
Nonlinearity9 (1996) 559–574. Printed in the UK

Coupled cells with internal symmetry: I. Wreath products

Benoit Dionne†, Martin Golubitsky‡ and Ian Stewart§
† Department of Mathematics, University of Ottawa, Ottawa, ON K1N 6N5, Cannda
‡ Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA
§ Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Received 7 May 1994, in final form 17 November 1995
Recommended by R S Mackay

Abstract. In this paper and its sequel we study arrays of coupled identical cells that possess
a ‘global’ symmetry groupG, and in which the cells possess their own ‘internal’ symmetry
group L. We focus on general existence conditions for symmetry-breaking steady-state and
Hopf bifurcations. The global and internal symmetries can combine in two quite different ways,
depending on how the internal symmetries affect the coupling. Algebraically, the symmetries
either combine to give the wreath productL o G of the two groups or the direct productL × G.
Here we develop a theory for the wreath product: we analyse the direct product case in the
accompanying paper (henceforth referred to as II).

The wreath product case occurs when the coupling is invariant under internal symmetries.
The main objective of the paper is to relate the patterns of steady-state and Hopf bifurcation that
occur in systems with the combined symmetry groupL o G to the corresponding bifurcations in
systems with symmetryL or G. This organizes the problem by reducing it to simpler questions
whose answers can often be read off from known results.

The basic existence theorem for steady-state bifurcation is the equivariant branching lemma,
which states that under appropriate conditions there will be a symmetry-breaking branch of steady
states for any isotropy subgroup with a one-dimensional fixed-point subspace. We call such an
isotropy subgroupaxial. The analogous result for equivariant Hopf bifurcation involves isotropy
subgroups with a two-dimensional fixed-point subspace, which we callC-axial because of an
analogy involving a natural complex structure. Our main results are classification theorems for
axial andC-axial subgroups in wreath products.

We study some typical examples, rings of cells in which the internal symmetry group is
O(2) and the global symmetry group is dihedral. As these examples illustrate, one striking
consequence of our general results is that systems with wreath product coupling often have
states in which some cells are performing nontrivial dynamics, while others remain quiescent.
We also discuss the common occurrence of heteroclinic cycles in wreath product systems.

AMS classification scheme numbers: 20xx, 57T05

1. Internal and global symmetries

Arrays of coupled oscillators have been studied by many authors [1, 2, 11]. It has been
noted that when the oscillators are identical, symmetries are induced into the associated
system of differential equations [13] and these symmetries depend on the exact pattern of
coupling. For example, one popular configuration is a system ofN cells coupled in a ring
[2, 11]; this system has dihedralDN symmetry. Another popular pattern of coupling isall
to all coupling where each cell is coupled to every other cell [16, 4]; this type of coupling
of N cells inducesSN permutation symmetry. We call symmetries induced by the pattern
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of couplingglobal symmetries; the group of global symmetries is always a finite subgroup
G of SN .

There is another set of symmetries of coupled cells that has been considered less
frequently. They occur when the differential equations governing the dynamics in each
cell have their own symmetries [3]. This may happen, for example, when each cell is
viewed as a geometric object having certain symmetry—such as a circular disc—and the
dynamics in each cell are governed by partial differential equations that are invariant under
that symmetry. Another common example is an array of coupled van der Pol oscillators,
each of which has a reflectional symmetry(x, y) 7→ (−x, y) where (x, y) are the state
variables of one of the oscillators. We call these symmetriesinternal symmetriesand
denote the group of internal symmetries byL.

In this paper and in [7] we develop a theory of how patterns formed through steady-state
and Hopf bifurcations in such systems depend upon both the internal and global symmetries.
A subtlety that appears in this discussion is that the full group0 of symmetries of the coupled
system depends on the precise nature of the coupling. Although, in any coupled system,
0 is derived fromG andL, the precise way in which the groups combine depends on the
form of the coupling.

There are two natural types of coupling that lead to two quite different groups0—one
type leads to direct products and the other leads to wreath products. We illustrate these two
types of coupling by assuming that the dynamics of each cell is governed by a PDE. In
the first type of coupling, the cells are coupled pointwise (at least on the boundary). For
example, here we imagine two biological cells having a common membrane that allows
different ions to permeate at different rates. This type of coupling leads to a total symmetry
group0 = L×G. Bifurcations based on these direct product symmetries are studied in [7].
For the second type, we imagine a kind of ‘mean-field’ coupling where the effects on one
cell are felt uniformly in space and depend only on averaged quantities from the other cell
or averaged quantities on its boundary. This type of coupling leads to the wreath product
symmetry groupL o G which is the subject of this paper; wreath products are defined
in section 2. Examples where such systems arise in applications are described in [12].
Bifurcations with specific wreath product symmetries have been studied in [14, 9, 10]

1.1. Axial subgroups

We will not attempt to find all possible branching patterns—the groups are too complicated
and the irreducible representations that drive the bifurcations are of too high a dimension.
Rather, we take a more restricted approach that will, nevertheless, yield interesting results.
In steady-state bifurcations, it is well known that when isotropy subgroups have one-
dimensional fixed-point subspaces, then generically the equivariant branching lemma [13]
guarantees the existence of solutions with that symmetry. In this paper, when we study
steady-state bifurcations, we look only for solutions corresponding to symmetries having
one-dimensional fixed-point subspaces. These isotropy subgroups are always maximal
isotropy subgroups and the one-dimensional fixed-point subspaces are axes of symmetry.
With this in mind we define:

Definition 1.1. A subgroup6 ⊂ 0 is axial if it is an isotropy subgroup having a one-
dimensional fixed-point subspace.

