Homework Set No. 3, Physics 880.02
 Deadline - Tuesday, February 17, 2009

1. Just like in class consider 2-flavor QCD with massless quarks:

$$
q(x)=\binom{u(x)}{d(x)}, \quad q_{L, R}=\frac{1 \mp \gamma_{5}}{2} q .
$$

The Lagrangian is

$$
\mathcal{L}=\bar{q}_{L} i \gamma \cdot \partial q_{L}+\bar{q}_{R} i \gamma \cdot \partial q_{R}
$$

The left- and right-handed isospin currents are

$$
j_{L}^{i \mu}=\bar{q}_{L} \gamma^{\mu} \frac{\sigma^{i}}{2} q_{L} \quad \text { and } \quad j_{R}^{i \mu}=\bar{q}_{R} \gamma^{\mu} \frac{\sigma^{i}}{2} q_{R}
$$

with the charges

$$
Q_{L}^{i}(t)=\int d^{3} x j_{L, 0}^{i}(\vec{x}, t) \quad \text { and } \quad Q_{R}^{i}(t)=\int d^{3} x j_{R, 0}^{i}(\vec{x}, t)
$$

a. (10 pts) Using anti-commutation relations

$$
\left\{q_{\alpha}^{a}(\vec{x}, t), q_{\beta}^{\dagger b}\left(\vec{x}^{\prime}, t\right)\right\}=\delta^{a b} \delta_{\alpha \beta} \delta\left(\vec{x}-\vec{x}^{\prime}\right)
$$

show that for any matrices Γ_{1} and Γ_{2} (which are matrices both in Dirac and flavor spaces) the following relation holds

$$
\left[q^{\dagger}\left(\vec{x}^{\prime}, t\right) \Gamma_{1} q\left(\vec{x}^{\prime}, t\right), q^{\dagger}(\vec{x}, t) \Gamma_{2} q(\vec{x}, t)\right]=\delta\left(\vec{x}-\vec{x}^{\prime}\right) q^{\dagger}(\vec{x}, t)\left[\Gamma_{1}, \Gamma_{2}\right] q(\vec{x}, t)
$$

b. (10 pts) Using the result of part a show that Q_{L}^{i} and Q_{R}^{i} form a chiral algebra of $S U(2)_{L} \otimes S U(2)_{R}$, i.e., prove that

$$
\begin{aligned}
{\left[Q_{L}^{i}, Q_{L}^{j}\right] } & =i \epsilon_{i j k} Q_{L}^{k} \\
{\left[Q_{R}^{i}, Q_{R}^{j}\right] } & =i \epsilon_{i j k} Q_{R}^{k} \\
{\left[Q_{L}^{i}, Q_{R}^{j}\right] } & =0 .
\end{aligned}
$$

c. (5 pts) Now add a mass term to the Lagrangian:

$$
\mathcal{L}=\bar{q} i \gamma \cdot \partial q-m \bar{q} q \quad \text { with } \quad m=\left(\begin{array}{cc}
m_{u} & 0 \\
0 & m_{d}
\end{array}\right)
$$

Find the divergence of the axial vector isospin current $\partial_{\mu} j_{5}^{i \mu}$ where $j_{5}^{i \mu}=j_{R}^{i \mu}-j_{L}^{i \mu}$. Is the chiral $S U(2)_{L} \otimes S U(2)_{R}$ symmetry still a symmetry of the Lagrangian with massive quarks? Does the mass term affect the $S U(2)_{L} \otimes S U(2)_{R}$ chiral algebra that you derived in part b?
2. (10 pts) Consider the Lagrangian

$$
\mathcal{L}=\partial_{\alpha} \phi^{*} \partial^{\alpha} \phi+\mu^{2} \phi^{*} \phi-\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2}
$$

with ϕ a complex scalar field and $\mu^{2}>0$. Write

$$
\phi=\frac{\chi_{1}+i \eta}{\sqrt{2}}
$$

with χ_{1} and η real fields and with $\chi_{1}=v+\chi$, where v is a real number and χ is a real dynamical variable (a field). What is the value of v for which the linear terms in χ disappear from the Lagrangian? Write the Lagrangian in terms of χ and η and give masses of the particles in the theory.
3. Consider σ-model without the nucleons (quarks). The Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi}\right]+\frac{\mu^{2}}{2}\left[\sigma^{2}+\vec{\pi}^{2}\right]-\frac{\lambda}{4}\left[\sigma^{2}+\vec{\pi}^{2}\right]^{2} \tag{1}
\end{equation*}
$$

where as usual σ is a scalar field and $\vec{\pi}=\left(\pi^{1}, \pi^{2}, \pi^{3}\right)$ is the three-component scalar (pion) field.
a. (10 pts) Unlike the discussion in class choose the vacuum configuration to be

$$
\begin{equation*}
\left\langle\pi^{1}\right\rangle=\left\langle\pi^{2}\right\rangle=\langle\sigma\rangle=0, \quad\left\langle\pi^{3}\right\rangle=v \tag{2}
\end{equation*}
$$

Find the value of v minimizing the potential in the σ-model Lagrangian (1). Writing

$$
\pi^{3}=v+\pi^{\prime 3}
$$

express the Lagrangian (1) in terms of fields π^{1}, π^{2}, σ and $\pi^{\prime 3}$ and find masses of the particles in the theory.
b. (5 pts) Find the symmetry group corresponding to the non-Abelian symmetry still left in the Lagrangian expressed in terms of fields π^{1}, π^{2}, σ and $\pi^{\prime 3}$ that you found in part a? In other words, the original $S U(2)_{L} \otimes S U(2)_{R}$ chiral symmetry of the Lagrangian (1) is spontaneously broken down by the choice of vacuum in (2). What symmetry is it broken down to?

