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Bifurcations in Forced Response Curves∗

Justin Wiser† and Martin Golubitsky‡

Abstract. We consider small amplitude periodic forcing (with forcing frequency ωF ) of a system of differen-
tial equations near a point of Hopf bifurcation (with Hopf frequency ωH). We follow Zhang and
Golubitsky [SIAM J. Appl. Dyn. Syst., 10 (2011), pp. 1272–1306] and consider only those small am-
plitude periodic solutions to the forced system whose frequency is ωF ; that is, the 1:1 phase-locked
or entrained solutions. These authors assume sinusoidal forcing of a normal form Hopf system when
ωF is close to ωH , and they classify the existence and multiplicity of the entrained solutions. The
forced response curve is a bifurcation diagram showing the amplitude of the entrained solutions as
the forcing frequency is varied. Zhang and Golubitsky showed that there are six kinds of forced
response curves with distinguished bifurcation parameter ω = ωH −ωF . In this paper we show that
there are 41 possible bifurcation diagrams when stability in addition to multiplicity of the periodic
solutions in the forced response curves is included.
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1. Introduction. Resonant responses to periodically forced nonlinear dynamical systems
have been studied extensively. Indeed, complicated or chaotic dynamics may occur in regions
of parameter space outside of m:n Arnold tongues where m periods of the external forcing
drive n periods of the forced response. See, for example Arnold [1, 2] or Broer [5] and the
references therein. In this paper, we study periodic solutions to forced Hopf oscillators that
are 1:1 phase-locked (or entrained) with an external, periodic forcing.

There are numerous examples of periodically forced systems near Hopf bifurcations in the
applied math and engineering literature. Band pass filters are electrical devices that may be
tuned near Hopf bifurcations to amplify electrical signals in a frequency selective way (Mees
and Chua [16]; Simpson [17]; McCullen, Mullin, and Golubitsky [15]). Biochemical oscillators
may similarly be tuned near Hopf bifurcation points, adding frequency selectivity to larger
signal transduction cascades and allowing a pathway to selectively respond to an oscillatory
chemical messenger (Tyson [18], Wiser [19]). Neurons tuned near Hopf bifurcations may
play a role in sensory perception (Baier and Müller [3], Balakrishnan and Ashok [4]), and
hair bundles tuned near Hopf bifurcations may play a role in cochlear dynamics (Hudspeth
[13]), again affording these systems frequency selectivity and response amplification when the
forcing is near the Hopf frequency.
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Mathematically, the problem of periodically forced systems near Hopf bifurcations has
been addressed by numerous authors. Many have studied specific examples of forced systems
with Hopf bifurcations. Gambaudo [8] studied periodically forced Hopf bifurcation and found
the response of such a system in a very general setting as well as how this response may change
if one varied model parameters. However, the ubiquity of frequency selectivity in the appli-
cations above suggests that studying periodically forced Hopf bifurcation as a distinguished
parameter bifurcation problem in the forcing frequency (i.e., classifying the forced response
of nonlinear resonant systems) may help shed light on numerous models of physical systems.

Definition 1.1. The forced response curve is a graph showing the amplitude of the response
of a periodically forced system as the forcing frequency is varied. The response is a periodic
solution that is 1:1 phase-locked with the forcing frequency.

Zhang and Golubitsky [20] studied the structure of forced response curves in periodically
forced systems near a point of Hopf bifurcation and how these curves change as one varies
model parameters (see Figure 1). In this paper we discuss both the existence and stability of
solutions enumerated by the forced response curves.

We may describe the results in [20] as follows. First, we restrict our attention to trun-
cated third order Hopf normal form written in complex notation (although their analysis was
conducted in a more general setting) and assume small amplitude simple sinusoidal forcing to
obtain the system

(1.1)
dz

dt
= (λ+ iωH)z ± (1 + iγ)|z|2z + εeiωF t,

where± is chosen to be + for a periodically forced subcritical oscillator and − for a periodically
forced supercritical oscillator, ωH is the Hopf frequency, ωF is the forcing frequency, and γ is
the ratio of the imaginary to real parts of the cubic coefficient (the system may be rescaled to
take this form provided the real part is nonzero). Here the system is subjected to sinusoidal
forcing with small amplitude given by ε.

