eXtremely Fast Tracker; The Sequel

Richard Hugfes, Kevin Lannon Ben Kilminster, Brian Winer Ofio State University

Mike Kasten, Suzanne Levine, Kevin Pitts, Greg Veramendi Uliviversity of ICCinois
$\underline{I E E E / \mathcal{N} S S 2003}$

$X \mathcal{F I}=\mathcal{C D F}$ Level 1 Track Finder

- Role of tracking
$>$ Top, W/Z, Exotic Pfysics triggers require $\mathcal{H i g h}$ momentum electron and muon Level 1 trigger candidates
$>$ Bottom Pfysics require lowmomentum tracking at the
Level 1 trigger
\square electrons
\square muons
\square hadronic tracks
- L1 Trigger Primitives
$>$ Electrons: XFT track + EM cluster
> Muons: XFI track + muon stub
- L2 Trigger Tracks
$>$ XFITrack + Silicon \mathcal{H} its

CDF Trigger System

CDF Central Outer Tracker (COT)

- 8 "superlayers"
> 4 with axial wires: $r-\phi$ measurement
>4 with stereo wires: z measurement
- Small Cells
$>0.88 \mathrm{~cm}$ drift (avg.)
$>\mathcal{M a x}$ drift time $\sim 220 \mathrm{~ns}$
> 12 sense wires/cell: 96
measurements
> 2540 cells, 30240 channels

Charged Track Finding

- Hit Finding: Mezzanine Card
$>\mathcal{H i t s}$ are classified as prompt or delayed
- Segment Finding
$>$ In the axial layers, search for patterns of prompt/delayed fits consistent with High Pt tracks
$>$ Each segment found is assigned a pixel (pfi, all layers) and possibly a slope (outer 2 axial layers only)
- Track Finding
>Looking across 3 or 4 axiallayers, search for patterns of segments consistent with $P t>1.5 \mathrm{GeV} / \mathrm{c}$
$>$ Resultant Pt and Pri of all $1.5 \mathrm{GeV} / \mathrm{c}$ tracks sent on to $X \mathcal{T R} P$
$>$ Maximum of 288 tracks reported
- $\mathcal{N e w T r a c k s}$ found every $132 n s e c!$
$>$ eXtremely Fast Tracker: XFTI

Good hit patterns are identified as segment, then segments are linked as tracks

The Hit and Segment Finders

Track segments are found by comparing hit patterns in a given layer to a list of valid patterns or "masks".

Mask: A specific pattern of prompt and delayed hits on the 12 wires of an axial COT layer
Pixel: represents the phi position of the track at the midpoint of the cell.

Layer	Cells	Pixels	Masks
1	192	2304	166
2	288	3456	227
3	384	2304	292
4	480	2880	345

The Linker

Tracks are found by comparing fired pixels in all 4 layers to a list of valid pixel patterns or "roads".

- Chamber is divided into

288 1.25-degree "identical" Linkers

- Eack linker uses a look-up table of ~ 1200 roads

XFTS System Electronics

- Mezzanine Cards
$>168 \mathrm{cards}$
$>$ Classifies fits as prompt/delayed
- Final Finder system
>24 SL1-3 boards
>24 SL2-4 boards
$>\mathcal{H e}$ avy reliance on $\mathcal{P L D} s$
$\square \mathcal{A l l o w s}$ for some redesign: new patterns for number of misses, wire sag, faster gas, etc
- Final Linker System
$\rightarrow 24$ Linker boards
$\rightarrow \mathcal{H e}$ avy reliance on $\mathcal{P L D}$
$\square \mathcal{A l l o w s}$ for new road set based on new beam positionsHave already developed 2 ne w roads
 sets due to accelerator changes.

XFI Performance in CDF RunII

Performance of the XFI in CDF's RunII has beenexcellent

1. Momentum resolution $1.74 \% / \mathcal{G e V} / \mathrm{c}$
2. Pfi Re solution $<6 \mathrm{mRad}$
3. Efficiency $\sim 95 \%$

XFI Run II Ulpgrade

- The XFT was designed for a Cuminosity of:
$\rightarrow \mathcal{L}=1 \chi 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} 396 \mathrm{nsec}$ 6unch \square <int/crossing>~3
$>\mathcal{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathcal{s}^{-1} 132 n s e c$ bunch
- <int/crossing>~2
- Accelerator Performance
$>$ Max lum attained: $5 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\Rightarrow Expect maximum of $\mathcal{L}=3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} 396 n s e c$ bunch
\square <int/crossing>~9
\square Factor of 3-4 above design

