Last time General Solution of Maxwell Equations
(in Lorenzgange) (contd)

$$
\partial_{\mu} A^{r}=0 \text { Lorenz gauge }
$$

U
$\square A^{\nu}=\frac{4 \pi}{c} 50$ maxwell equations
To solve, need to find the Green function of

$$
\square=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2} .
$$

Complex Analysis 101
Del. $f(z)$ is anally $t: c$ if it is differentiable and single-valued
$f(z)=u t i v$ is analytic $\Leftrightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
Caucly-Riemamn conditions
Cauchy thin: $f(z)$ is analytic on a inside $c:{\underset{c}{c}}^{P}$

$$
\Rightarrow \oint_{c} f(z) d z=0 \text {. }
$$

Cauchy formula : $f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-z_{0}} d z$
\Rightarrow can use Cauchy fila to prove that analytic function is as differentiable.
(Del.) Residue: $\frac{1}{2 \pi i} \oint_{c} f(z) d z \equiv \operatorname{Res} f\left(z_{0}\right), \quad \bigodot_{c}$

We calculated the following integral:

$$
\oint_{c} d z\left(z-z_{0}\right)^{n}=2 \pi i \delta_{n},-1
$$

Complex Analysis 101 (see arfteen, C4. 11)
$i=\sqrt{-1}$ or $i^{2}=-1$ imaginary unit number
$z=x+i y ; \quad \bar{z}=x-i y$ ~ complex conjugate (x, y real)
 and single -valued differentiable ${ }_{\wedge}$ in a neighborhood $f_{0} z_{0}$. ($\frac{\partial f}{\partial z}$ exists).

$$
\begin{aligned}
& \frac{\Delta f}{\Delta z}=\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \Rightarrow \text { assume } f(z)=u(x, y)+i v(x, y) \\
& u, v \sim \text { real }
\end{aligned}
$$

want this independent of direction of the

$$
\begin{aligned}
& \text { derivative } \Rightarrow \frac{\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}}=\frac{1}{i} \Rightarrow \\
& \Rightarrow i \frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}=> \\
& \Rightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial u}{\partial x}
\end{aligned}
$$

Candry-Riemann conditions
note that if $C-R$ conditions wire satisfied \Rightarrow

$$
\begin{aligned}
\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial x \partial y} & =0 \Rightarrow \nabla^{2} u=0 \\
& \Rightarrow \frac{\partial^{2}}{\partial x^{\frac{2}{2}} f} f=0
\end{aligned}
$$

Cauchy theorem: if (z) is analytic $\Rightarrow\left(\begin{array}{l}\oint \\ \oint_{c}\end{array} f(z) d z=0\right.$

Cauchy Formula:
$f(z)$ ~ analytic
function

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z
$$

Define a residue: resichme of $f(z)$ at z_{0} is

$$
\frac{1}{2 \pi i} \oint_{c} f(z) d z=\operatorname{Res} f\left(z_{0}\right)
$$

Residue Therein $f(z)$ is analytic except for a f invite number of is olated singularities z_{1}, \ldots, z_{N}.

Then

$$
\oint_{c} f(z) d z=25 i \sum_{n=1}^{N} \text { Res } f\left(z_{n}\right)
$$

How to find residues: simple pole $\sim \frac{1}{z-a}$

$$
\Rightarrow \operatorname{Res} f(a)=\lim _{z \rightarrow a}(z-a) f(z)
$$

nth order pole: $\frac{1}{(z-a)^{n}}$

$$
\operatorname{Res} f(a)=\lim _{z \rightarrow a} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[(z-a)^{n} f(z)\right]
$$