Similarly, when studying Hopf bifurcations, the equivariant Hopf theorem [13] states
that branches of periodic solutions having symmetry6 occur generically whenever6 has
a two-dimensional fixed-point subpace.
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Definition 1.2. A subgroup6 ⊂ 0 × S1 is C-axial if it is an isotropy subgroup having a
two-dimensional fixed-point subspace.

We will expand on this definition in sections 4 and 5.
We divide the paper as follows. In section 2 we describe properties that the coupling

must have when the local and global symmetries combine to form direct products and wreath
products. Section 3 addresses the representation theory of wreath products which determines
the abstract behaviour of bifurcations. Axial subgroups for steady-state bifurcations are
found in section 4 andC-axial subgroups for Hopf bifurcations are found in section 5.
In both contexts the crucial data are the possible ‘blocks’ for the global groupG, which
determine the general structure of axial andC-axial subgroups, and hence the range of
patterns that occurs. A description of some of the more complicated dynamics that occur
in systems with wreath product coupling is discussed briefly in section 6.

The answers to the corresponding questions when the coupling yields direct product
symmetry groups requires more detailed information about real irreducible representations.
This issue along with the classification of certain axial andC-axial subgroups for direct
products is discussed in [7].

2. Coupled cells and ODEs

We begin by discussing a general form that the assumption ofidentical cellswith identical
coupling forces on systems of ODEs; this form will allow us to illustrate how the type of
coupling changes the possible symmetries. In order to focus on the link between modelling
assumptions and symmetry we discuss a specific, fairly natural, form of coupling. However,
the theory that we develop applies to any form of coupling that possesses appropriate
symmetry properties.

Let Xj denote the state variables of thej th cell and letX = (X1, . . . , XN) be the state
variables for the entireN -cell system. The assumption that the cells are identical implies
that Xj ∈ Rk for eachj andX ∈ (Rk)N . A system of ODEs

dX

dt
= F(X)

is a system of coupled cellsif

dXj

dt
= fj (Xj ) + hj (X)

wherefj governs the internal dynamics of thej th cell andhj governs the coupling between
cells. Since the cells are assumed to be identical, we assume thatfj = f for all j .

We formulate our assumptions about coupling as follows. Define theconnection matrix
C by setting

C(i, j) =
{

1 if cell i is coupled to cellj

0 otherwise .

To keep the motivating ideas simple we assume that the coupling has the form

hj (X) =
N∑

i=1

C(i, j)hij (Xi, Xj )

wherehij models the coupling of celli to cell j . That is, we assume that the effect of
coupling on thej th cell is found by just summing the influences of all cells coupled to
the j th cell. The additive nature of this form of coupling is not an essential feature of



562 B Dionne et al

the subsequent theory, nor is its restriction to pairwise interactions. Its role is to exhibit
the symmetries clearly. The assumption that the cells are identically coupled implies that
hij = h for all i andj .

We next discuss the global permutation symmetries that are present in the system of
ODEs

dXj

dt
= f (Xj ) +

N∑
i=1

C(i, j)h(Xi, Xj ) . (2.1)

Let σ ∈ SN be a permutation. The action ofσ on state space is:

σ · X = (Xσ−1(1), . . . , Xσ−1(N)) .

Observe thatσ is a symmetry of (2.1) if

σCσ−1 = C (2.2)

whereσ is viewed as anN × N permutation matrix in (2.2). Theglobal symmetry group
G consists precisely of these permutation symmetries. It follows that

F(σ · X) = σ · F(X)

for all σ ∈ G. This equivariance condition encodes the information that these symmetries
permute the cells so that the differential equations do not change.

Next we discuss the local internal symmetry groupL ⊂ O(k). To be aninternal
symmetry we require that̀ ∈ L satisfy

f (`Xj ) = f̀ (Xj ) .

Whether internal symmetries are symmetries of (2.1) depends on properties of the coupling
term h. As a minimum we require that wheǹacts simultaneously on each cell, then it is
a symmetry of the coupled cell system. That is, we require that

h(`Xi, `Xj ) = `h(Xi, Xj ) . (2.3)

If we define

` · X = (`X1, . . . , `XN)

then

F(` · X) = ` · F(X)

and ` is a symmetry of (2.1). It follows thatL × G are symmetries of (2.1) whereL is
viewed as the diagonal subgroup ofLN . Note that if the coupling termh is diagonal linear,
that is,

h(Xi, Xj ) = Xi − Xj

then the direct product is a symmetry group of (2.1).
However, we also consider coupled systems where the action of` on each cell

individually is a symmetry of (2.1). That is, we suppose

h(Xi, `Xj ) = `h(Xi, Xj ) (2.4)

h(`Xi, Xj ) = h(Xi, Xj ) . (2.5)

Any two of equations (2.3)–(2.5) imply the third. In this case, the groupLN is a symmetry
group of (2.1). Thewreath productL oG is the symmetry group generated by the groupsLN

andG; under these assumptions it is a symmetry group of (2.1). See [17] for a discussion
of the algebraic structure of wreath products.
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An example of wreath product coupling is given by

h(Xi, Xj ) = |Xi |2Xj . (2.6)

The exact form of such a system is

dXj

dt
= f (Xj ) +

N∑
i=1

C(i, j)|Xi |2Xj .

