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Abstract. In this paper and its sequel we study arrays of coupled identical cells that possess
a ‘global’ symmetry groupg, and in which the cells possess their own ‘internal’ symmetry
group £. We focus on general existence conditions for symmetry-breaking steady-state and
Hopf bifurcations. The global and internal symmetries can combine in two quite different ways,
depending on how the internal symmetries affect the coupling. Algebraically, the symmetries
either combine to give the wreath produtt G of the two groups or the direct productx G.

Here we develop a theory for the wreath product: we analyse the direct product case in the
accompanying paper (henceforth referred to as Il).

The wreath product case occurs when the coupling is invariant under internal symmetries.
The main objective of the paper is to relate the patterns of steady-state and Hopf bifurcation that
occur in systems with the combined symmetry gralipg to the corresponding bifurcations in
systems with symmetry or G. This organizes the problem by reducing it to simpler questions
whose answers can often be read off from known results.

The basic existence theorem for steady-state bifurcation is the equivariant branching lemma,
which states that under appropriate conditions there will be a symmetry-breaking branch of steady
states for any isotropy subgroup with a one-dimensional fixed-point subspace. We call such an
isotropy subgroupxial. The analogous result for equivariant Hopf bifurcation involves isotropy
subgroups with a two-dimensional fixed-point subspace, which weCzaktial because of an
analogy involving a natural complex structure. Our main results are classification theorems for
axial andC-axial subgroups in wreath products.

We study some typical examples, rings of cells in which the internal symmetry group is
0O(2) and the global symmetry group is dihedral. As these examples illustrate, one striking
consequence of our general results is that systems with wreath product coupling often have
states in which some cells are performing nontrivial dynamics, while others remain quiescent.
We also discuss the common occurrence of heteroclinic cycles in wreath product systems.

AMS classification scheme numbers: 20xx, 57T05

1. Internal and global symmetries

Arrays of coupled oscillators have been studied by many authors [1, 2, 11]. It has been
noted that when the oscillators are identical, symmetries are induced into the associated
system of differential equations [13] and these symmetries depend on the exact pattern of
coupling. For example, one popular configuration is a systemN aklls coupled in a ring

[2, 11]; this system has dihedrBly symmetry. Another popular pattern of couplingail

to all coupling where each cell is coupled to every other cell [16, 4]; this type of coupling
of N cells inducesSy permutation symmetry. We call symmetries induced by the pattern
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of couplingglobal symmetriesthe group of global symmetries is always a finite subgroup
G of Sy.

There is another set of symmetries of coupled cells that has been considered less
frequently. They occur when the differential equations governing the dynamics in each
cell have their own symmetries [3]. This may happen, for example, when each cell is
viewed as a geometric object having certain symmetry—such as a circular disc—and the
dynamics in each cell are governed by partial differential equations that are invariant under
that symmetry. Another common example is an array of coupled van der Pol oscillators,
each of which has a reflectional symmetwy, y) — (—x, y) where (x, y) are the state
variables of one of the oscillators. We call these symmetinésrnal symmetriesand
denote the group of internal symmetries By

In this paper and in [7] we develop a theory of how patterns formed through steady-state
and Hopf bifurcations in such systems depend upon both the internal and global symmetries.
A subtlety that appears in this discussion is that the full gl symmetries of the coupled
system depends on the precise nature of the coupling. Although, in any coupled system,
" is derived fromG and L, the precise way in which the groups combine depends on the
form of the coupling.

There are two natural types of coupling that lead to two quite different grbupene
type leads to direct products and the other leads to wreath products. We illustrate these two
types of coupling by assuming that the dynamics of each cell is governed by a PDE. In
the first type of coupling, the cells are coupled pointwise (at least on the boundary). For
example, here we imagine two biological cells having a common membrane that allows
different ions to permeate at different rates. This type of coupling leads to a total symmetry
groupl’ = £ x G. Bifurcations based on these direct product symmetries are studied in [7].
For the second type, we imagine a kind of ‘mean-field’ coupling where the effects on one
cell are felt uniformly in space and depend only on averaged quantities from the other cell
or averaged quantities on its boundary. This type of coupling leads to the wreath product
symmetry groupL : G which is the subject of this paper; wreath products are defined
in section 2. Examples where such systems arise in applications are described in [12].
Bifurcations with specific wreath product symmetries have been studied in [14, 9, 10]

1.1. Axial subgroups

We will not attempt to find all possible branching patterns—the groups are too complicated
and the irreducible representations that drive the bifurcations are of too high a dimension.
Rather, we take a more restricted approach that will, nevertheless, yield interesting results.
In steady-state bifurcations, it is well known that when isotropy subgroups have one-
dimensional fixed-point subspaces, then generically the equivariant branching lemma [13]
guarantees the existence of solutions with that symmetry. In this paper, when we study
steady-state bifurcations, we look only for solutions corresponding to symmetries having
one-dimensional fixed-point subspaces. These isotropy subgroups are always maximal
isotropy subgroups and the one-dimensional fixed-point subspaces are axes of symmetry.
With this in mind we define:

Definition 1.1. A subgroupXx c T is axial if it is an isotropy subgroup having a one-
dimensional fixed-point subspace.

