Homework Set No. 3, Physics 880.02 Deadline – Tuesday, February 17, 2009

1. Just like in class consider 2-flavor QCD with massless quarks:

$$q(x) = \begin{pmatrix} u(x) \\ d(x) \end{pmatrix}, \quad q_{L,R} = \frac{1 \mp \gamma_5}{2} q.$$

The Lagrangian is

$$\mathcal{L} = \bar{q}_L i \gamma \cdot \partial q_L + \bar{q}_R i \gamma \cdot \partial q_R.$$

The left- and right-handed isospin currents are

$$j_L^{i\,\mu} = \bar{q}_L \gamma^\mu \frac{\sigma^i}{2} q_L$$
 and $j_R^{i\,\mu} = \bar{q}_R \gamma^\mu \frac{\sigma^i}{2} q_R$

with the charges

$$Q_L^i(t) = \int d^3x \, j_{L,0}^i(\vec{x},t) \quad \text{and} \quad Q_R^i(t) = \int d^3x \, j_{R,0}^i(\vec{x},t).$$

a. (10 pts) Using anti-commutation relations

$$\left\{q^a_{\alpha}(\vec{x},t),q^{\dagger b}_{\beta}(\vec{x}',t)\right\} = \delta^{ab}\,\delta_{\alpha\beta}\,\delta(\vec{x}-\vec{x}')$$

show that for any matrices Γ_1 and Γ_2 (which are matrices both in Dirac and flavor spaces) the following relation holds

$$\left[q^{\dagger}(\vec{x}',t)\,\Gamma_{1}\,q(\vec{x}',t),\,q^{\dagger}(\vec{x},t)\,\Gamma_{2}\,q(\vec{x},t)\right] \,=\,\delta(\vec{x}-\vec{x}')\,q^{\dagger}(\vec{x},t)\,[\Gamma_{1},\Gamma_{2}]\,q(\vec{x},t).$$

b. (10 pts) Using the result of part **a** show that Q_L^i and Q_R^i form a chiral algebra of $SU(2)_L \otimes SU(2)_R$, i.e., prove that

$$\begin{bmatrix} Q_L^i, Q_L^j \end{bmatrix} = i \epsilon_{ijk} Q_L^k$$
$$\begin{bmatrix} Q_R^i, Q_R^j \end{bmatrix} = i \epsilon_{ijk} Q_R^k$$
$$\begin{bmatrix} Q_L^i, Q_R^j \end{bmatrix} = 0.$$

c. (5 pts) Now add a mass term to the Lagrangian:

$$\mathcal{L} = \bar{q}i\gamma \cdot \partial q - m\,\bar{q}q \quad \text{with} \quad m = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}.$$

Find the divergence of the axial vector isospin current $\partial_{\mu} j_5^{i\mu}$ where $j_5^{i\mu} = j_R^{i\mu} - j_L^{i\mu}$. Is the chiral $SU(2)_L \otimes SU(2)_R$ symmetry still a symmetry of the Lagrangian with massive quarks? Does the mass term affect the $SU(2)_L \otimes SU(2)_R$ chiral algebra that you derived in part **b**?

2. (10 pts) Consider the Lagrangian

$$\mathcal{L} = \partial_{\alpha} \phi^* \partial^{\alpha} \phi + \mu^2 \phi^* \phi - \frac{\lambda}{2} (\phi^* \phi)^2$$

with ϕ a complex scalar field and $\mu^2 > 0$. Write

$$\phi = \frac{\chi_1 + i\,\eta}{\sqrt{2}}$$

with χ_1 and η real fields and with $\chi_1 = v + \chi$, where v is a real number and χ is a real dynamical variable (a field). What is the value of v for which the linear terms in χ disappear from the Lagrangian? Write the Lagrangian in terms of χ and η and give masses of the particles in the theory.

3. Consider σ -model without the nucleons (quarks). The Lagrangian is

$$\mathcal{L} = \frac{1}{2} \left[\partial_{\mu} \sigma \, \partial^{\mu} \sigma + \partial_{\mu} \vec{\pi} \, \partial^{\mu} \vec{\pi} \right] + \frac{\mu^2}{2} \left[\sigma^2 + \vec{\pi}^2 \right] - \frac{\lambda}{4} \left[\sigma^2 + \vec{\pi}^2 \right]^2 \tag{1}$$

where as usual σ is a scalar field and $\vec{\pi} = (\pi^1, \pi^2, \pi^3)$ is the three-component scalar (pion) field.

a. (10 pts) Unlike the discussion in class choose the vacuum configuration to be

$$\langle \pi^1 \rangle = \langle \pi^2 \rangle = \langle \sigma \rangle = 0, \quad \langle \pi^3 \rangle = v.$$
 (2)

Find the value of v minimizing the potential in the σ -model Lagrangian (1). Writing

$$\pi^3 = v + \pi'^3$$

express the Lagrangian (1) in terms of fields π^1, π^2, σ and π'^3 and find masses of the particles in the theory.

b. (5 pts) Find the symmetry group corresponding to the non-Abelian symmetry still left in the Lagrangian expressed in terms of fields π^1, π^2, σ and π'^3 that you found in part **a**? In other words, the original $SU(2)_L \otimes SU(2)_R$ chiral symmetry of the Lagrangian (1) is spontaneously broken down by the choice of vacuum in (2). What symmetry is it broken down to?