We have shown that ifL denotes the internal symmetries andG denotes the global
symmetries, then there are (at least) two natural types of coupling leading to two different
symmetry groups0. The first type of coupling leads to thedirect product 0 = L × G,
whereas the second type of coupling leads to thewreath product0 = L oG. We discuss the
wreath product coupling in the remainder of this paper and direct product coupling in II [7].

In order to simplify the analysis we shall assume that the global symmetries act
transitively on the cells, that is, we assume

(HT ) G is a transitive subgroup ofSN .

If the action ofG is intransitive, consideration of group orbits of cells underG reduces the
analysis to a finite list of cases in each of which(HT ) holds.

3. Linear theory for the wreath product

3.1. Group structure of the wreath product

In this section we study a network of coupled cells with wreath product coupling as described
in section 2. LetV = Rk; thenV N is the state space of the coupled system (2.1).

We begin by discussing the group structure of the wreath productL o G. The action of
L o G on V N is given by

(`, σ ) · (x1, x2, . . . , xN) = (`1xσ−1(1), `2xσ−1(2), . . . , `Nxσ−1(N)) (3.1)

where` ∈ LN , σ ∈ G and(x1, x2, . . . , xN) ∈ V N . The permutations act naturally on` ∈ LN

by

σ(`) = (`σ−1(1), . . . , `σ−1(N)) .

With this definition it is easy to check that the group multiplication in the wreath product
is given by

(h, τ )(`, σ ) = (hτ(`), τσ ) .

3.2. The linear theory

When considering steady-state bifurcation from a group-invariant equilibrium, we may make
the generic hypothesis that

(HS) 0 = L o G acts absolutely irreducibly on the kernel of the linearized equations.

See [13], proposition 3.2, chapter XIII. Similarly, when considering Hopf bifurcation we
may make the generic hypothesis that

(HH ) 0 acts0-simply on the centre subspace.
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See [13], proposition 1.4, chapter XVI. In either case, we must first understand how0

decomposes the state spaceV N into irreducible subspaces.
Let W ⊂ V N be an irreducible subspace of0. It follows thatW is an invariant subspace

for the subgroupLN ⊂ 0. If LN acts trivially onW , then the local symmetries will have
no affect on a bifurcation supported by this representation. Indeed, the bifurcation will be
of the type studied in coupled cell systems with only the global symmetry groupG—which
we assume has been studied previously. In this paper, we are interested only in studying
bifurcations with combined local and global symmetries; therefore, we assume

(HL) LN acts nontrivially onW .

Let Uj = {vj ∈ V : (0, . . . , vj , . . . , 0) ∈ W }. Each Uj ⊂ W is an LN invariant
subspace. We assert:

Lemma 3.1. Assume hypotheses(HT ), (HS), (HL). Then
(a) Uj is L-irreducible.
(b) All Uj are L-isomorphic to a singleL-irreducible spaceU .
(c) W = UN .

Proof. By constructionW ⊃ U1 ⊕· · ·⊕UN . We claim thatW = U1 ⊕· · ·⊕UN . Note that
U1 ⊕· · ·⊕UN is G-invariant sinceG just permutes the subspacesUj . Also, by construction,
U1 ⊕ · · · ⊕ UN is LN invariant. HenceU1 ⊕ · · · ⊕ UN is 0-invariant since0 is generated
by G andLN . To verify the claim, we need only show thatU1 ⊕ · · · ⊕ UN 6= 0.

By assumptionLN acts nontrivially onW . Suppose(v1, v2, . . . , vN) ∈ W ⊂ V N and
` ∈ L. Then invariance implies that(`v1, v2, . . . , vN) ∈ W . Hence(`v1−v1, 0, . . . , 0) ∈ W

for all ` ∈ L. Also, we have assumed in (HL) that L acts nontrivially onW ; without loss
of generality, we may assume thatL acts nontrivially on the first component of vectors in
W . It follows thatU1 6= 0, which verifies the claim.

The global symmetriesG permute theUj . Assumption (HT ) states thatG acts transitively
on theUj and hence all of theUj areL-isomorphic. Finally, ifU0 ⊂ U wereL-irreducible,
thenUN

0 would be0-invariant. The irreducibility of0 on W = UN implies thatU0 = U

andU is L-irreducible. �
Next we show that0 acts absolutely irreducible onUN if and only if L acts absolutely

irreducibly onU . Let D0(W) be the space of linear mappings onW that commute with
the action of0.