Similarly, when studying Hopf bifurcations, the equivariant Hopf theorem [13] states
that branches of periodic solutions having symmeirpccur generically wheneve has
a two-dimensional fixed-point subpace.
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Definition 1.2. A subgroupx c I' x St is C-axial if it is an isotropy subgroup having a
two-dimensional fixed-point subspace.

We will expand on this definition in sections 4 and 5.

We divide the paper as follows. In section 2 we describe properties that the coupling
must have when the local and global symmetries combine to form direct products and wreath
products. Section 3 addresses the representation theory of wreath products which determines
the abstract behaviour of bifurcations. Axial subgroups for steady-state bifurcations are
found in section 4 andC-axial subgroups for Hopf bifurcations are found in section 5.

In both contexts the crucial data are the possible ‘blocks’ for the global gfouphich
determine the general structure of axial a@ehxial subgroups, and hence the range of
patterns that occurs. A description of some of the more complicated dynamics that occur
in systems with wreath product coupling is discussed briefly in section 6.

The answers to the corresponding questions when the coupling yields direct product
symmetry groups requires more detailed information about real irreducible representations.
This issue along with the classification of certain axial @&adxial subgroups for direct
products is discussed in [7].

2. Coupled cells and ODEs

We begin by discussing a general form that the assumptiodenttical cellswith identical
coupling forces on systems of ODEs; this form will allow us to illustrate how the type of
coupling changes the possible symmetries. In order to focus on the link between modelling
assumptions and symmetry we discuss a specific, fairly natural, form of coupling. However,
the theory that we develop applies to any form of coupling that possesses appropriate
symmetry properties.

Let X; denote the state variables of thith cell and letX = (X1, ..., Xy) be the state
variables for the entirev-cell system. The assumption that the cells are identical implies
that X; € R for eachj and X € (RF)N. A system of ODEs

ax = F(X)
dr

is asystem of coupled celi§
dx

Ej = fi(Xj) + h;j(X)

where f; governs the internal dynamics of thiéh cell andk; governs the coupling between
cells. Since the cells are assumed to be identical, we assumg; thay for all ;.

We formulate our assumptions about coupling as follows. Definedh@ection matrix
C by setting

1 if cell i is coupled to cell

Ca, j)= .
@) 0 otherwise.

To keep the motivating ideas simple we assume that the coupling has the form
N
hi(X) =Y C(i, phij(Xi, X))
i=1
where i;; models the coupling of cell to cell j. That is, we assume that the effect of

coupling on thejth cell is found by just summing the influences of all cells coupled to
the jth cell. The additive nature of this form of coupling is not an essential feature of
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the subsequent theory, nor is its restriction to pairwise interactions. Its role is to exhibit
the symmetries clearly. The assumption that the cells are identically coupled implies that
hij = h for all i andj.
We next discuss the global permutation symmetries that are present in the system of
ODEs
dx;

N
o =+ le C(i, Dh(Xi, X;) . 2.1)

Let o € Sy be a permutation. The action ef on state space is:
o-X=Xs1,---, Xo1()) -
Observe that is a symmetry of (2.1) if
oCot=C (2.2)
whereos is viewed as anV x N permutation matrix in (2.2). Thglobal symmetry group
G consists precisely of these permutation symmetries. It follows that
Fo-X)=0-FX)

for all o € G. This equivariance condition encodes the information that these symmetries
permute the cells so that the differential equations do not change.
Next we discuss the local internal symmetry grodpc O(k). To be aninternal
symmetry we require that € £ satisfy
SUX;) =Lf(X;).