Mizeing $\mathbf{L t}$
Lt- 3.3 phi-3.7
Iiget of Tracke
Id pt phi eta

Cdf	Tracł:	first 5	
157	-45.4	-2.2	1.0
158	25.7	0.9	-0.3
147	1.8	0.3	0.2
148	-1.6	-0.1	0.1
149	1.2	1.6	-1.3

To melect track type
selectcdfrrack (I d)
Srt Tracke: firgt 5

0	-5.7	0.2

To melect track type SelectSrtTrack. (I d)

cdf	Tracts:	first	5
157	-45.4	-2.2	1.0
158	25.7	0.9	-0.3
147	1.8	0.3	0.2
148	-1.6	-0.1	0.1
149	1.2	1.6	-1.3

To eslect track tape selectedfTrack.|Id)

$$
\begin{aligned}
& \text { Srt Tracke: firet } 5 \\
& 0 \quad-5.70 .2
\end{aligned}
$$

To select track type
SelectSortrack-|Id)

cdf	Tracts:	first	5
157	-45.4	-2.2	1.0
158	25.7	0.9	-0.3
147	1.8	0.3	0.2
148	-1.6	-0.1	0.1
149	1.2	1.6	-1.3

To select track type selectedfTrack.|Id)

Srt Tracke: first 5

$$
\begin{array}{lll}
0 & -5.7 & 0.2
\end{array}
$$

Performance at High Luminosity

Significant degradation observed as number
of additional interactions exceeds 5

Algoritfim Changes

- Hit Stage
$>$ Provide 6 times bins instead of the present 2
- Segment Finding Stage
$>$ Ulsing 6 times bins, measure pfi (pixel) position and slope at all 4 axial layers and 1 stereo layer.
$>$ Provide 5 slope bins at the outer two axial and outermost stereo layers, 3 slope bins at the inner two axial layers.
- Segment Linking Stage
\rightarrow Require matcfing slope and pixel at all 4 axial layers, instead of limited (low pt) slope requirement at the outer two layers.
$>$ Require stereo confirmation for high Pt tracks, stereo association for all tracks.

Simulation of $\mathcal{L l p g r a d e d} X \mathcal{F T}$

- Full simulation of RunII detector and occupancies necessary
$>$ Started on implementation of RunII XFT design using standard CDF environment
$>$ Preliminary indications of design performance

Improvement expected from upgrade

Impact of Stereo

- The stereo can have an impact in two ways:
\rightarrow Provide Z-pointing to tracks: Since EM and muon calorimeters are segmented in Z, coarse pointing can be very helpfulin eliminating fakes
\rightarrow Confirmation Segment: Since of ten fake XFT tracks are the result of linking two unrelated low Pt segments, requiring another figh Pt stereo segment in the allowed window around an axial track can be very powerful.
- Note that the stereo fias no impact on pfilpt resolution.

Improving Pattern Recognition Chips

- Newfinder Chips
$>$ Expect factor of 7 more masks
$>$ Need to Run about factor of 2 faster (16 nsec internalclockversus $33 n s e c$ internalclock

Chip	2 Time Bins, Masks	6 Time Bins, Masks
Finder Axial S L1	166	1344
Finder Axial S L2	227	1844
Finder Axial S L3	292	2056
Finder Axial S L4	345	2207

- New Linker Chips
$>$ Expect factor of 3.3 more roads
$>$ Need to run about factor of 2 faster 16 nsec internal clockversus 33 nsec

Slope Bins	Roads
$0,0,2,2$	1200
$3,3,5,5$	4000

The Stratix Chip

- The original $X \mathcal{F T}$ designutilizes Altera $\mathcal{F L E X} 10 \mathcal{K} 50$ chips for the Finder and Linker algoritfms.
- The current Altera tecfinology leader is Stratix:

- Factor of >10 more logic elements
- Factor of >100 more memory
- Advanced I/O features
- LVDS, \mathcal{S} ERDES
- Factor of 4-6 faster
- Full simulation of new Linker chips using latest Altera $\mathcal{F P G A}$ design software tools

Implementing the Ulpgraded Linker $\mathcal{D e}$ sign

- Keyfeatures:
\rightarrow Design uses much more slope information from the upgraded Finder design
$\square 3$ slopes inner two axial Cayers
$\square 5$ slopes outer two axial layers

Many more roads needed per 1.25 degrees:
\square Current: 1200
\square Ulpgraded: 4000

- Design fully (and successfully) simulated using $\mathfrak{A l t e r}$ a software package (QUARSIUS)

Conclusions

- The current XFT Trigger is installed and working well in the current CDF Run II trigger and $\mathcal{D A Q}$ system
- Fermilab's luminosity plans indicate that the current XFT will suffer from increased occupancy when the design Cuminosity is greatly exceeded
- A planned upgrade of the XFT will address the occuppancy problems
- The upgrade is currently in the design stage, and we are planning for installation and commissioning by summer 2005.