For fixed γ, Zhang and Golubitsky determined the forced response curves (for ωF ≈ ωH)
and their transitions for λ ≈ 0 and small ε > 0. We show in Lemma 2.1 that (1.1) can
be rescaled so that ε = 1 in such a way as to preserve the structure of the forced response
curves and their transitions. When we do this, we can summarize the results of [20] in Figure
1. For example, [20] showed that there can be hysteresis in the forced response curve (so
that the response amplitudes may depend on whether the forcing frequency is increasing or
decreasing) and that the forced response curve may bifurcate (creating isolas of solutions that
may not be noticed experimentally or numerically if the system were subjected only to small
parametric variation). However, missing from their analysis is a study of the stability of the
periodic solutions that correspond to points on the forced response curves. This information
is necessary for applications and is the subject of this paper.

Calculating the stability of periodic solutions corresponding to points on the forced re-
sponse curve allows us to show the existence of several new bifurcations and several additional
types of solutions. It is natural to discuss these solutions in rotating coordinates, rotating
with frequency ωF . In rotating coordinates the periodic forced response is given by a fixed
point. The new bifurcations include the following:

• Secondary Hopf bifurcations (i.e., Hopf bifurcation of fixed points in rotating coor-
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Figure 1. Forced response curves of the system (1.1). Each curve shows the amplitude of the forced response
as a function of ω = ωH − ωF . The hysteresis varieties cross λ = 0 transversely and the bifurcation varieties
with a cubic tangency when γ = ±√

3.

dinates) where the periodic forced response can exchange stability and give rise to a
branch of tori.

• Takens–Bogdanov points where these branches of secondary Hopf bifurcation can ter-
minate and where branches of homoclinic connections exist.

• Degenerate secondary Hopf bifurcations can occur.
• A homoclinic connection may terminate when its point of origin undergoes a saddle

node bifurcation.
These dynamics give rise to more regions than are shown in Figure 1. In Figure 2 we have
added six transition varieties: TB± are Takens–Bogdanov varieties, CC± are change of crit-
icality curves corresponding to degenerate secondary Hopf bifurcations, and SNL± indicate
the termination of homoclinic connections (local to the TB varieties) following a connection
to a degenerate saddle point.

We then draw forced response curves with dynamical information encoded that correspond
to each of these regions. See Figure 3. Here the dark blue portions of the curve indicate stable
periodic solutions, and the light blue portions indicate unstable solutions. The red portions in-
dicate saddle points. The transitions from red to black indicate saddle node bifurcations. The
transitions from light blue to dark blue indicate secondary Hopf bifurcation. When denoted
by a dark (light) blue dot, this indicates that the secondary Hopf bifurcation is supercritical
(subcritical). The dark (light) branch emanating from the secondary Hopf bifurcations de-
notes a branch of stable (unstable) tori. The presence of tori is seen in practice as the onset
of a secondary frequency, or an amplitude modulating frequency. The tori may terminate
via homoclinic bifurcation (where the period of the secondary oscillations tends to ∞). The
presence of a homoclinic connection is denoted by an “X” over the saddle point to which
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Figure 2. Here we have added six transition varieties: TB± are Takens–Bogdanov varieties, CC± are
change of criticality curves corresponding to degenerate secondary Hopf bifurcations, and SNL± indicate the
termination of homoclinic connections (local to the TB varieties) following a connection to a degenerate saddle
point. The regions have been renumbered, and the forced response curves for each region, in all detail, are given
in Figure 3. Note that CC± curves are drawn differently than they actually are in order to make the diagram
easier to read. Actually CC+ implicitly defines γ as a monotonically increasing function of λ, and CC− defines
γ as a monotonically decreasing function of λ.

the connection exists. If it is dark (light) blue, this indicates that it is a stable (unstable)
homoclinic orbit. The diagrams shown are for a periodically forced supercritical Hopf normal
form. One may easily alter these diagrams to understand the dynamics of a periodically forced
subcritical normal form (see [19]).

We should also recall that these diagrams only show the dynamics of a fully entrained
forced response. In practice, regions of instability could also result from entering regions of
parameter space on a higher order m : n Arnold tongue.

To summarize, in Figure 3, black lines indicate a stable equilibrium, red lines indicate
saddle points, and light blue lines indicate an unstable equilibrium. Red/black and red/blue
boundaries indicate a saddle node bifurcation. Black/blue boundaries indicate a secondary
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Hopf bifurcation and are accompanied by a dot (dark blue for supercritical Hopf bifurcations
and light green for subcritical) and a line indicating the direction of branching periodic orbits.

In practice, it is rarely important to understand all of the transitions in this diagram or
where they occur as some model parameters are varied. However, it is extremely convenient
that the transitions one expects to see as one varies parameters can be determined by a
computation of a single parameter γ at the Hopf bifurcation point. A formula for γ and
Mathematica code for its computation are given in [19].

Figure 3. Forced response curves for regions shown in Figure 2.