Example $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\arctan x \int_{-\infty}^{\infty}=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi$
Residues: $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\int_{-\infty}^{\infty} \frac{d x}{(x-i)(x+i)}$
close the contour

if $f(z) \rightarrow 0$ as $z \rightarrow \infty$
faster than $\frac{1}{z}$ (i.e. $f(z) \sim \frac{1}{z^{1+\Delta}}, \Delta>0$

$$
\text { on } z f(z) \rightarrow 0 \cos z \rightarrow \infty)
$$

\Rightarrow integral over the seni-circle is zero when $R \rightarrow 0 \Rightarrow$ turned line integral into a contour integral
\Rightarrow using residue them get $\int_{-\infty}^{\infty} d x \frac{1}{(x-i)(x+i)}=$

$$
=25 i \lim _{z \rightarrow i} \frac{z-i}{(z-i)(z+i)}=2 \bar{i} i \frac{1}{2 i}=\pi \text {, as desired! }
$$

Proof of Cauchy theorem:

$$
\begin{aligned}
& \oint_{c} f(z) d z=\oint_{c}[u+i v][d x+i d y]=\oint_{c}[u d x-v d y] \\
& +i \oint_{c}[v d x+u d y]
\end{aligned}
$$

Stokes' theorem: $\oint_{c} \vec{A} \cdot d \vec{l}=\int d a \hat{h} \cdot(\vec{\nabla} \times \vec{A})$
\Rightarrow if C is in the $x-y$ plane \Rightarrow

$$
\begin{aligned}
& \oint_{c}\left[A_{x} d x+A_{y} d y\right]=\int d x d y\left[\partial_{x} A_{y}-\partial_{y} A_{x}\right] \\
& \Rightarrow \oint_{c}[u d x-v d y]=\int d x d y\left[-\partial_{x} v-\partial_{y} u\right]=0 \\
& \text { due to Cauchy-Riemani }
\end{aligned}
$$

due to Cauchy-Riemann conditions \downarrow

$$
\oint_{c}[v d x+u d y]=\int d x d y\left[\partial_{x} u-\partial_{y} v\right]=0
$$

\Rightarrow for an analytic function
$\oint_{c} f(z) \cdot d z=0$, as required.

Proof of Cauchy formula:
Warmup:

$$
\begin{aligned}
& \oint_{c} d z \cdot z^{n}=\int_{0}^{2 \pi} r e^{i \varphi} d \varphi \cdot i r^{n} e^{n i \varphi}=i r^{n+1} \int_{0}^{25} d \varphi e^{i(n+1) \varphi} \\
& z=r e^{i \varphi} \\
&=i r^{n+1} \frac{1}{i(n+1)}\left[e^{2 \pi i(n+1)}-1\right]= \begin{cases}0, & n \neq-1, \\
n & n \text { integer } \\
2 \pi i, & n=-1\end{cases}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \oint_{C} d z\left(z-z_{0}\right)^{n}=2 \pi: \delta_{n,-1} \quad n=-1 \Rightarrow \frac{\text { simple }}{\text { pole }} \tag{c}
\end{equation*}
$$

proof: $f(z)$ is analytic on and inside contour C.

$$
\begin{array}{r}
\oint_{c} \frac{f(z)}{z-z_{0}} d z=\int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i \varphi}\right)}{r e^{i \varphi}} r e^{i \phi} i d \varphi=i \int_{0}^{2 i} d \varphi f\left(z_{0}+r e^{i \varphi}\right) \\
z=z_{0}+r e^{i \varphi} \\
\longrightarrow 2 \pi i\left(z_{0}\right) \Rightarrow \oint_{c} d z \frac{f(z)}{z-z_{0}}=2 \pi i f\left(z_{0}\right)
\end{array}
$$

as desired.
Taylor series: $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$
if $f(z)$ is expandable in the Taybs series \Leftrightarrow analytic (Laurent series: $f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$
(if $a_{n} \neq 0$ for $n \leqslant-1 \Rightarrow f(z)$ is not analytic at $z=z_{0}$,

$$
\begin{aligned}
& \oint_{c} d z f(z)=\sum_{n=-\infty}^{\infty} a_{n} \oint_{c} d z\left(z-z_{0}\right)^{n} \\
& =\sum_{n=-\infty}^{\infty} a_{n} \cdot 2 \pi i \delta_{n,-1}=25 i a_{-1}
\end{aligned}
$$