Whether internal symmetries are symmetries of (2.1) depends on properties of the coupling
term k. As a minimum we require that whehacts simultaneously on each cell, then it is
a symmetry of the coupled cell system. That is, we require that

h(€X;, €X;) = Lh(X;, X;) . (2.3)
If we define

0-X=(Xq,..., tXy)
then

F(-X)=1¢0-F(X)

and ¢ is a symmetry of (2.1). It follows thaf x G are symmetries of (2.1) wherg is
viewed as the diagonal subgroup©f. Note that if the coupling term is diagonal linear,
that is,

h(X;, X)) = X; — X;

then the direct product is a symmetry group of (2.1).
However, we also consider coupled systems where the actioh of each cell
individually is a symmetry of (2.1). That is, we suppose

h(X;, £X;) = th(X;, X;) (2.4)

h(€X;, X;) = h(X;, X;) . (2.5)
Any two of equations (2.3)—(2.5) imply the third. In this case, the grélipis a symmetry
group of (2.1). Thavreath productZ: G is the symmetry group generated by the grodgs

and G; under these assumptions it is a symmetry group of (2.1). See [17] for a discussion
of the algebraic structure of wreath products.
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An example of wreath product coupling is given by
h(Xi, X)) = 1Xi1?X; . (2.6)
The exact form of such a system is

% —f(X<)+XN:C(‘ DIX:2X;
T S DT

We have shown that ifZ denotes the internal symmetries agiddenotes the global
symmetries, then there are (at least) two natural types of coupling leading to two different
symmetry groupd". The first type of coupling leads to thdirect productl”’ = £ x G,
whereas the second type of coupling leads towheath productl’ = £:G. We discuss the
wreath product coupling in the remainder of this paper and direct product coupling in 11 [7].

In order to simplify the analysis we shall assume that the global symmetries act
transitively on the cells, that is, we assume

(H7) G is a transitive subgroup @y.

If the action ofG is intransitive, consideration of group orbits of cells ungereduces the
analysis to a finite list of cases in each of whiat;) holds.

3. Linear theory for the wreath product

3.1. Group structure of the wreath product

In this section we study a network of coupled cells with wreath product coupling as described
in section 2. LetV = R¥; then V" is the state space of the coupled system (2.1).

We begin by discussing the group structure of the wreath product. The action of
L£:G on V" is given by

(£, 0) - (x1,x2, ..., xn) = (L1Xo-1(1), L2X5-1(2)5 - . - s ENXo1(N)) (3.1)

wheret € £V, o € G and(x1, xo, ..., xy) € VVN. The permutations act naturally ére £V
by

a(@) = (Zo—l(]_), ey Zg—l(N)) .

With this definition it is easy to check that the group multiplication in the wreath product
is given by

(h,t){,0) = (ht (), 10).

3.2. The linear theory

When considering steady-state bifurcation from a group-invariant equilibrium, we may make
the generic hypothesis that

(Hs) T = L£: G acts absolutely irreducibly on the kernel of the linearized equations.

See [13], proposition 3.2, chapter Xlll. Similarly, when considering Hopf bifurcation we
may make the generic hypothesis that

(Hg) T actsT"-simply on the centre subspace.
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See [13], proposition 1.4, chapter XVI. In either case, we must first understand"how
decomposes the state spac€ into irreducible subspaces.

Let W c V¥ be an irreducible subspaceof It follows thatW is an invariant subspace
for the subgroupC™ c I'. If £V acts trivially onW, then the local symmetries will have
no affect on a bifurcation supported by this representation. Indeed, the bifurcation will be
of the type studied in coupled cell systems with only the global symmetry giegphich
we assume has been studied previously. In this paper, we are interested only in studying
bifurcations with combined local and global symmetries; therefore, we assume

(H) £V acts nontrivially onW.

LetU; = {v; € V : (0,...,v;,...,00 € W}. EachU; c W is an£" invariant
subspace. We assert:

Lemma 3.1. Assume hypotheséfly), (Hy), (H:). Then

(a) U; is L-irreducible.

(b) All U; are L-isomorphic to a singleC-irreducible spacel.
(c) W=UN.

Proof. By constructionW > U1 ®---® Uy. We claim thatW = U, @ --- ® Uy. Note that
U1 ®---@ Uy is G-invariant sinceg just permutes the subspadés Also, by construction,
U@ ---@® Uy is £V invariant. Hence/; & - -- @ Uy is T-invariant sincel” is generated
by G and £V. To verify the claim, we need only show that @ --- @ Uy # 0.

By assumptionC" acts nontrivially onW. Suppose(vy, v, ...,vy) € W c VY and
¢ € L. Then invariance implies th&tvq, v, ..., vy) € W. Hence(fvy;—v1,0,...,0) e W
for all £ € L. Also, we have assumed itH¢) that £ acts nontrivially onW; without loss
of generality, we may assume thétacts nontrivially on the first component of vectors in
W. It follows thatU; # 0, which verifies the claim.