Lemma 3.2. Assume thatFixU(L) = {0}. Then

D0(UN) ∼= DL(U) .

Proof. Suppose thatA : U → U is linear and commutes withL. ThenAN : UN → UN

commutes with0, sinceG just permutes the factors ofU . This construction induces an
injection of DL(U) into D0(UN).

Conversely, suppose thatB : UN → UN is linear and commutes with0. In coordinates,
let B = (C1, . . . , CN) and note thatCj commutes with the action ofLN . In particular,

C1(`1v1, . . . , `NvN) = `1C1(v1, . . . , vN) .

Next, letC denote one of theCj , sayC1, and use linearity to write

C(v1, . . . , vN) = D1(v1) + · · · + DN(vN) .

Equivariance ofC implies that eachDj for j = 2, . . . , N is L-invariant. However, since
FixU(L) = {0}, proposition 2.2, chapter XIII of [13] implies that all linear invariants vanish
andC(v1, . . . , vN) = D1(v1). Hence

B(v1, . . . , vN) = (A1(v1), . . . , AN(vN))
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where eachAj : U → U commutes withL. Finally, sinceG acts transitively by(HT ), all
the Aj are equal. �

Lemma 3.2 has implications for the form of the critical eigenspaces at points of
steady-state or Hopf bifurcation. In the case of steady-state bifurcations the kernel of
the linearization is generically absolutely0-irreducible. By (HT ) and (HL) this kernel must
have the formUN whereU is an absolutely irreducible representation ofL.

Generically, in Hopf bifurcations, the centre subspace is0-simple; that is, the centre
subspace either has the formW ⊕ W whereW is absolutely0-irreducible or the centre
subspace is a nonabsolutely0-irreducible subspace. Because of (HT ) and (HL), lemmas 3.2
and 3.1 imply that the centre subspace is either(U ⊕U)N ∼= (U ⊗C)N whereU is absolutely
L-irreducible or the centre subspace isUN whereU is nonabsolutelyL-irreducible.

4. Steady-state bifurcation for wreath products

We assume thatW is the kernel of the linearization of (2.1) at a0-invariant equilibrium.
We make the generic hypothesis(HS) that 0 acts absolutely irreducibly onW . We make
the additional assumption(HL) that LN acts nontrivially onW , which focuses attention on
new patterns of bifurcation associated with wreath product symmetry. In particular, we can
write W = UN whereL acts absolutely irreducibly onU .

We divide this section into two subsections. In the first we discuss the axial subgroups
of wreath products acting onW and in the second we discuss all isotropy subgroups and
maximal isotropy subgroups.

4.1. Axial subgroups

We begin with a definition. A subset of indicesJ ⊂ {1, . . . , N} is a block if there exists a
subgroupH of G that acts transitively onJ . Note that singletons are blocks (takeH = 1).
To each blockJ we associate the permutation subgroup

QJ = {σ ∈ G : σ(J ) = J }
which acts transitively onJ since it containsH.

Let A ⊂ L be any subgroup and define

6(A, J ) = (B1 × · · · × BN)+̇QJ

where

Bj =
{

A if j ∈ J

L if j 6∈ J .

Lemma 4.1. For each blockJ and each axial subgroupA ⊂ L acting onU , the subgroup
6(A, J ) ⊂ L o G is an axial subgroup.

Proof. Let x ∈ U be a nonzero vector fixed byA and letx = (x1, . . . , xN) where

xj =
{

x if j ∈ J

0 if j 6∈ J .

Note that6(A, J ) fixes x. Conversely, lety ∈ UN be fixed by6(A, J ). Sincey is
fixed by B1 × · · · × BN it follows that yj = 0 for j 6∈ J and yj is a multiple ofx when
j ∈ J . SinceQJ acts transitively onJ it follows that all the nonzeroyj are equal and
FixU(6(A, J )) = R{x}.
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To complete the proof we must show that6(A, J ) is the isotropy subgroup6x of x.
The previous paragraph shows that6(A, J ) ⊂ 6x. Now suppose that(`, σ ) fixes x. It
follows thatσ must preserveJ and hence thatσ ∈ QJ . Thus(1, σ ) ∈ 6(A, J ) and (`, 1)

fixesx—from which it follows that` ∈ B1 ×· · ·×Bn. Thus(`, σ ) ∈ 6(A, J ), as required.
�

We will show that all axial subgroups of the wreath product are conjugate to subgroups
of the form6(A, J ). Let 5G : L o G → G be projection and let

UJ = {(x1, . . . , xN) ∈ UN : xj = 0 forj 6∈ J } .

Lemma 4.2. Suppose that6 is an axial subgroup ofL oG. Then5G(6) acts transitively on
some blockJ , andFixUN (6) ⊂ UJ .

