0 and loses stability at A =0. Moreover,
(H4) is valid as 4, =1 #0.

In our analysis, we begin by assuming that n#4. The case of square
symmetry (n=4) is more complicated (see Golubitsky and Stewart, 1986;
Swift, 1988). In particular, when n #4 the standing waves are either both
supercritical or both subcritical, and there are no branches of periodic
solutions corresponding to submaximal isotropy. The criticality of these
branches is determined by sgn(d4¢), as noted in Table IIl. Assuming
b# —ay, —2ay validates (H6). '

The degeneracy condition needed to have a torus bifurcation,
hypothesis (H8), is tr L =0. For each of the branches, (H8) corresponds to
b=0 at the origin. This could have been seen directly from the stability
results of Golubitsky and Stewart (1986) since the coefficient 5(0) being
nonzero was needed to determine which of these branches of periodic
solution could be asymptotically stable. Assuming h(0)=0 implies that
standing waves and rotating waves must be all supercritical or subcritical,
depending on the sign of a,(0), which is assumed to be nonzero.

We again simplify our analysis by assuming that

b(z, )= p+ {a function depending only on z} (54)

It then follows that 4,,= —1 for rotating waves and +1 for standing
waves. Thus (H10) is valid and we will have a torus bifurcation if the
complex cigenvalues in the V,-directions are nonzero since (H10) implies
that these eigenvalues will cross the imaginary axis with nonzero speed.
That these eigenvalues will be nonzero and purely imaginary at the point
of secondary bifurcation is governed by (H11). Thus we assume
B(0) »(0) 0, as indicated in Table IIL

In our discussion in Section 4 we also assumed that we could solve
uniquely for the point of the secondary bifurcation, as a function of g,
which follows from 4, #0. So we assume b, (0)#0, +2¢(0), and (H9) is
verified. [ Note that when n > 5, this condition would be b,(0) #0.]

We summarize our discussion by listing all conditions in Table IV.

The final issue we must address is the direction of branching of the
secondary branch of 2-tori, hypothesis (H12). At the end of Section 4, we
discussed the difficulty of deriving a formula for the direction of branching
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Table [II. Data Needed to Find Torus Bifurcations Along Primary Branches in Degenerate
D, x S'-Equivariant Hopf Bifurcation (All Functions Are Evaluated at the Origin)

2 Rotating wave Standing wave 1 Standing wave 2
Fix(2) (z1,0) (z1, 21) (z1, —z1)
sgn(4g) —(ay+b) —(2ay+b) —(2ay+b)

Va (0, z,) (22, —25) (23, 23)
trL=0 b=0 b=0 b=0
sgn(4,) —by by—2c by+2c

Ay —~b, b, b,

(H11) B#0 By <0 By>0

of the torus branches. Because of this fact, we compute, in Sections 5.1 and
5.2, the direction of branching of the secondary 2-tori bifurcation along the
rotating and standing waves branches only in the case of D;-symmetry. Let
Bo=p(0) and y,=y(0). We prove the following,

Theorem 5.1. In degenerate Ds-equivariant Hopf bifurcation, the
direction of branching of the branch of rotating 2-tori is supercritical if

“2ay [bN-f' y—OJ (5.5)
is positive and subcritical if it is negative.

Theorem 5.2. In degenerate Ds-equivariant Hopf bifurcation, the
direction of branching of the branch of standing 2-tori off of the branch of
periodic standing waves 1 is supercritical if

ﬁo { ﬁ(z) 4a1v] ay
sgn(yy) ———F—=+
D ® 2, /6] Boyol 3 J2c0—by

is positive and subcritical if it is negative. For secondary bifurcation off of
standing waves'2 we replace (5.6) by

ﬁo l: sen(y,) ﬁ(z) 4aN:, ay
o) T F—/——
3V 2‘ZN\/ 6] Bovol 3 12¢o—by

It is possible to derive the direction of branching of standing torus 2
from that of standing torus 1 usinfg the following observation first noted
by Swift (1988), using the terminology “parameter” symmetry.