The first section of this paper will be devoted to establishing the results summarized in
Figures 2 and 3. The second part of this paper will be devoted to determining the generality of
this result. Although coordinate changes may be used to put a system with a Hopf bifurcation
into normal form up to third order, we investigate the effects of truncating higher order terms.
Also, while we will not attempt to fully generalize the forcing term to include nonsinusoidal
forcing, we have considered taking a periodically forced system with a Hopf bifurcation and
introducing coordinate changes to put the system in normal form. The effect of these coordi-
nate changes on the forcing cannot be ignored. We find a class of generalizations (which we
call separable forcing), which includes the complexities discussed above (as well as many other
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types of forcing—most notably, parametric forcing) and find that the diagrams in Figures 2
and 3 describe these systems as well.

2. Periodically forced, third order Hopf normal form. In this section, we will study the
supercritical Hopf normal form, truncated to third order, subjected to an external sinusoidal
forcing

(2.1)
du

dt
= (λ+ iωH)u± (α+ iβ)|z|2z + εeiωF t

(where α < 0) without concern about the generality of the results obtained, which will be
discussed in the next section. We begin with the results of Zhang and Golubitsky shown
in Figure 1 and begin to derive stability results. We note that Figure 1 does not appear in
[20]. The bifurcation diagrams in [20] were given in R3 since the system was not rescaled to
eliminate ε.

2.1. Rotating coordinates and a rescaling. We begin by looking at (2.1) in a coordinate
system rotating with frequency ωF using the variable

z = ueiωF t.

The system then becomes autonomous,

(2.2) ż = (λ+ iω)z − (α+ iβ)|z|2z + ε,

where ω = ωH − ωF . Next, we reduce the number of parameters by rescaling.
Lemma 2.1. The system (2.2) may be rescaled to have the form

(2.3) ż = (λ+ iω)z − (1 + iγ)|z|2z + 1.

Proof. We introduce the rescaling

t = ατ, ẑ = αz, λ̂ = αλ, ω̂ = αω, γ =
β

α
, ε̂ = α2ε.

Rewriting the system in this form, dropping the “hats,” we obtain

(2.4) ż = (λ+ iω)z − (1 + iγ)|z|2z + ε.

Next, we rescale small parameters using powers of ε via

(2.5) z = ẑε
1
3 , λ = λ̂ε

2
3 , ω = ω̂ε

2
3 , t = τε

2
3 ,

and writing the system in these coordinates (and dropping the “hats”), we obtain (2.3).
We then attempt to produce the bifurcation diagram in Figure 1 for the systems (2.4) and

(2.3).
Lemma 2.2. As shown in [20], periodic solutions to (2.4) correspond to zeros of

(2.6) H(R) = (1 + γ2)R3 − 2(λ+ γω)R2 + (λ2 + ω2)R− ε2 = 0,



BIFURCATIONS IN FORCED RESPONSE CURVES 2019

where R = |z|2.
Proof. We will follow the derivation of (1.8) in [20] in truncated normal form to arrive at

the desired result. Setting ż = 0 in (2.4), we find that

(2.7) (λ+ iω − (1 + iγ)|z|2)z = −ε.

Separating the first factor on the left-hand side of (2.7) into real and imaginary parts, we
obtain

((λ− |z|2) + i(ω − γ|z|2))z = −ε.

Finally, substituting R = |z|2, we may simplify:

((λ−R) + i(ω − γR))z = −ε.

Taking the norm squared of both sides, we arrive at the desired result.
Thus, the number of solutions to the algebraic equation (2.6) correspond to the number

of periodic solutions of (2.4) with the same parameter values. Also, since R = |z|2, the value
of the solutions to (2.6) gives a measure of the amplitude of the periodic solutions to (2.4).

If we consider H(R) = 0 as a bifurcation diagram with ω as a distinguished parameter
and γ, λ, and ε as unfolding parameters, then singularity theory enumerates the ways that
such a diagram may be nonpersistent (i.e., may qualitatively change if subjected to a small
perturbation) [9, p. 140]. That is, in parameter space one may encounter a simple bifurcation
variety,

B = {(γ, λ, ε) : H = HR = Hω = 0 for some R,ω} .
This defines a codimension 1 surface in (λ, γ, ε) space. One may also encounter a hysteresis
variety,

H = {(γ, λ, ε) : H = HR = HRR = 0 for some R,ω} ,
also defining a codimension 1 surface in (λ, γ, ε) space. Note that, generally, there is a third
possibility that one may find a double limit point variety D, which we will not define. Since
H is third order in R, D is empty (see [9, pg. 148]). We may then define the transition variety
T = B ∪H. On connected components of the complement to T in (λ, γ, ε) space, the curves
giving solutions to H(R) = 0 as a function of ω are persistent as distinguished parameter
bifurcation diagrams.