Proof. Let x be a nonzero element of FixUN (6), and letJ be the set of allj ∈ {1, . . . , N}
such thatxj 6= 0. We show that5G(6) acts transitively onJ . Since j̀ xσ−1(j) = 0 if and
only if xσ−1(j) = 0, we have that5G(6)J ⊂ J . Suppose that there exist two disjoint subsets
J1 andJ2 of J such that5G(6)Ji ⊂ Ji for i = 1, 2. Then

y1 =
{

xj if j ∈ J1

0 if j 6∈ J1
and y2 =

{
xj if j ∈ J2

0 if j 6∈ J2

are two linearly independent elements of FixUN (6). By assumption this subspace is one
dimensional, which is a contradiction. Thus5G(6) acts transitively onJ andJ is a block.

�
To simplify notation, we assume that if6 is an axial subgroup ofL o G, then the block

J whose existence is guaranteed by lemma 4.2 isJ = {1, . . . , s} wheres 6 N .

Proposition 4.3. Let 6 ⊂ L o G be axial and letx ∈ FixUN (6) be nonzero. Relabel the
cells, if necessary, so thatx = (x1, . . . , xs, 0, . . . , 0). Let A be the isotropy subgroup ofx1

in L. Then
(a) A ⊂ L is axial,
(b) 6 is conjugate to6(A, J ) .

Proof. We begin by showing that we can conjugatex to (x1, . . . , x1, 0, . . . , 0). Since
5G(6) acts transitively onJ , we can find for eachj ∈ J an element(`, σ ) ∈ 6 such that
σ(1) = j . Thusxj = j̀ xσ−1(j) = j̀ x1. Let h = (`−1

1 , . . . , `−1
s , 1, . . . , 1). Thenh6h−1 is

an isotropy subgroup conjugate to6 with

FixUN (h6h−1) = R{h(x1, . . . , xs, 0, . . . , 0)}
= R{(x1, . . . , x1, 0, . . . , 0)} .

We may therefore assume that FixUN (6) = R{(x, . . . , x, 0, . . . , 0)} wherex = x1. Since6

is the isotropy subgroup of(x, . . . , x, 0, . . . , 0), it follows that 6 ⊃ 6(A, J ). Lemma 4.1
states that6(A, J ) is a maximal isotropy subgroup from which it follows that6 = 6(A, J ),
which verifies (b).

Now we show that

FixUN (6(A, J )) = {(y1, . . . , y1, 0, . . . , 0) : y1 ∈ FixU(A)} .

Let y = (y1, . . . , yN) be in FixUN (6(A, J )). The action ofAs × LN−s forcesyj to be 0
when j > s, and it forcesyj to be fixed byA when j 6 s. SinceQJ acts transitively on
J , we see thaty1 = · · · = ys .

Since6 = 6(A, J ) it follows that dimFixUN (6(A, J )) = 1 andy1 is a multiple ofx.
Then dimFixU(A) = 1 andA is axial, which verifies (a). �



Coupled cells with internal symmetry: I 567

4.2. An example

In order to clarify the implications of proposition 4.3 we describe its application to a typical
example. We takeG = D15 and L = O(2), both acting in their standard representations
on C ∼= R2. (The same patterns arise if we takeG = Z2, with axial subgroup1, but
the internal symmetry of each cell that does not have fullZ2 symmetry is then trivial.)
Let X = {0, 1, 2, . . . , 14}, on which D15 acts by cyclic permutation and inversion. We
first classify the blocksJ ⊂ X. The possible subgroupsH ⊂ G are (up to conjugacy)
1, Z3, Z5, Z15, D1, D3, D5 and D15. The blocks are theH-orbits on X, which we list in
table 1. Note that for the cyclic groups all orbits consist of equally spaced cells and, up to
conjugacy, we may assume that cell 0 is in the block. For the dihedral groups we only list
those blocks not obtained using the cyclic subgroups. For example, the orbits ofD5 acting
on X are{0, 3, 6, 9, 12} and{1, 2, 4, 5, 7, 8, 10, 11, 13, 14}. Only the second block is new.
From J we immediately computeQJ , also shown in the table.

The only axial subgroupA ⊂ O(2), up to conjugacy, isZκ
2. By lemma 4.1 and

proposition 4.3 the axial subgroups ofL o G, up to conjugacy, are the groups6(Zκ
2, J ).

Such a group is a direct product of a number of copies ofZκ
2, one in each cellj ∈ J , and

copies ofO(2) in each remaining cell; all extended byQJ . Let J ′ be the complement of
J in X. Suppose thatx = (x0, . . . , x14) ∈ Fix(6(Zκ

2, J )). Thenxj ∈ Fix(O(2)) whenever
j ∈ J ′; that is,xj = 0 wheneverj ∈ J ′. We call such a cellquiescentand all other cells
active. We may expect active cells typically to take up nonzero states. Moreover, sinceQJ

acts transitively onJ , all the activexj are equal forj ∈ J . Thus any state with isotropy
subgroup6(Zκ

2, J ) corresponds to quiescent cells forj ∈ J ′ and identical active cells for
j ∈ J .

Table 1. Axial subgroups ofO(2) o D15 up to conjugacy.