$\Rightarrow a_{-1}$ is called the residue of $f(z)$ at $z=z_{0}$.
Residue $=$ coefficient of $\frac{1}{z-z_{0}}$ in Laurent series.
Proof of Residue Theorem:
Can deforen the initial contour C to small
 circles around all the poles inside c:

Hence set

$$
\operatorname{Im} z
$$

4

$$
Q_{z_{2}}^{z_{1}} \bigotimes_{3}^{z_{3}}
$$

$$
\oint_{c} d z f(z)=2 \pi i\left[a_{-1}^{(1)}+a_{-1}^{(2)}+\ldots\right]
$$

$$
\Rightarrow \oint_{c} d z f(z)=2 \pi i \sum_{i=1}^{N} \operatorname{Res} f\left(z_{i}\right) \text {. }
$$

Finding residues:

- Simple pol : $f(z)=\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\ldots$

$$
\Rightarrow \text { Res } f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}}\left[\left(z-z_{0}\right) f(z)\right]
$$

- pole of order $n: f(z)=\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\ldots+\frac{a_{-1}}{z-z_{0}}+a_{0}+\cdots$

$$
\begin{aligned}
& \Rightarrow\left(z-z_{0}\right)^{n} f(z)=a_{-n}+\ldots+a_{-1}\left(z-z_{0}\right)^{n-1}+a_{0}\left(z-z_{0}\right)^{n}+\ldots \\
& \Rightarrow a_{-1}=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n+1}}\left[\left(z-z_{0}\right)^{n} f(z)\right] \\
& \Rightarrow \text { Res } f\left(z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left[\left(z-z_{0}\right)^{n} \cdot f(z)\right]
\end{aligned}
$$

Integrals with complex exponentials:

$$
\int_{-\infty}^{\infty} d x f(x) e^{i k x}, k>0
$$

$\Rightarrow f(z)$ analytic in the upper half-plane, except on a finite \# of poles (meromorphic)

$$
\Rightarrow \lim _{|z| \rightarrow \infty} f(z)=0, \quad 0 \leqslant \arg z \leqslant \pi
$$

Close the contour in the upper half-plame

Jordan's lemma If $\lim _{R \rightarrow \infty} f\left(R e^{i \varphi}\right)=0$ for all

$$
0 \leqslant \varphi \leqslant \pi \quad \Rightarrow \quad \lim _{R \rightarrow \infty} \int_{C_{R}} d z f(z) e^{i h z}=0 . \quad(h>0)
$$

Example $\int_{0}^{\infty} \frac{\cos x}{x^{2}+1} d x=\frac{1}{2} \int_{-\infty}^{\infty} d x \frac{\cos x}{x^{2}+1}=\frac{1}{4} \int_{-\infty}^{\infty} d x$. as the integrand is even - $\frac{e^{i x}+e^{-i x}}{x^{2}+1} \Rightarrow$ evaluate $\int_{-\infty}^{\infty} d x \frac{e^{i x}}{x^{2}+1}$ first:
closing the contour in the coper half-plane yields:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x \frac{e^{i x}}{x^{2}+1}=\int_{-\infty}^{\infty} d x \frac{e^{i x}}{(x-i)(x+i)}=2 \pi i \frac{e^{-1}}{2 i}=\frac{\pi}{2} \\
& \Rightarrow \int_{0}^{\infty} d x \frac{\cos x}{x^{2}+1}=\frac{1}{4} \int_{-\infty}^{\infty} d x \frac{e^{i x}}{x^{2}+1}+c \cdot c=\frac{2 \pi}{e}(1 / 4)=\pi /(2 \mathrm{e})
\end{aligned}
$$