Bifurcation and hysteresis varieties were found in the analysis of (2.6) by Zhang and
Golubitsky in [20]. There is one simple bifurcation variety B, given by

(2.8) λ3 =
27

4
ε2,

and two hysteresis varieties, H+ and H−, given by

(2.9) λ3 =
(3±

√
3γ)3

8(1 + γ2)
ε2.

These varieties are all local since they tend to the origin as ε → 0. However, when we introduce
the rescaling, (2.5), and write the system in these coordinates (dropping the “hats”), we obtain
not only our rescaled version of (2.4)

(2.10) ż = (λ+ iωH)z − (1 + iγ)|z|2z + 1
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but also a rescaled version of (2.6):

(2.11) H(R) = (1 + γ2)R3 − 2(λ+ γω)R2 + (λ2 + ω2)R − 1 = 0.

This reduces the number of parameters in the bifurcation problem by eliminating ε.
We may then collect the above information about the bifurcation diagrams in ω by sketch-

ing the varieties B, H+, and H− in the (λ, γ) plane and obtain the curves shown in Figure
1. However, we still must determine which bifurcation diagrams in ω we see as we traverse
(λ, γ) space. To start, we determine what happens when one crosses the hysteresis varieties.
Specifically, we would like to know if our system provides a universal unfolding of the hyster-
esis degeneracy and, if so, the direction in which the forced response curve “tips over” when
we cross the hysteresis variety.

Proposition 2.3. If we tune the system (2.4) to a hysteresis point in ω, then variation of λ
produces a universal unfolding of the hysteresis point provided ε > 0. Furthermore, if we refer
to the first hysteresis point (as λ increases from 0) as H− and the second as H+, the direction
of the hysteresis folding is as shown in Figure 1 in (Regions 2, 3, and 4).

This result can easily be seen numerically. A proof can be found in [19]. With this
information, we may fill in the bifurcation diagrams in Regions 1, 2, and 3 of (λ, γ) parameter
space (see Figure 1). Comparing the bifurcation diagrams in Regions 2 and 3, we may also
determine the bifurcation diagram in Region 4. To determine the bifurcation diagrams in the
rest of the regions, we prove the following proposition.

Proposition 2.4. At the intersection of the bifurcation and the hysteresis varieties in the
unfolding of the periodically forced Hopf oscillator in rotating coordinates (2.3), i.e., when
γ = ±

√
3, there is a pitchfork bifurcation in the distinguished parameter ω. Additionally,

perturbations of the pitchfork bifurcations in (λ, γ) parameter space give a universal unfolding
of the pitchfork.

Proof. The defining conditions for the simple bifurcation variety are given by H = HR =
Hω = 0. The defining conditions for the hysteresis variety are H = HR = HRR = 0. So,
H = HR = HRR = Hω = 0 must be satisfied at the intersection. Thus, H(R) meets the
defining conditions for a pitchfork bifurcation in the parameter ω. We must check that the
nondegeneracy conditions are satisfied. We check that HRRR �= 0, HRω �= 0, and that these
have opposite signs at the bifurcation point.

Picking γ0 to be a value of γ where the pitchfork occurs (where hysteresis and bifurcation
curves intersect at ±

√
3), we evaluate

H = (1 + γ20)R
3 − 2(λ+ γ0ω)R

2 + (λ2 + ω2)R− ε20 = 0,(2.12)

HR = 3(1 + γ20)R
2 − 4(λ+ γ0ω)R + (λ2 + ω2) = 0,(2.13)

HRR = 6(1 + γ20)R− 4(λ+ γ0ω) = 0,(2.14)

Hω = 2ωR− 2γ0R
2 = 0.(2.15)

We note that using the above equation, it is clear that ω = γ0R.

(2.16) HRω = 2ω − 4γ0R.

Since ω = γ0R, we see that HRω = −2γ0R < 0 when ε > 0.

(2.17) HRRR = 6(1 + γ20) > 0.
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So, these nondegeneracy conditions are always satisfied.
Finally, we check that the unfolding of the pitchfork in (γ, λ) space is a universal unfolding.

To begin, we let h(R) = H(R) evaluated with γ =
√
3 and λ = 3

√
27
4 (i.e., tuned to the

pitchfork bifurcation point). We must verify (see [9, p. 138, Proposition 4.4]) that

det

⎛
⎜⎜⎝

0 0 hRω hRRR

0 hωR hωω hωRR

Hλ HλR Hλω HλRR

Hγ HγR Hγω HγRR

⎞
⎟⎟⎠ �= 0.