H J = active cells QJ

1 {0} D1

Z3 {0, 5, 10} D3

Z5 {0, 3, 6, 9, 12} D5

Z15 {0, . . . , 14} D15

D1 {±k}, k = 1, . . . , 7 D1

D3 {1, 4, 6, 9, 11, 14} D3

D3 {2, 3, 7, 8, 12, 13} D3

D5 {1, 2, 4, 5, 7, 8, 10, 11, 13, 14} D5

Figure 1 (top) illustrates the 14 different patterns of active/quiescent cells, up to
conjugacy, that result from this classification. This list is typical for a ring ofn cells
with O(2) internal symmetry whenn is odd. Whenn is even the classification is similar,
but there are two distinct conjugacy classes of dihedral subgroups of some orders. Rather
than writing down a complicated list of conditions, figure 1 (bottom) illustrates another
typical case, whenn = 12. This time there are 15 patterns (up to conjugacy).

More complicated internal symmetries just impose lots of possible choices forA. The
crucial thing is the list ofblocks, which depends only uponG.

Note the prevalence of solutions in which some cells are quiescent, some active. Such
states arise because the ‘invariant’ coupling rules for wreath products, which in suitable
circumstances can effectively decouple quiescent states from their neighbours. More
generally, assume for simplicity that Fix(G) = 0, and pickany subsetK ⊂ {1, . . . , N},
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Figure 1. Top: the 14 patterns of active/quiescent cells in a ring of 15 identical cells withO(2)

internal symmetry. Bottom: the 15 patterns of active/quiescent cells in a ring of 12 identical
cells. Black cells are active, white cells are quiescent.

not necessarily a block. Consider a subgroupϒ ⊂ L o G of the form

ϒ = B1 × · · · × BN

where

Bk =
{

G for k ∈ K

1 otherwise .

Then

Fix(ϒ) = V1 ⊕ · · · ⊕ VN
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where

Vk =
{

0 for k ∈ K

U otherwise .

Because it is a fixed-point subspace, such a subspace is invariant under the dynamics.Any
nonzero solution of the restriction of the original ODE to Fix(ϒ) is a dynamical state of
the whole system in which the cells inK are all quiescent. (However, the active cells need
no longer be inidentical states.) It could therefore be possible, for example, to arrange
for some cells to behave chaotically while neighbouring cells remain quiescent. It just
requires arranging the appropriate dynamics for the restriction of the ODE to Fix(ϒ). Note
that instead of choosing theBk to be 1 for k 6∈ K, we can choose them to be arbitrary
(not necessarily equal) subgroups ofL, and similar remarks apply. However, now the
symmetry of each active cell is constrained. Of course, the possible states of this kind
depend upon what is permitted by the restriction of the full ODE to the corresponding
fixed-point subspace.

4.3. Isotropy subgroups and maximal isotropy subgroups

We begin as follows. Let

J = J1 ∪ · · · ∪ Js

be a partition of{1, . . . , N}. A subsetJi is called apart of the partitionJ . Let

QJ = {σ ∈ G : σJi = Ji for 1 6 i 6 s} .

To simplify the the indexing define

χ : {1, . . . , N} → {1, . . . , s}
by

χ(i) = k if i ∈ Jk .

So χ(i) denotes the part ofJ in which i sits.
Let 61, . . . , 6s be isotropy subgroups ofL acting onU and let

6J = B1 × · · · × BN

whereBi = 6χ(i). Finally, let

6 = 6J +̇QJ .

Proposition 4.4. 6 is an isotropy subgroup of0 = L o G acting onUN and every isotropy
subgroup of0 is conjugate to such a6.

Proof. Let wi ∈ U be a vector whose isotropy subgroup inL is 6i . Assume that thewi all
lie on distinctL group orbits. Letv = (v1, . . . , vN) wherevi = wχ(i). By construction6
fixes v. Since thewi lie on distinctL group orbits, any element inL o G that fixesv must
preserve the partitionJ . It follows that no group element in addition to those in6 fixes v

and6 is an isotropy subgroup.
Conversely, consider the isotropy subgroup of a vectorv = (v1, . . . , vN) ∈ UN .

Construct a partitionJ by putting two indices̀ and m in the same part ifv` and vm

lie on the sameL orbit. Then conjugatev so that allvi in the same part are equal. The
isotropy subgroup ofv is 6. �
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This construction allows us to compute the fixed-point subspace of6. Refine the
partition J to K where the permutation subgroupQJ acts transitively on each part inK.
Defineρ(i) = j if i is in thej th part in the partitionK. Then

FixUN (6) = {(z1, . . . , zN) ∈ UN : zi = zj if ρ(i) = ρ(j)} .

We can also compute the dimension of FixUN (6) as follows. LetJK
i be the number of

parts of theK partition that are contained in theJi part in theJ partition. Then

dimFixUN (6) =
s∑

i=1

JK
i dimFixU(6i) . (4.1)

We can now classify the maximal isotropy subgroups. Suppose that6 is an isotropy
subgroup corresponding to a partitionJ . We claim that if6 is maximal, then it contains
just two parts and one of the subgroupsBj must beL. To verify the claim observe that6
can always be enlarged by setting one of theBis equal toL. We may assume thatB2 = L.
Similarly, it follows thatB1 must be a maximal isotropy subgroup in the action ofL on U .