The global symmetrie§ permute thé/;. Assumption {{7) states thag acts transitively
on theU; and hence all of th&/; are L-isomorphic. Finally, ifUy C U were L-irreducible,
then Uy would beT-invariant. The irreducibility of" on W = U" implies thatUy = U
andU is L-irreducible. O

Next we show thaf” acts absolutely irreducible ori” if and only if £ acts absolutely
irreducibly onU. Let Dr(W) be the space of linear mappings @n that commute with
the action ofT".

Lemma 3.2. Assume thaFix; (£) = {0}. Then
Dr(UM) = Dp(U).
Proof. Suppose thati : U — U is linear and commutes witd. ThenA"™ : UNY — UV
commutes withl", since§ just permutes the factors @f. This construction induces an
injection of D, (U) into Dr(UV).
Conversely, suppose that: UNY — U" is linear and commutes with. In coordinates,
let B = (Cy,...,Cy) and note that’; commutes with the action of". In particular,
Ci1(€qvy, ..., €yvy) = £1C1(v1, ..., UN) .
Next, letC denote one of the€;, sayC,, and use linearity to write
C(v,...,vy) = D1(v1) + -+ Dy(vy).

Equivariance ofC implies that eachD; for j = 2,..., N is L-invariant. However, since
Fixy (£) = {0}, proposition 2.2, chapter XIII of [13] implies that all linear invariants vanish
andC(vy, ..., vy) = D1(v1). Hence

B(vy, ..., vy) = (A1(v1), ..., Ax(vy))
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where eachd; : U — U commutes withZ. Finally, sinceG acts transitively by(Hr), all
the A; are equal. O

Lemma 3.2 has implications for the form of the critical eigenspaces at points of
steady-state or Hopf bifurcation. In the case of steady-state bifurcations the kernel of
the linearization is generically absolutdlyirreducible. By Hy) and (H,) this kernel must
have the formU" whereU is an absolutely irreducible representationfof

Generically, in Hopf bifurcations, the centre subspac€&-simple that is, the centre
subspace either has the forwi @ W where W is absolutelyl-irreducible or the centre
subspace is a nonabsolutélyirreducible subspace. Because ) and (H;), lemmas 3.2
and 3.1 imply that the centre subspace is eitlie® U)Y = (U®C)" whereU is absolutely
L-irreducible or the centre subspacelid whereU is nonabsolutelyC-irreducible.

4. Steady-state bifurcation for wreath products

We assume thaW is the kernel of the linearization of (2.1) atTainvariant equilibrium.
We make the generic hypothesiBs) thatI" acts absolutely irreducibly oi’. We make
the additional assumptioffH,) that £V acts nontrivially onW, which focuses attention on
new patterns of bifurcation associated with wreath product symmetry. In particular, we can
write W = UM where£ acts absolutely irreducibly ofy.

We divide this section into two subsections. In the first we discuss the axial subgroups
of wreath products acting oW and in the second we discuss all isotropy subgroups and
maximal isotropy subgroups.

4.1. Axial subgroups

We begin with a definition. A subset of indicdsc {1, ..., N} is ablock if there exists a
subgroupH of G that acts transitively oid. Note that singletons are blocks (take= 1).
To each block/ we associate the permutation subgroup

Qy={oeG:o())=1J}

which acts transitively oy since it containg.
Let A C £ be any subgroup and define

(A, J)=(Bix - x By)+Qy

where

L if jeJ.

Lemma 4.1. For each block/ and each axial subgroug c £ acting onU, the subgroup
3(A, J) C LG is an axial subgroup.

A if jelJ
efr 0

Proof. Let x € U be a nonzero vector fixed by and letz = (x4, ..., xy) where
X if jeld
Xj = P
0 if j&J.

Note thatX (A, J) fixes . Conversely, lety € UV be fixed by (A, J). Sincey is

fixed by B1 x --- x By it follows thaty; = 0 for j ¢ J andy; is a multiple ofx when

j € J. Since Q; acts transitively ornJ it follows that all the nonzerg; are equal and
Fixy (Z(A, J)) = R{z).
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To complete the proof we must show thatA, J) is the isotropy subgroul, of x.
The previous paragraph shows tt®&¢A, J) ¢ X,. Now suppose that¢, o) fixes . It
follows thato must preserve/ and hence thad € Q;. Thus(l,0) € (A, J) and (¢, 1)
fixes x—from which it follows that¢ € B; x --- x B,. Thus(¢,0) € (A, J), as required.

([

We will show that all axial subgroups of the wreath product are conjugate to subgroups
of the formX (A, J). LetTlg : £L:G — G be projection and let

Uy ={(x1,...,xy) € U" :x; =0 forj ¢ J}.

Lemma 4.2. Suppose thak is an axial subgroup of : G. ThenIIg(XZ) acts transitively on
some block/, and Fixy~ (X) C Uy.