Taking the required derivatives, we find that the matrix has the form

D = det

⎛
⎜⎜⎝

0 0 2ω − 4
√
3R 24

0 2ω − 4
√
3R 2R −4

√
3

2λR − 2R2 2λ− 4R 0 −4
−2ωR2 + 2γR3 −4ωR+ 6γR2 −2R2 −4ω + 12γR

⎞
⎟⎟⎠ .

We must evaluate this at the bifurcation point, so we substitute in γ =
√
3 and λ =

(
27
4

) 1
3 .

We see from [19] that to be on the hysteresis variety when γ =
√
3, we must have R =

(
1
4

) 1
3 .

Finally, by (2.16), ω = γR =
√
3

4
1
3
.

Evaluated at this point, the matrix has the form

D = det

⎛
⎜⎜⎜⎝

0 0 −21/3
√
3 24

0 −21/3
√
3 21/3 −4

√
3

22/3 21/3 0 −4

0
√
3

21/3
− 1

21/3
4 21/3

√
3

⎞
⎟⎟⎟⎠ .

We compute the determinant of this matrix and find D = −12
√
32

2
3 �= 0. A similar computa-

tion holds for γ = −
√
3. When γ = −

√
3, the determinant satisfies D = (12

√
3)2

2
3 �= 0. The

theorem follows.
So, we have seen that there is a pitchfork bifurcation when γ = ±

√
3, and the unfolding

afforded by variation of γ and λ is a universal unfolding. In Figure 4, we show the universal
unfolding of the pitchfork. Portions of the bifurcation diagrams that are present in our system,
but not local to the pitchfork bifurcation, are shown in red.

Finally, we note that the curves shown in Figure 4 provide the solution structure in the
remaining regions of the bifurcation diagram shown in Figure 1.

2.2. Secondary Hopf bifurcation and Takens–Bogdanov varieties. It is proven in [20]
that for any fixed value of γ, when λ is positive, the stable phase-locked solution to (2.1) near
ω = 0 will lose stability via a secondary Hopf bifurcation (or a Neimark–Sacker bifurcation)
and give rise to toroidal dynamics (cf. Broer [5]). It is intuitive that when λ is positive and |ω|
is sufficiently large, we may see two characteristic frequencies instead of a single phase-locked
solution.

But, it is proven in [19] that for any fixed value of γ, there are no secondary Hopf bifurca-
tions (for any value of ω) if γ is sufficiently large. So, in Figure 1, it is not clear what should
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Figure 4. Universal unfolding of pitchfork with portions of the bifurcation diagrams that are present in our
system, but not local to the pitchfork bifurcation, shown in red.

happen to these secondary Hopf bifurcations if we tune the system close to the γ axis with
λ > 0 and begin increasing λ. So, we begin to investigate the fate of the secondary Hopf bi-
furcations. We will find that the secondary Hopf bifurcations terminate at Takens–Bogdanov
points and occur along varieties in (λ, γ) space shown in Figure 5.

If one considers (2.4) as a vector field in R
2 by the normal identification of R2 with C, the

eigenvalues of the derivative of this mapping, as shown in [20], are given by

(2.18) Λ2 − 2(λ− 2R)Λ +HR.

It follows that the determinant of a fixed point is given by HR, and the trace is given by 2(λ−
2R). We further note that, as shown by Zhang and Golubitsky in [20], the eigenvalue crossing
conditions of the secondary Hopf bifurcation points discussed above are always satisfied (Rω =
λ − 2R = 0 has no solutions except when HR < 0). So, there is always a unique branch of
periodic solutions (branches of tori in stationary coordinates) emanating from the secondary
Hopf bifurcation points. We also note, as shown in [20], that there are two Takens–Bogdanov
varieties (satisfying H = HR = λ− 2R = 0) where T B± are given by

λ3 = 4ε2

(
1± γ√

1 + γ2

)
.

So, we may add these two curves to the diagram in Figure 1 to obtain Figure 5 by setting
ε = 1 to produce the dynamics of (2.3). Recall that the shapes of the forced response curves
that correspond to regions in Figure 5 are known, as they are shown in Figure 1.

2.3. The stability of solutions. In this section, our goal will be to determine the stability
of the periodic solutions corresponding to points on the forced response curves in each region
of Figure 5 to obtain Figure 6.
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Figure 5. Solution structure with stability: Figure 1 with Takens–Bogdanov curves added. Since regions
also reflect stability, crossing the γ axis now results in changing regions. Numbered regions correspond to forced
response curves in Figure 6.