Next we claim that if6J +̇QJ is a maximal isotropy subgroup (withB2 = L), thenJ1

must be a block, that is,QJ must act transitively onJ1. Indeed, we can refine the partition
J so thatQJ acts transitively on the parts of the new partition inJ1. Then, again, we can
enlarge the isotropy subgroup by settingB1 = L on all parts inJ1 save one. We have
proved:

Proposition 4.5. Every maximal isotropy subgroup in0 has the form6J +̇QJ whereJ =
{J1, J2} is a partition,J1 is a block,B2 = L, andB1 is a maximal isotropy subgroup of the
action ofL on U .

5. Hopf bifurcation for wreath products

5.1. Complex structure

At points of Hopf bifurcation in0-equivariant systems, the centre subspace generically has
a special form—it is0-simple. That is, the centre subspace either has the formU ⊕ U

where0 acts absolutely irreducibly onU , or it has the formU where0 acts nonabsolutely
irreducibly onU . In either case, there is a complex structure on these spaces and a natural
action of the circle groupS1. The complex structure is obtained as follows. Suppose the
system of ODEs is written as

Ẋ = F(X)

and that Hopf bifurcation is contemplated from the trivial solutionX = 0. That is, we
assume thatF(0) = 0 and J = DF(0) has purely imaginary eigenvalues which, after
rescaling of time, are±i. Then a + ib acts on the centre subspace byaI + bJ , and this
defines the complex structure. Equivalently(reiθ )X = r(θ ·X) where theθ -action is via the
groupsS1. In the first case this complex structure can be written explicitly in coordinates
using the identificationU ⊕ U ∼= U ⊗ C. Then S1 acts onC as unit complex numbers.
In both cases0 has a complex irreducible representation on the centre subspace. Indeed,
irreducibility of the complex representation of0 is equivalent to0-simplicity of the real
representation, by [13], proposition 3.5, chapter XVI.

By lemma 3.2 we can write the centre subspace asV N , where eitherL acts nonabsolutely
irreducibly onV , or V = U ⊗ C andL acts absolutely irreducibly onU .
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5.2. Classification ofC-axial subgroups

In this subsection we assume the generic hypothesis(HH ), so we consider Hopf bifurcation
of LoG acting0-simply on the centre subspace. First we show that for each blockJ and each
C-axial subgroupBψ ⊂ L × S1 there is aC-axial subgroup6(Bψ, J ) ⊂ (L o G) × S1. The
subgroupBψ is the subgroup ofL×S1 that is formed from the homomorphismψ : B → S1,
that is

Bψ = {(b, ψ(b)) : b ∈ B} .

Such subgroups are said to betwisted, see [13], section 7, chapter XVI.
The group6(Bψ, J ) is the group generated by three subgroups indicated as follows:

6(Bψ, J ) = (1N, QJ , 0) + ((1s , LN−s), 1, 0) + ((B̂, 1N−s), 1, ψ)

where we assume without loss of generality thatJ = {1, . . . , s} and thatQJ consists of all
permutations inG that preservesJ . The subgroupB̂ is defined by

B̂ = {(b1, . . . , bs) ∈ Bs : ψ(b1) = · · · = ψ(bs)} .

Becauseψ is a group homomorphism,̂B is a subgroup ofBs .

Proposition 5.1. 6(Bψ, J ) is C-axial.

Proof. Let 6 = 6(Bψ, J ) and letw = (w1, . . . , wN) ∈ V N be fixed by6. The fact that
((1s , LN−s), 1, 0) fixes w implies thatws+1 = · · · = wN = 0. Thus

w = (w1, . . . , ws, 0, . . . , 0) .

Becausew is fixed by (1N, QJ , 0) it follows that w1 = · · · = ws . Finally, w is fixed by
((B̂, 1N−s), 1, ψ), sow1 is fixed byBψ. SinceBψ is C-axial, we see that FixV N (6) is two
dimensional.

To complete the proof we show that6 is the isotropy subgroup ofw, whence6 is
C-axial. Let 6w be the isotropy subgroup ofw = (w1, . . . , w1, 0, . . . , 0). The previous
discussion shows that6w ⊃ 6(Bψ, J ). To verify the reverse inclusion we show that if
(`, σ, θ) ∈ 6w then (`, σ, θ) ∈ 6(Bψ, J ). Now (1N, QJ , 0) and ((1s , LN−s), 1, 0) each fix
w, soσ = ((`1, . . . , `s, 1, . . . , 1), 1, θ) fixes w. But

σw = ((`1, θ)w1, . . . , (`s, θ)w1, 0, . . . , 0)

and ( j̀ , θ) ∈ L × S1 fixes w1. SinceBψ is the isotropy subgroup ofw1, it follows that
( j̀ , θ) is in Bψ and θ = ψ( j̀ ). Thus σ ∈ ((B̂, 1N−s), 1, ψ), so 6w = 6(Bψ, J ) and
6(Bψ, J ) is C-axial. �

Next we show that up to conjugacy we have found all of theC-axial subgroups of the
wreath product.

Proposition 5.2. Let 6 ⊂ (L o G) × S1 beC-axial. Then6 is conjugate to6(Bψ, J ) where
Bψ is a C-axial subgroup ofL × S1 andJ is a block.