Proof. Let  be a nonzero element of kjx(X), and letJ be the setof allj € {1, ..., N}
such thatx; # 0. We show thalllg(X) acts transitively on/. Sincet;x,-1;, = 0 if and
only if x,-1¢;, = 0, we have thallg(X)J C J. Suppose that there exist two disjoint subsets
J1 and J, of J such thatllg(X)J; C J; fori =1,2. Then

Xj if je Xj if je b
e and y2 = L
0 if jé&a 0 if j&J,
are two linearly independent elements of f-ixZ). By assumption this subspace is one

dimensional, which is a contradiction. Thilg;(X) acts transitively or/ andJ is a block.
O

y1=

To simplify notation, we assume thatif is an axial subgroup of : G, then the block
J whose existence is guaranteed by lemma 4.2 is {1, ..., s} wheres < N.

Proposition 4.3.Let X C £:G be axial and letx € Fixy~(X) be nonzero. Relabel the
cells, if necessary, so that = (x1,...,x,,0,...,0). Let A be the isotropy subgroup af
in £. Then

(a) A C L is axial,

(b) X is conjugate tox (A, J) .

Proof. We begin by showing that we can conjugateto (xi,...,x1,0,...,0). Since
g (%) acts transitively on/, we can find for eaclj € J an element¥, o) € ¥ such that
o(1) = j. Thusx; = €jx,1(j) = £;x1. Leth = (¢7%, ..., ¢4 1,...,1). ThenhZhtis
an isotropy subgroup conjugate ¥ with

Fixyv(hZh™) = R{h(x1, ..., X, 0,...,0)}
ZR{()C;L,...,X]_,O,...,O)}.

We may therefore assume that fix¥) = R{(x, ..., x,0, ..., 0)} wherex = x;. SinceX
is the isotropy subgroup df, ..., x,0,...,0), it follows thatx > X (A, J). Lemma 4.1
states thak (A, J) is a maximal isotropy subgroup from which it follows that= X (A, J),
which verifies (b).

Now we show that

Fixyv (Z(A, J)) = {1, ..., y1,0,...,0) 1 y1 € Fixy(A)}.

Lety = (1, ..., yn) be in Fixyn(Z(A, J)). The action ofA* x LN~ forcesy; to be 0
when j > s, and it forcesy; to be fixed byA when j <s. SinceQ; acts transitively on
J, we see thay, = - -+ = y,.

SinceX = X(A, J) it follows that dimFix;~(2(A, J)) = 1 andy; is a multiple ofx.
Then dimFix, (A) = 1 and A is axial, which verifies (a). ([
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4.2. An example

In order to clarify the implications of proposition 4.3 we describe its application to a typical
example. We tak&f = D35 and £ = O(2), both acting in their standard representations
on C = R? (The same patterns arise if we take= Z,, with axial subgroupl, but

the internal symmetry of each cell that does not have Zijllsymmetry is then trivial.)

Let X = {0,1,2,...,14}, on whichD;5 acts by cyclic permutation and inversion. We
first classify the blocks/ ¢ X. The possible subgroupd c G are (up to conjugacy)
1,2Z3,2Zs,2Z15 D1, D3, Ds and Dys. The blocks are thé{-orbits on X, which we list in

table 1. Note that for the cyclic groups all orbits consist of equally spaced cells and, up to
conjugacy, we may assume that cell O is in the block. For the dihedral groups we only list
those blocks not obtained using the cyclic subgroups. For example, the orBitsaatting

onX are{0,3,6,9,12} and{1,2,4,5,7,8,10, 11, 13 14}. Only the second block is new.
From J we immediately comput®,, also shown in the table.

The only axial subgroupd C O(2), up to conjugacy, isZ5. By lemma 4.1 and
proposition 4.3 the axial subgroups 6f: G, up to conjugacy, are the groups(Zs, J).
Such a group is a direct product of a number of copieZffone in each cell € J, and
copies ofO(2) in each remaining cell; all extended lgy;. Let J' be the complement of
J in X. Suppose that = (xo, ..., x14) € FiIX(X(Z%, J)). Thenx; € Fix(O(2)) whenever
j € J'; that is,x; = 0 wheneverj € J'. We call such a celtuiescentand all other cells
active We may expect active cells typically to take up nonzero states. Moreover, @ince
acts transitively orv, all the activex; are equal forj € J. Thus any state with isotropy
subgroupx(Z%, J) corresponds to quiescent cells fpre J' and identical active cells for
jelJ.

Table 1. Axial subgroups 0f0(2) : D15 up to conjugacy.