We are aided by the observation that crossing a Takens–Bogdanov variety will result in a
secondary Hopf bifurcation colliding with a saddle node point and disappearing as we move
from left to right (as discussed previously). However, as we traverse parameter space in Figure
5, it will sometimes occur that as we cross a Takens–Bogdanov variety, there will be multiple
secondary Hopf bifurcations and/or multiple saddle node bifurcations, making it difficult to
determine the stabilities on the resulting curve. Toward these ends, we find the following
result useful.

Proposition 2.5. For any fixed value of γ if we choose λ tuning the system to a Takens–
Bogdanov bifurcation variety, then the following hold.

For T B+, at the bifurcation point,

∂2ω

∂R2
< 0 for γ <

1√
3

and
∂2ω

∂R2
> 0 for γ >

1√
3
.
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Figure 6. Forced response curves (representing the radii of steady state equilibria—in rotating coordinates)
to (2.3). The numbering of the diagrams corresponds to parameter regions shown in Figure 5. Here, blue
lines represent unstable equilibria, black lines represent stable equilibria and red lines represent saddle stability.
Hence, the incidence of a blue or red curve with a black curve represents a saddle node bifurcation and the
incidence of a black and blue curve represents a secondary Hopf bifurcation.

But, for T B−, at the bifurcation point,

∂2ω

∂R2
< 0 for γ < − 1√

3
and

∂2ω

∂R2
> 0 for γ > − 1√

3
.

Proof. We begin by fixing γ = γ0 and tuning λ to λTB, the TB+ bifurcation point. We
also call the ω value where the TB+ bifurcation occurs ωTB and the R value RTB. Setting
H(R) = 0 at (γ0, λTB), we find

0 = (1 + γ20)R
3 − 2(λTB + γ0ω)R

2 + (λ2
TB + ω2)R− 1.

Taking a partial derivative with respect to R, we find

0 = 3(1 + γ20)R
2 − 4(λTB + γ0ω)R+ (λ2

TB + ω2) + 2(ωR − γ0R
2)
∂ω

∂R
.
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Taking a second partial derivative with respect to R,

6(1 + γ20)R− 4(λTB + γ0ω)− 4γ0R
∂ω

∂R
+ 2(ω − 2γ0R)

∂ω

∂R
+ 2(ωR − γ0R

2)
∂2ω

∂R2
= 0.

However, since the Takens–Bogdanov bifurcations occur at saddle nodes, ∂ω
∂R must be zero at

these points. Thus, simplifying and evaluating at ωTB and RTB,

(2.19)
∂2ω

∂R2
=

2(λTB + γ0ωTB)− 3(1 + γ20)RTB

ωTBRTB − γ0R
2
TB

.

Finally, eliminating RTB = λTB
2 , ωTB =

4+(γ2
0−1)λ3

TB

2γ0λ2
TB

, and λTB = (4 + 4γ0√
γ2
0+1

)
1
3 (see [19] for a

derivation of these expressions), we may rewrite the right-hand side of (2.19) as

(2.20)

⎛
⎝ 2

1− γ0√
γ2
0+1

⎞
⎠

1
3

γ0(γ
2
0 + 1) + (γ20 − 1)

√
γ20 + 1.

We wish to find the zeros of (2.20). To do this, we demand equality of squares of both terms
in the sum and then solve for γ0 = ± 1√

3
. Substituting this back into (2.20), we find that

1√
3
is the only solution. A brief inspection shows that the sign of ∂2ω

∂R2 changed from negative

to positive at this zero. Thus, the proposition is established for T B+. A similar analysis
establishes the result for T B−.

We now proceed to determine the stability of various regions in Figure 5. First, using
Proposition 2.5, we can determine the stability of Region 7 that results from crossing T B−

from Region 4, and we can determine the stability of Region 11 that results from crossing
T B+ from Region 6. Given that there are no secondary Hopf bifurcations in Region 20, using
Proposition 2.5, we may determine the stability of Region 16 by passing from Region 20 to
Region 16, crossing the T B+ line. Similarly, the stability of Region 17 is clear crossing the
T B− curve from Region 20. Additionally, the stabilities of Regions 12, 13, and 14 are clearly
obtained by crossing the simple bifurcation curve from Regions 16, 20, and 17, respectively.