Finder Output

- Inthe inner two layers, eachmask corresponds to 1 of 12 pixel positions in the middle of the Cayer.
- The pixelrepresents the phi position of the track.
- In the outer 2 layers, eachmask corresponds to 1 of 6 pixel positions and 1 of 3 slopes: (low pt +, low pt -, figh pt).
- When a maskis located, the corresponding pixel is turned on. 。

Backup S Lides

Improving The $X \mathcal{F} \mathcal{T}$

- Degradation of XFT occurs in 3 areas:

1. Transverse momentum $\left(\mathcal{P}_{\mathcal{T}}\right)$ resolution
2. Extrapolated ϕ_{0} resolution
3. fake trackfraction

- To improve things we need:
$>\mathcal{B e t t e r}$ segment finding: This will reduce the number of spurious pixels reported to the Linker.
$\square \mathcal{A x i a l} \mathcal{F i n d e r s}^{\square}$ improve ϕ_{0} and \mathcal{P}_{τ} resolution.
- Stereo Finders: Reject fake tracks
$>\mathcal{B e t t e r}$ segment linking: Valid segments from different low pt tracks could be mistaken for a single figh Pt track. This becomes a much bigger problem at high luminosity. Ulsing better slope information at the linking stage reduces this problem.

Fake Tracks

- The plots show the difference in localslope between found $X \mathcal{F T}$ tracks and the nearest true Monte Carlo track.
- The top plot is for "real"XFT tracks.
- The bottom plot is for "fake" (unmatched) X FT tracks.
- Conclusion: Fake tracks are due to combination of segments from different real tracks

Impact of $\mathcal{A d d i t i o n a l} \mathcal{T}$ iming Information

- The additional resolution in timing at the fit levelallows the Finder to measure the Pt or Slope of the segments with higfer precision.
- We have added this new timing info to our full $X \mathcal{F}$ s simulation, to understand the impact on resolution at the segment finding le vel.
- The top plot shows the improvement in slope resolution at the mask level. The solid curve uses the additional timing information.
- The bottom plot shows the same for the slope resolution at the masklevel.

Impact on Segment Linking

- We fave tested fowbetter segment slope resolution can help reject fakes.
- In a Monte Carlo sample, we smear segments found by the expected slope resolution. We then ask if this "measured" slope is above a figh Pt threshold.
- We require both segments from the outermost axial layer to have passed the figh Pt thresfold.
- The upper plot is the efficiency for true tracks to pass the thresfold.
- The lower plot is the efficiency for fake tracks to pass the

 thresfold.

Designing a New Linker Prototype

Ulpgraded Finder Board

- The input capture section runs at the same speed and does not change.
- The pixeldriver (output) section runs at the same speed and does not change.
- The primary change is to the Finder pattern recognition chips.
$>$ Need more masks
$>$ Need to run faster since time is taken to input more data ($3 x$ more fit data)
- New board layout needed since
 Finder chip footprint will change

What changes:IDC to Finder

- The upgraded $\mathcal{T D C}$ (?) replaces the current $\mathcal{T D C}+$ mezzanine card to provide fit information to the Finder.
- However, the $\mathcal{T D C}$ transition cards, cabling, and Finder transition cards in the present system are reused.
- Data is drivenup the Ansley cables at the current clockof $22 n s e c$. Two additional CDFCLK (@132nsec) are required to send up 6 time bins/wire versus the present 2 times bins/wire

What changes: Finder to Linker

- The Finder controloutput, cabling, and Linker Input sections do not need to change. We use the additional 2 CDFCLKS (@132nsec) to transfer additional slope information.
- The Linker output section can also remain the same as the present system.

Linker Morlule

Algorithm chips need to be modified to handle increase in information.

Finder Module

Finder to Linker Transmission
Channel Link Cables

Ulsing the $\mathcal{N e w} \mathcal{F} P G \mathcal{A} s$

- Current Linker chips use $\mathcal{A l t e r a} \operatorname{EP10K50~devices.~}$
- Target device for upgraded design: Altera $\mathfrak{E P 1 S} 25$
- First step: Implement current algroitfm in newdevices, with no changes
- Designfits easily: factor of 10 less utilization; much faster (3-10x)