Proof. Let w 6= 0 be a vector fixed by6 and letQ = 5G(6). As in steady-state bifurcation
Q decomposes{1, . . . , N} into a union of blocks. Since6 is C-axial, w is supported on
precisely one of these blocksJ . Without loss of generality we takeJ = {1, . . . , s} and
w = (w1, . . . , ws, 0, . . . , 0). It follows directly that((1s , LN−s), 1, 0) is in 6.

SinceQ acts transitively onJ there exists a permutationqj ∈ Q such that(1, qj , 0)w =
(wj , wq−1

j (2), . . . , wq−1
j (s), 0). Moreover there exists(`, qj , θ) ∈ 6, so (`1, θ)wj = w1. We

can now conjugatew to have the formw = (w1, . . . , w1, 0, . . . , 0). It follows directly that
the new conjugated6 (which we still call6) contains the subgroup(1N, QJ , 0).
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Next suppose that(`, σ, θ) ∈ 6. The previous discussion shows that

((`1, . . . , `s, 1, . . . , 1), 1, θ) ∈ 6 .

Hence( j̀ , θ) ∈ Bψ for eachj whereBψ is the isotropy subgroup ofw1. Indeed,ψ( j̀ ) = θ

and(`1, . . . , `s) ∈ B̂. Hence6 = 6(Bψ, J ), as required.
It remains only to show thatBψ is C-axial. If Bψ fixes an elementw2 that is not a

multiple of w1, then6 fixes (w2, . . . , w2, 0, . . . , 0). But this contradicts6 beingC-axial.
Hence FixV (Bψ) is two dimensional andBψ is C-axial. �

The interpretation of the corresponding patterns depends upon the blocks in the same
manner as for the steady-state case, and will not be discussed further.

6. Heteroclinic cycles

There seems to be a tendency for heteroclinic cycles to occur in systems with wreath product
symmetry. Perhaps the best known example of a structurally stable heteroclinic cycle in a
symmetric system is the one abstracted by Guckenheimer and Holmes [14] from a model
by Busse and Heikes [5] on rotating convection. In the experiment the dynamics of the
convection system passes near three roll patterns—each rotated by 120◦ from the previous
one. Guckenheimer and Holmes observed that the model in [5] can be abstracted using
a certain 24 element symmetry group; this symmetry group is justZ2 o Z3. The system
of ODEs has the form of a system of three coupled cells with one internal state variable
(k = 1) and one nontrivial internal symmetry (Z2). Due to the rotation in the model, the
coupling from celli to cell j is not equal to the coupling from cellj to cell i. See figure 2.
Thus the symmetry in this system is that of a directed ring.

Figure 2. Rolls at 120◦ and 240◦ with two-way
coupling.

The existence of heteroclinic cycles may be related to the coupling pattern. Examples of
Field and Richardson [8] on symmetry groupsZ2 o ZN substantiate this point of view. The
‘instant chaos’ scenario of Guckenheimer and Worfolk [15] involves a subgroup of index
two in Z2 o Z4. In another direction, the numerical experiments of [6] show that the cycling
phenomenon in coupled cell systems which connects equilibria can also connect chaotic
invariant sets leading to the notion of cycling chaos. We also note that the symmetry group
of the cube is the wreath productZ2 o D3.

We now consider the Guckenheimer and Holmes construction in more detail. As we
noted above the system of differential equations has three state variables(x1, x2, x3), and
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the symmetries are generated by

(x1, x2, x3) → (±x1, ±x2, ±x3)

(x1, x2, x3) → (x2, x3, x1).

The steady-state bifurcation results of section 4 imply that we can expect equilibria where
one cell is active and the other two are quiescent. Guckenheimer and Holmes [14] prove
that for an open set of cubic order coefficients in these coupled cell systems, there is an
asymptotically stable (structurally stable) heteroclinic cycle connecting these three equilibria.

To third order the differential equations withZ2 o Z3 symmetry are:

ẋ1 = (λ + αx2
1 + βx2

2 + γ x2
3)x1

ẋ2 = (λ + γ x2
1 + αx2

2 + βx2
3)x2

ẋ3 = (λ + βx2
1 + γ x2

2 + αx2
3)x3 .

To obtain the pure form of a coupled cell system with identical coupling, such as appears
in figure 3, we setγ = 0. We can write this pure form as a coupled cell system with wreath
product coupling, as follows:

f (Xj ) = (λ + αx2
j )xj h(xi, xj ) = βx2

i xj .

Note that thish has the same form as the sample wreath producth in (2.6). Heteroclinic
cycles exist whenλ < 0 andβ < α � 0. See [14] for details.

Figure 3. Rolls at 120◦ and 240◦ with one-way
coupling.

The cycling form of heteroclinic connections between equilibria should persist even
when the dynamics in individual cells is more complicated than equilibria. This observation
has been substantiated in the numerical work of [6], where the internal cell dynamics is
assumed to be a Lorentz attractor or a Chua circuit, and leads to the phenomenon of cycling
chaos.
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