In order for Region 4 (by crossing H+) and Region 6 (by crossing H−) to match in Region
9, the stability of Region 9 must be as shown in Figure 5. Given the stability in Region 9,
Proposition 2.5 may be used to determine the stabilities in Regions 8 and 10. In order for
Regions 16 (by crossing H+) and 7 (by crossing B) to match in Region 15, the stability of
Region 15 must be as shown in Figure 5. Similarly, we can find the stability of Region 18 by
matching Regions 11 and 17. Finally, the matching Regions 15 and 20 dictate the stability of
Region 19, and Regions 18 and 20 dictate the stability of Region 21.

2.4. Degenerate bifurcations. A quick investigation of global phenomena in the system
(2.3) suggests that higher codimension degeneracies must be missing from Figure 5. For
example, we know that near the Takens–Bogdanov bifurcations, saddle connections must also
be present where there are secondary Hopf bifurcations. However, it is easy to see that these
saddle connections cannot be everywhere to the “left” of the Takens–Bogdanov varieties in
Figure 5. (Note that some regions of parameter space do not even have points with saddle
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stability.) In this section, we will show that there are points in Figure 5 where the Takens–
Bogdanov bifurcations are elliptically degenerate. Local to those points, we will find curves of
degenerate (change of criticality) secondary Hopf bifurcations and a curve of SNL bifurcations
(homoclinic connections to a degenerate saddle point), where the saddle connections terminate.
Adding these curves to Figure 5 will result in Figure 2 shown in the introduction.

2.4.1. Degenerate Takens–Bogdanov bifurcation. Recall that, by introducing a formal,
smooth coordinate change, the system (2.4), tuned to a Takens–Bogdanov bifurcation point,
can be put into the form

ẋ0 = x1

ẋ1 =
∞∑
k=2

(akx
k
0 + bkx

k−1
0 x1).

Recall that in the nondegenerate case (when a2b2 �= 0), a Takens–Bogdanov bifurcation can
be put into the normal form

ẋ0 = x1,

ẋ1 = a2x
2
0 + b2x0x1

and can be unfolded by two parameters μ1 and μ2 via

ẋ0 = x1,

ẋ1 = μ1 + μ2x1 + a2x
2
0 + b2x0x1.

Hence, there is a natural classification of two types of degenerate (codimension 3) Takens–
Bogdanov singularities. If b2 = 0, but a2b4 �= 0, this case is called a “cusp of codimension
3.” Generic three-dimensional unfoldings of this system have bifurcation diagrams which are
locally topologically equivalent to those of the canonical family

ẋ0 = x1,

ẋ1 = μ1 + μ2x1 + μ3x0x1 + a2x
2
0 + b4x

3
0x1.

Alternatively, the following conjecture is proposed by Dumortier et al. in [7].
Conjecture 2.6. If a2 = 0, b2a3 �= 0, then generic three-parameter unfoldings of the system

have bifurcation diagrams that are locally topologically equivalent to those of the “standard
family”

ẋ0 = x1,

ẋ1 = μ1 + μ2x0 + μ3x1 + a3x
3
0 + b2x0x1 + c3x

2
0x1,

where c3 = b3 − 3b2a4
5a3

.
The generic unfoldings obtained by variation of 
μ in the standard family depends on the

other normal form coefficients in this case. Assuming, without loss of generality, that b2 > 0
(we may change coordinates via 
x → −
x if b2 < 0), the standard family has three topologically
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distinct unfoldings. When a3 > 0, the degenerate Takens–Bogdanov singularity is said to have
saddle type. When a3 < 0, two possibilities remain. If b22 + 8a3 < 0 (and the nondegeneracy
condition c3 �= 0 holds), then the singularity is said to be of focus type. But, if b22 + 8a3 > 0,
the singularity is said to be of elliptic type. Note that the complete proof of Conjecture 2.6
is obtained only in the case of saddle-type singularities but is believed to be true in all three
cases [14].

Formulas for the coefficients {an} and {bn} were derived by Kuznetsov in [14]. In [19], these
formulas are applied to show that for TB±, a2 = 0 only when γ = ±1/

√
3, respectively. Thus,

there are degenerate Takens–Bogdanov bifurcations at this point. Furthermore, b2a3 �= 0
for any value of γ, so we know that there are no other degeneracies. That is, we have
found that there are exactly two codimension 3 degenerate Takens–Bogdanov bifurcations.
It was also shown that b22 + 8a3 ≈ 1.04396 > 0. Hence, the degenerate Takens–Bogdanov
bifurcations discovered were of elliptic type. Note that these values of γ correspond exactly
to the intersection of the H and T B varieties.