H J = active cells Qy
1 {0} D1
Zs  {0,5,10 D3
Zs  {0,3,6,9,12 Ds
Zis {0,..., 14 Dis
Dy {k}k=1,...,7 D1
Ds {14,6,911 14 D3
D {2,3,78,12 13 Ds
Ds {1,2,4,57,8,10,11,13 14 Ds

Figure 1 (top) illustrates the 14 different patterns of active/quiescent cells, up to
conjugacy, that result from this classification. This list is typical for a ringzoéells
with O(2) internal symmetry when is odd. Whem is even the classification is similar,
but there are two distinct conjugacy classes of dihedral subgroups of some orders. Rather
than writing down a complicated list of conditions, figure 1 (bottom) illustrates another
typical case, whem = 12. This time there are 15 patterns (up to conjugacy).

More complicated internal symmetries just impose lots of possible choices.fdihe
crucial thing is the list oblocks which depends only upog.

Note the prevalence of solutions in which some cells are quiescent, some active. Such
states arise because the ‘invariant’ coupling rules for wreath products, which in suitable
circumstances can effectively decouple quiescent states from their neighbours. More
generally, assume for simplicity that F&¥) = 0, and pickany subsetk c {1,..., N},
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Figure 1. Top: the 14 patterns of active/quiescent cells in a ring of 15 identical cellsOh
internal symmetry. Bottom: the 15 patterns of active/quiescent cells in a ring of 12 identical
cells. Black cells are active, white cells are quiescent.

not necessarily a block. Consider a subgrat £: G of the form
YT =By Xx---X By

where

g fork e K
1 otherwise.

By

Then

Fix(Y)=Vi&®--- & Vy
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where

0 forke K

Vi = .
, U otherwise.

Because it is a fixed-point subspace, such a subspace is invariant under the dydanyics.
nonzero solution of the restriction of the original ODE to @Y is a dynamical state of

the whole system in which the cells Ki are all quiescent. (However, the active cells need
no longer be inidentical states.) It could therefore be possible, for example, to arrange
for some cells to behave chaotically while neighbouring cells remain quiescent. It just
requires arranging the appropriate dynamics for the restriction of the ODE (& FiNote

that instead of choosing thB, to bel for k ¢ K, we can choose them to be arbitrary
(not necessarily equal) subgroups 6f and similar remarks apply. However, now the
symmetry of each active cell is constrained. Of course, the possible states of this kind
depend upon what is permitted by the restriction of the full ODE to the corresponding
fixed-point subspace.

4.3. Isotropy subgroups and maximal isotropy subgroups

We begin as follows. Let
J=JU---UJs

be a partition of{1, ..., N}. A subsetJ; is called apart of the partitionJ. Let
Qrj={ceG:oJ;=J; forl<i<s}.

To simplify the the indexing define

xi{l,....,N} > {1,...,s}

by
x (i) =k if ieJ.

So x (i) denotes the part of in which ;i sits.
Let X4, ..., X, be isotropy subgroups af acting onU and let

EJ:B]_X-“XBN
whereB; = X, ;). Finally, let
r=%,40,.

Proposition 4.4. ¥ is an isotropy subgroup df = £: G acting onU" and every isotropy
subgroup ofl" is conjugate to such &.

Proof. Let w; € U be a vector whose isotropy subgroupdns %;. Assume that they; all
lie on distinct£ group orbits. Letv = (vy, ..., vy) Wherev; = w, ). By constructionX
fixesv. Since thew; lie on distinct£ group orbits, any element i : G that fixesv must
preserve the partitiod. It follows that no group element in addition to those3infixes v
and X is an isotropy subgroup.

Conversely, consider the isotropy subgroup of a veatos (vq,...,vy) € UV,
Construct a partition/ by putting two indices¢ and m in the same part ifv, and v,
lie on the sameC orbit. Then conjugate so that allv; in the same part are equal. The
isotropy subgroup ob is X. |
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This construction allows us to compute the fixed-point subspac&.ofRefine the
partition J to K where the permutation subgroyp, acts transitively on each part iK.
Definep(i) = j if i is in the jth part in the partitionk. Then

Fixpv (2) = {(z1, ..., z2v) € U 1z = z; if p(i) = p(j)}.

We can also compute the dimension of fixZ) as follows. LetJX be the number of
parts of theK partition that are contained in thg part in theJ partition. Then

dimFixyv (2) = »  JX dimFixy () . (4.1)
i=1

i=

We can now classify the maximal isotropy subgroups. SupposeXihiatan isotropy
subgroup corresponding to a partition We claim that ifX is maximal, then it contains
just two parts and one of the subgroupsmust beL. To verify the claim observe that
can always be enlarged by setting one of e equal toL. We may assume thadt, = L.
Similarly, it follows that B; must be a maximal isotropy subgroup in the actionCadn U.