We call the mapping

(56)

(5.7)

0(zy, 22) = (24, —z5) (5.8)
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Table IV. Conditions for Torus Bifurcation with D,;-Symmetry

(a) a(0)=0,ux(0)>0 Primary Hopf bifurcation

(b) ay(0)>0 Periodic solutions subcritical

(c) b(0)=0 Possibility of secondary torus bifurcation
(d) B(0Y£0 Torus bifurcation on rotating waves

(e) BO)y(0)<0 (>0) Torus bifurcation on standing wave 1
(standing wave 2)
)y by(0)#0, £2¢(0) See (4.16): unique torus bifurcation along
rotating wave when sgn(up) = —sgn(b,(0))
standing wave 1 when sgn(u) = —sgn(b,(0) — 2¢(0))
standing wave 2 when sgn(u) = —sgn(by(0) + 2¢(0))

a quasisymmetry since it is in the normalizer of I in O(4) but is not in
I'=D,;x S". 1t follows that the map

h=Qg(Qz) (5.9)

is [-equivariant whenever g is I-equivariant. In this particular case, the
quasisymmetry Q interchanges standing waves 1 and 2. Since & is vector
field equivalent to g, the dynamics of % is the same as that of g. Thus, com-
puting the direction of branching of standing torus1 for A gives the
direction of branching of standing torus 2 for g.

It remains only to note using (3.4) and (3.6) that when n=13, g trans-
forms to % in (5.9) as follows:

(N,P,S, T)—~(N,P, -8, —T) (5.10a)
(4, B, C, D)~ (4, B, —C, —D) (5.10b)
Thus (5.7) may be derived from (5.6) by transforming y, to —7v,.
5.1. Rotating Tori for D;-Symmetry
We let 2 be the isotropy subgroup of rotating waves
Zy={(y, —y)}:veZs}

with the two-dimensional fixed point space {(z,,0)}. The branching
equation for the periodic solutions lying in Fix(Z) is given by

A+Bu?=0, ueR (5.11)
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From our discussion above concerning the torus bifurcation, we may
assume that the system of ODE (5.1) has the form

d
dt[z] {ivg+A+ayN+ayyN /2+aPP}[ ]
Z3

3
+{u+bNN+iﬁ0}[§ J+{Co+ly0;|: ; :I—f-hot (5.12)
372 5z
where N =|z,|>+ |z,/? and P=|z,|*|z,|%. The branch of periodic solutions
to (5.1) within Fix(Z,) is given by:

z(t)=¢ BJ el (5.13)

where o = w*(&?, u) = 2y + By + O(e*). Along the branch of periodic solu-
tions, the eigenvector due to translation, corresponding to the eigenvalue
zero, is constant. In fact (5.12) shows that this eigenvector equals ip where

=(1.0)". We exploit this fact to reduce explicity the vector field to the
normal section. We let

={zeC*Re{z ip)=0} (5.14)

By the implicit function theorem we can solve locally in (5.15a) for

6 =0%(h, ¢, u) such that
Re(f(e(p+h), A* p)—i(lw*+0)e(p+h),ipy=0 (5.15a)
6*(0,0,0)=0 (5.15b)

If we now let

glh, &, 1, 0)=f(e(p+h), 2*(&, p), ) — i(w* (e, p) +0%) e(p+h)  (5.16)

then the subspace V, is invariant under g and g|V, is the normal
component of the vector fieild g. For the details of this reduction see
Vanderbauwhede et al. (1988) and Krupa (1988).

We note that 6% corresponds to an element # of the Lie algebra L(I”)
and determines the drift along the group orbits.