2.4.2. Degenerate secondary Hopf bifurcation. From the unfolding of the codimension
3 elliptically degenerate Takens–Bogdanov bifurcation found in [7], we see that there should
be a ray of degenerate (change of criticality) Hopf bifurcations local to these points. (We note
that the translation from the distinguished parameter language of this paper to the unfolding
in [7] is not trivial, and the details are discussed in [19].)

Tuning the system to the secondary Hopf bifurcation points and computing the real part
of the cubic coefficient of the normal form secondary Hopf bifurcations (there are well known
formulas for this; see, for example, [6] or [12]), we can determine the criticality of the secondary
Hopf bifurcations. This calculation, performed in [19], yields the curves CC± shown in Figure
2.

2.4.3. Homoclinic connections and SNL varieties. As we mentioned before, there are
homoclinic orbits local to the Takens–Bogdanov varieties. So, it is clear that some regions of
parameter space (shown in Figure 2) should have saddle connections, but others (for example,
regions with no saddle points) should not. It is not clear, however, which regions of parameter
space should have homoclinic orbits present, which should not, and how the system (2.4)
should transition between these two possibilities.

Using the unfolding of the degenerate Takens–Bogdanov singularity in [7], one finds that
there should be a curve of SNL bifurcations (saddle connections to a degenerate saddle point)
local to the degenerate Takens–Bogdanov singularities. It is not obvious how to parameterize
these curves. However, it is clear that they should remain to the left of the T B varieties and
to the right of the γ axis—because there should be secondary Hopf bifurcations present on
the forced response curve if there are saddle connections. Also, the SNL varieties should
stay to the right of the H varieties, since there should be a saddle point present to have a
saddle connection. Note that in Figure 2, the SNL curve is drawn as never intersecting the
CC varieties. This is not known to be true in general.

These observations justify the placement of the SNL curves to the left of the degenerate
Takens–Bogdanov bifurcations in Figure 2. However, we must consider how they emanate
moving to the right—in the direction of increasing λ. It is clear that the SNL curve must bisect
the region between the hysteresis and the Takens–Bogdanov bifurcation varieties (consistent
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with our arguments on the left side). However, SNL cannot cross the variety B since the
saddle node bifurcation point (the degenerate saddle point) possessing a homoclinic connection
will disappear after the bifurcation. If it touches the bifurcation variety and terminates
without crossing, then increasing λ across the bifurcation variety could eliminate a homoclinic
orbit without crossing the SNL bifurcation variety. Thus, the SNL bifurcation curve must
terminate at the pitchfork bifurcation point. In fact, we can see that the homoclinic orbit
must be local to the SNL/pitchfork bifurcation. If it were not, then the center manifold of the
pitchfork bifurcation (which includes either the stable or the unstable manifold of the saddle
point) would contain the entire homoclinic cycle. But this cannot be the case because then
there would be an additional node on the homoclinic cycle. Thus, we arrive at the diagram
shown in Figure 2.

2.5. Forced response curves. With this information, we can add all of the detail to
the forced response curves in Figures 2 and 3. Note that we have shown the criticality of the
secondary Hopf bifurcation and drawn in a curve representing the amplitude of the emanating
tori (periodic orbits in rotating coordinates). Note that we have also encoded the stability
of the tori and the stability of the saddle connections, which are dictated by the criticality
of the secondary Hopf bifurcations. We also note that, as is indicated in the unfolding of
the degenerate Takens–Bogdanov bifurcation in [7], tori terminate via homoclinic bifurcation
prior to crossing the SNL variety and via cycle blowup after crossing the variety.

3. Discussion. The results of this paper begin to classify the dynamics of periodically
forced Hopf bifurcation with the forcing frequency as a distinguished parameter. To apply this
research to particular model equations, one must tune to a Hopf bifurcation point, perform a
center manifold reduction, and compute the normal form parameter γ. Then, one uses Figures
2 and 3 to understand which transitions in the forced response curve one should expect to see
as model parameters are varied.

The results are also limited by the requirement that we examine only small amplitude
sinusoidal forcing. There are also small regions of parameter space (when the system is tuned
near a bifurcation variety) where the dynamics of the system may be arbitrarily complicated,
and large regions of parameter space (with saddle connections present) where chaotic dynamics
may generically occur. Some comments on the generality of the results presented here are
given in Wiser [19]. Points that are discussed include the breaking of normal form, the third
order truncation, and separable forcing.

This research could be extended by looking at networks of systems near Hopf bifurca-
tions. It has already been suggested that the dynamics of exceptionally simple networks of
systems near Hopf bifurcations may have surprising dynamics (see [11, 10]) or play a role in
physiological models (see [3], for example).
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