

Prospects for Higgs Searches at CDF in Run II

DPF2000 Columbus, Ohio August 9-12, 2000

Richard E. Hughes Department of Physics The Ohio State University

Acknowledgements: Report of the Tevatron Higgs Working Group: http://fnth37.fnal.gov/higgs.html

Richard E. Hughes, The Ohio State University

Higgs Searches in Run II at CDF

• Data seem to prefer low mass Higgs: Is it within reach in Run II?

Higgs Searches in Run II at CDF

gg® H dominates over all mass ranges, but backgrounds are largest
At high masses H->WW helps
WH, ZH modes provide straightforward trigger, smaller backgrounds
Htt mode provides distinct signature

Higgs Decays

- m(H) < 130 GeV
 - Most promising modes:

 $\ell \mathbf{n} b \overline{b}, \ \mathbf{n} \overline{\mathbf{n}} b \overline{b}, \ \ell^+ \ell^- b \overline{b}, \ q \overline{q} b \overline{b}$

- B-tagging, jet resolution are the key
- m(H) > 130 GeV
 - Most promising modes:

 $\ell^+\ell^- n\bar{n}, \ \ell^\pm\ell^\pm jj, \ \ell^\pm\ell^\pm\ell^\mp$

Good lepton ID, coverage are the key

• COT

- Much better stereo, faster drift: Preserves Run I capability for Run II
- SVXII, ISL, Layer00
 - Radiation hard, 3D vs 2D, much better pattern recognition
 - Much better Z-vertexing
 - Tracking and b-tagging out to larger rapidity
- SVT
 - > Identification of B hadrons at Level 2: Calibration using $Z \rightarrow bb$
- Muon System
 - Coverage nearly doubles
- End Plug Calorimeter
 - Much better Electron ID out to |h| < 2.0</p>

B-tagging in Run II

- B-tagging at CDF in Run I
 - ➤ 4 layer SVX
 - single tag eff (top events)
 - eff = 25% (includes geom acc ~0.5)
 - double tag eff (top events)
 - eff = 8%
- B-tagging at CDF in Run II
 - ➤ 5 layer DS-SVX, ISL, Lay00
 - single tag eff (top events)
 - **-** eff = 49%
 - double tag eff (top events)
 - eff = 25%

- Using more information can dramatically improve jet resolution:
 - Standard jet algorithm uses only calorimeter information
 - adding charged particle info, plus shower max detector info improves energy resolution by 30%

Photon + Jet P_T Balancing in CDF Data

Richard E. Hugnes, The Unio State University

- Monte Carlo study of dijet mass resolution in Z®bb events collected via inclusive muon trigger
 - adding muon momentum, missing transverse energy projection along jet axis, charged fraction improves dijet mass resolution by 50%

- Using these corrections in Run I data:

 - Average value and width agree with MC expectations after corrections are applied

- Impact on significance of a possible Higgs signal:
 - If the dijet mass resolution can improve to 10%, then an increase in significance of almost 50% is possible

Search Strategies

- Low mass Higgs: Example M(H)=120 GeV
 - Use Pythia MC for signal, most backgrounds. (Herwig for Wbb)
 - Use CDF Run I detector simulation
 - B-tagging should be better in Run II
 - Dijet mass resolution assumed to be 30% improved over Run I
 - Trigger criteria
 - High pt central e or mu; OR missing energy + B-tagged jet
 - Event selection
 - Lepton with P_t > 20 GeV/c
 - MET > 20 GeV/c
 - 2 B-tagged jets (T/L)
 - E_t > 10 GeV/c
 - 1 tagged jet $E_t > 25 \text{ GeV}$

- No additional jets with $E_t > 20 \text{ GeV}$
- Veto events with 2 isolated high tracks
- m(bb) in window 89-135 GeV

- Assuming M(H) = 120 GeV, and a luminosity of 20 fb⁻¹
 - After all cuts:
 - 74 WH events remain
 - 986 total background events
 - S/ÖB=2.4 (about 99%CL)
 - Need L=10 fb⁻¹ for 95%CL
 - Need L=90 fb⁻¹ for 5s discovery

Note: All event #'s shown assume L=20 fb⁻¹

	s (pb)	#events produced 20fb ⁻¹	# events after cuts 20fb ⁻¹
WH	0.16	3,200	74
Wbb	10.6	212,000	394
tĪ	7.5	150,000	376
t b	1.0	20,000	192
tqb	2.5	48,000	78
WZ	3.2	64,000	46

Low Mass Higgs

- How do we improve things?
 - ► Add ZH, Z®m,ℓℓ modes
 - Expect 34 signal events 166 background events in L=20fb, S/ÖB=2.6
 - Use more aggressive analysis techniques, such as neural networks:
 - For WH, H®bb:
 - expect 61 signal events 441 background events in L=20fb, S/ÖB=2.9
 - versus 2.4 traditional cuts method

High mass Higgs: Example M(H)=170 GeV

- Use Pythia MC for event generation, SHW detector simulation (developed by Higgs Working Group)
- ➤ Focus on H® W*W* ® ℓ+n ℓ-n
- Trigger criteria
 - Two High pt central e or mu
- Event selection
 - angular cuts to remove tt background
 - Veto events with high Et jets, or B-tags
 - Use kinematic likelihood plus cut optimization

High mass Higgs: Example M(H)=170 GeV

- How do we improve things?
 - > Add WH®WWW mode, all 3

W's decay to e, m(trilepton)

- Expect 0.7 events, 0.5 background in L=20fb, S/ÖB=1.0
- Add W/ZH ® llj mode (like sign dileptons + 2 jets)
 - Expect 7.6 events, 11.6 background in L=20fb, S/ÖB=2.2

Higgs Searches in Run II at CDF

- Determine Signal and Background for each channel
- Form a joint liklihood of all channels, including D0 and CDF results
- Integrate Likelihood to form 95%CL limit, as a function of Higgs cross section
- Discovery thresholds determined by ratio of maximum likelihood to likelihood at zero Higgs xsec
- At each mass, determine the require integrated luminosity at which 50% of future outcomes meet the desired threshold.

Fermilab Long-Term Luminosity Goals

- Can we get to 20fb-1 or more?
- The following schedule yields ~15fb-1 by 2008