In the language of asymptotic expansions we are looking for solutions
of the form

Sel_(w“rezg)z(p + h(szﬁl))

where /4 is a 2zn-periodic function.
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In (z,,z,) coordinates we write A= (h,,h,) and h,=x+iy. The
normal vectorfield then is given by

dx

E=82[2(0N+M)X+0N|hz|2+0[|x\2+|X||hzlz+|hz|4+ﬁzlxl)]
(5.17)

d/’lz 7 . 9* 2

—-dT: — u+lﬁ0+l’8_2 h2—|—2aNxh2+aNh2|h2I

£ O 4+ [l sl + whzm}

We remark that 0* is of order ¢ and occurs in the second equation
in such a way that its value will influence only the period of the bifurcating
periodic solution, and not its stabililty. Therefore, we may suppress 6*.

More importantly, we observe that the direction of branching is deter-
mined by the higher-order terms. To see this, we rescale the time by letting
f= —&’f,t and eliminate the ¢ which factors L(e, ) [see (4.11)]. We
obtain

dx
—ﬁozzZ(aN+,u)x+aN|h2|2+h.o.t.

(5.18)
dh ' .
~Bo = —(u+ iBo)hs + Qanx-+ (ay+ifo) sl + hoot
From the first equation we see that x = —|4,|%/2 + ..., and inserting this in

the second equation, we conclude that the direction of branching is not
determined. To the next order in ¢* we get (keeping the rescaled time)

dx
_ﬁo‘aTl=2(aN+ﬂ)x+aN|hz\2 +6*(2ayy +2by)x + (ayy+by) 1y ?)

+ 0 (x| + [h,]%)* + &%)

dh,

—Fo dr (u+iBo+ Ssz)hz + (an +iBo) |1\ %h, + 2ay xh, (5.19)

+ &} 2aynxhy+ (co+ iyo) A3 + (ayy + by) 1hal > 1y)
+0(e? |ul [hao]® + 21 x] + | 7)) + &%)
From (5.17) we derive that at a periodic solution

 —an+&by

2 2 4, .4
2ay [ha]* + O(e |hy|* + &%)
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Then we find the direction of branching from (5.18)

u=sz{—bN+2|h2|2[3lﬁ°—o+bNJ+0(eZ+W)} (5.19)

From this equation Theorem 5.1 follows easily.

5.2. Standing Tori for D,-Symmetry

We let 2 be the isotropy subgroup Z,@® Z5 of standing waves 1 with
two-dimensional fixed point space {(z;, z,)}. In order to construct V', and
f* as in the rotating case, we first change coordinates in (5.12): u=
(z4 +22)/\/§> v={(z, _Zz)/ﬁ-

The construction of the reduced vector field is mutatis mutandis the
same as in the case of the rotating tori. Again, we suppress 8*, because we
are interested only in the direction of branching. The effect of the change
of coordinates is that the primary branch has the same form:

Zg(t) — l:(l):l eiw*t

where 1s the standing wave case
w*(e?, u) =20+ §foe” + O(e?)

It occurs at

IR ) = — (aN +§) £l (aNN+%‘i+bN+ %) 572

The reduced vector field has the form (compare with (5.12))

dx_

d[ Szf(x’ h2a 4, 82)

(5.20)

dh
~d—f= e’g(x, hy, p, &%)

The linear part of g depends only on 4,. It is given by the mapping from
C? into itself by

v [___(,u +2iﬂ0) + <b2—N— Co— z'yO) 82] v

N [(# —Ziﬂo) . (by— 620 + 7o) 82:, 7+ O(e*)
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If we consider this mapping as a mapping on R?, then its trace equals
p+(by—2co)e? + O(e*)
and its determinant equals

— 3(pco— o Po)e” + O(e)*

We apply an e-dependent transformation to put the linear part of the
vector field into normal form. Writing 4, = u + iv the transformation is

u-—eu

v =/ =2fo/3y0v

We rescale the time by ¢, ie., er =1 After these transformations the linear
part of the vector field has the form

dx
i eay+ u)x

dh _ ,
—d?z =¢ g (hy + hy) + ig*toh,

where 1, =1/ —3B,7/2. We rescale the time once more, ¢’t,¢ = 7. Then the
linear vector field has a circle of periodic solutions:

X 0
(][] sestaen
2

We then put the full nonlinear vector field up to order three in (x, 4,) into
Birkhoff normal form. Phrased differently, after a near identity transforma-
tion in the variables (x, h,) and a truncation at order three, the resulting
vector field has the form

ax

& Ezf(xa |h2!2a U, 8)

dh, .
& =2 =206 |l &)y

It

If we can solve the equation f= =0, then we will know the direction of
branching. Straightforward (but rather lengthy) computations show that

1
J=2ay¢ 30 aylhsl? Bo+ OL(E® + 1uD(Ix| + [ho]) + 1x] sl + ol + 1x17]



A Torus Bifurcation Theorem with Symmetry 159

where

gl
f=x+”6‘;(h§_h2‘2)ﬁo

Therefore, at a solution of f=0 we will have that
v = B o 5 () |+ O ol + )

Substiting into the equations § =0 then yields

=(2co—bN>82—|h212<4ﬁ;;j”+Igﬂa"N )+0(|s;+lh2n

where k = (—2f4/37,)"* From this equation Theorem 5.2 follows.
The (above-mentioned) lengthy calculations were checked with the
formula manipulation program REDUCE.

6. THE BIFURCATION DIAGRAMS

The results in Section 5 imply that when deriving the bifurcation
diagrams for the torus bifurcation in degenerate Hopf bifurcation with D,-
symmetry, we may assume

A=A+ayN+ayi (6.1a)
B=u+byN+pByi (6.1b)
C=co+yo! (6.1c)
D=0 (6.1d)
as only these terms enter the determination of direction of branching and
stability.
We assume

oy >0, Bo>0, Yo <0, and ay<0 (6.2)

We make these choices for the following reasons. First, without loss of
generality, the frequencies o, and f, may be assumed to be positive.
Second, the quasisymmetry Q transforms y, to —y, (and ¢ to —¢,), s0 we
may assume that y, is negative (at the expense of interchanging the two
branches of standing waves). Finally, we are interested mainly in those
situations where asymptotically stable states may exist. Indeed, stability
can occur only when the primary branches are supercritical; hence we
assume a, < 0.
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To simplify subsequent calculations rescale time and space to obtain
po=1/2 and  yo=—3p, (6.3)

We now find that when a torus bifurcation occurs, it occurs at

le= %]Y u+ - (rotating torus) (6.4a)
N
ay .
Ag=——7—pu+ -+ (starting torus) (6.4b)
by—2c,

and the direction of branching is determined by

1
1—— (rotating torus) (6.5a)
by
b 4 1 (standing t ) (6.5b)
o 2cy an Ia, anding torus .

where supercritical is positive and subcritical is negative.
We note that it is possible to choose coefficients independently so that,
for a fixed u,

(i) standing wave 1 is stable at the initial bifurcation (choose p <0),

(ii) both a rotating and a standing torus bifurcate (choose b, >0
and by > 2¢,),

(iii) either torus may bifurcate first as A increases (choose ¢, >0 to
have standing wave first, ¢, <0 for rotating wave),

4- 4+

Fig. 1. Bifurcation diagram indicating values of A having two branches of asymptotically
stable 2-tori and no stable steady states or periodic solutions.
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(iv) the rotating torus is either supercritical or subcritical (choose
by>1orby<l) and

(v) the standing torus is either supercritical or subcritical (choose
ay<025o0r 0>ay> —0.25).

Therefore, it is possible to choose parameters so that the bifurcation
diagram pictured in Fig. 1 occurs. Here we find the possibility of two stable
2-tori and no stable periodic solutions. Note that this phenomenon may
not occur in codimension two for D, -Hopf bifurcation when n > 5, since ¢,
is then a higher-order term.
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