Next we claim that if,;+Q, is a maximal isotropy subgroup (witB, = £), thenJ;
must be a block, that igQ; must act transitively orf;. Indeed, we can refine the partition
J so thatQ; acts transitively on the parts of the new partition/in Then, again, we can
enlarge the isotropy subgroup by settiBg = £ on all parts inJ; save one. We have
proved:

Proposition 4.5. Every maximal isotropy subgroup in has the formz;4+Q; whereJ =
{J1, Jo} is a partition, J; is a block,B, = £, and B; is a maximal isotropy subgroup of the
action ofLonU.

5. Hopf bifurcation for wreath products

5.1. Complex structure

At points of Hopf bifurcation in"-equivariant systems, the centre subspace generically has
a special form—it isI’-simple. That is, the centre subspace either has the 1éra U
wherel" acts absolutely irreducibly o, or it has the formlJ whereI" acts nonabsolutely
irreducibly onU. In either case, there is a complex structure on these spaces and a natural
action of the circle grouf®t. The complex structure is obtained as follows. Suppose the
system of ODEs is written as

X = F(X)

and that Hopf bifurcation is contemplated from the trivial soluti®n= 0. That is, we
assume that"(0) = 0 andJ = DF(0) has purely imaginary eigenvalues which, after
rescaling of time, areti. Thena + ib acts on the centre subspace b+ bJ, and this
defines the complex structure. Equivalenttg?)X = r(6 - X) where thed-action is via the
groupsS*. In the first case this complex structure can be written explicitly in coordinates
using the identificatiol/ @ U = U ® C. ThenS' acts onC as unit complex numbers.
In both cased™ has a complex irreducible representation on the centre subspace. Indeed,
irreducibility of the complex representation bfis equivalent tol"-simplicity of the real
representation, by [13], proposition 3.5, chapter XVI.

By lemma 3.2 we can write the centre subspack ¥iswhere eithel acts nonabsolutely
irreducibly onV, or V. = U ® C and £ acts absolutely irreducibly o&y.
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5.2. Classification ofC-axial subgroups

In this subsection we assume the generic hypothdsig, so we consider Hopf bifurcation
of £:G actingI'-simply on the centre subspace. First we show that for each blacid each
C-axial subgroupB¥ c £ x S* there is aC-axial subgroup=(BY¥, J) C (£L:G) x St. The
subgroupBY is the subgroup of x St that is formed from the homomorphisin: B — S,
that is

BY = {(b, (b)) : b € B}.

Such subgroups are said to twasted see [13], section 7, chapter XVI.
The groupX (BY, J) is the group generated by three subgroups indicated as follows:

S(BY, J) =", 0,,00 4+ (T, £Y7),1,0) + (B, 1V ), 1, ¢

where we assume without loss of generality tha:g: {1,...,s} and thatQ, consists of all
permutations irg that preserved. The subgroupB is defined by

B={(b1,....by) € B 1 P(by) = - = Y(b)}.
Becausa) is a group homomorphisng is a subgroup of3*.
Proposition 5.1. X (BY, J) is C-axial.
Proof. Let ¥ = =(BY, J) and letw = (w1, ..., wy) € VV be fixed by=. The fact that

((1¢, £N=%), 1, 0) fixes w implies thatw,4q = --- = wy = 0. Thus
w=(wy,...,ws0,...,0).
Becausew is fixed by (1", Q;, 0) it follows that w, = --- = w,. Finally, w is fixed by

((B, 1¥=%), 1, y), sow is fixed by B¥. SinceBY is C-axial, we see that Fix () is two
dimensional.

To complete the proof we show that is the isotropy subgroup ob, whenceX is
C-axial. LetX, be the isotropy subgroup af = (ws,...,w1,0,...,0). The previous
discussion shows that, > X(BY, J). To verify the reverse inclusion we show that if
(t,0,0) € =, then(¢, 0,0) € =(BY, J). Now (1", 0, 0) and ((1*, £LN%), 1, 0) each fix
w, S00 = ((b1,...,4,1,...,1),1,0) fixesw. But

ow = (€1, Dwy, ..., L, Hw,0,...,0)

and (¢;,0) € £ x St fixes wy. Since BY is the isotropy subgroup aby, it follows that
(¢;,0) is in BY and® = Y(¢;). Thuso € ((B,1V=%),1, ), so £, = =(BY, J) and
> (BY, J) is C-axial. O

Next we show that up to conjugacy we have found all of @axial subgroups of the
wreath product.

Proposition 5.2.Let X c (£:G) x S' be C-axial. ThenX is conjugate tox (BY, J) where
BY is a C-axial subgroup ofZ x S' and J is a block.

Proof. Let w # 0 be a vector fixed b and letQ = Ig(X). As in steady-state bifurcation
Q decompose$l, ..., N} into a union of blocks. Sinc& is C-axial, w is supported on
precisely one of these blocks. Without loss of generality we také = {1,...,s} and
w= (w1, ..., ws,0,...,0). It follows directly that((1*, £LV=),1,0) is in .

SinceQ acts transitively orv there exists a permutatiepp € Q such that(1, ¢;, O)w =
(wj, Wyt@ys « s Wyt 0). Moreover there exist§t, g;, 0) € X, S0 ({1, O)w; = wi. We
can how conjugatev to have the formw = (wy, ..., w1, 0,...,0). It follows directly that
the new conjugated (which we still call £) contains the subgrou@d”, Q,, 0).
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Next suppose tha¥, o, 0) € X. The previous discussion shows that
((1,...,4,1,...,D),1,0)e X

Hence(¢;, 0) € BY for eachj whereBY is the isotropy subgroup af;. Indeed y(¢;) = 6
and (¢4, ..., ¢,) € B. HenceX = X(BY, J), as required.

It remains only to show thaBY is C-axial. If B fixes an elementuv, that is not a
multiple of wy, thenX fixes (wy, ..., w2, 0, ..., 0). But this contradicts being C-axial.
Hence Fix (BY) is two dimensional an®Y is C-axial. O

The interpretation of the corresponding patterns depends upon the blocks in the same
manner as for the steady-state case, and will not be discussed further.

6. Heteroclinic cycles

There seems to be a tendency for heteroclinic cycles to occur in systems with wreath product
symmetry. Perhaps the best known example of a structurally stable heteroclinic cycle in a
symmetric system is the one abstracted by Guckenheimer and Holmes [14] from a model
by Busse and Heikes [5] on rotating convection. In the experiment the dynamics of the
convection system passes near three roll patterns—each rotated bfrdraCthe previous

one. Guckenheimer and Holmes observed that the model in [5] can be abstracted using
a certain 24 element symmetry group; this symmetry group is4ystZs. The system

of ODEs has the form of a system of three coupled cells with one internal state variable
(k = 1) and one nontrivial internal symmetr¥4). Due to the rotation in the model, the
coupling from celli to cell j is not equal to the coupling from cellto celli. See figure 2.

Thus the symmetry in this system is that of a directed ring.

\// Q
; é ; Figure 2. Rolls at 120 and 240 with two-way
- coupling.

The existence of heteroclinic cycles may be related to the coupling pattern. Examples of
Field and Richardson [8] on symmetry grouds: Zy substantiate this point of view. The
‘instant chaos’ scenario of Guckenheimer and Worfolk [15] involves a subgroup of index
two in Z,:Z4. In another direction, the numerical experiments of [6] show that the cycling
phenomenon in coupled cell systems which connects equilibria can also connect chaotic
invariant sets leading to the notion of cycling chaos. We also note that the symmetry group
of the cube is the wreath produgs : Ds.

We now consider the Guckenheimer and Holmes construction in more detail. As we
noted above the system of differential equations has three state variaples, x3), and
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the symmetries are generated by

(x1, X2, x3) = (£x1, £x2, £x3)

(x1, X2, x3) = (X2, X3, X1).
The steady-state bifurcation results of section 4 imply that we can expect equilibria where
one cell is active and the other two are quiescent. Guckenheimer and Holmes [14] prove
that for an open set of cubic order coefficients in these coupled cell systems, there is an
asymptotically stable (structurally stable) heteroclinic cycle connecting these three equilibria.

To third order the differential equations wity : Z3 symmetry are:

X1=0M+ axf + ﬁxzz + yxé)xl
Xo= A+ yxf + ozx§ + ,Bxg)xz
x3= A+ ﬁx% + yx% + axg)xg.

To obtain the pure form of a coupled cell system with identical coupling, such as appears
in figure 3, we seyy = 0. We can write this pure form as a coupled cell system with wreath
product coupling, as follows:

fX)=0+axDx;  h(xi,x) = pxlx;.

Note that thish has the same form as the sample wreath product (2.6). Heteroclinic
cycles exist wherkh < 0 andg < o « 0. See [14] for detalils.

; Figure 3. Rolls at 120 and 240 with one-way

coupling.

The cycling form of heteroclinic connections between equilibria should persist even
when the dynamics in individual cells is more complicated than equilibria. This observation
has been substantiated in the numerical work of [6], where the internal cell dynamics is
assumed to be a Lorentz attractor or a Chua circuit, and leads to the phenomenon of cycling
chaos.
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