Homework Set No. 4, Physics 880.02
 Deadline - Thursday, February 26, 2009

1. (10 pts) Consider a non-Abelian gauge theory with the gauge field A_{μ}^{a} and the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Here

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

with $f^{a b c}$ the structure constants of the gauge group $S U(N)$.
Write the equations of motion for this theory. If we define $J^{a \mu}$ by

$$
\partial_{\nu} F^{a \nu \mu}=J^{a \mu}
$$

what is $J^{a \mu}$ for the above Lagrangian?
2. (10 pts) Consider the Lagrangian for a complex scalar field ϕ coupled to an Abelian gauge field A_{μ} :

$$
\mathcal{L}=\left(\partial_{\mu}+i g A_{\mu}\right) \phi^{*}\left(\partial_{\mu}-i g A_{\mu}\right) \phi+\mu^{2} \phi^{*} \phi-\lambda\left(\phi^{*} \phi\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

with $\mu^{2}, \Lambda>0$ positive constants. Like in problem 2 of HW3 write

$$
\phi=\frac{\chi_{1}+i \eta}{\sqrt{2}}
$$

with χ_{1} and η real fields and with $\chi_{1}=v+\chi$, where v is a real number and χ is a real field. What is the value of v for which the linear terms in χ disappear from the Lagrangian? Write the Lagrangian in terms of A_{μ}, χ and η. What are the physical particles and what are their masses?
3. Consider the Higgs potential in the Standard Model:

$$
\begin{equation*}
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2} \tag{1}
\end{equation*}
$$

with the Higgs field

$$
\phi=\binom{\phi^{+}}{\phi^{0}}=\binom{\phi^{1}}{\phi^{2}} .
$$

The potential is $S U(2) \otimes U(1)$ invariant.
a. (5 pts) In principle one can write $S U(2) \otimes U(1)$ quadric invariant of the form

$$
\begin{equation*}
V_{1}(\phi)=\lambda_{1}\left(\phi^{\dagger} \vec{\tau} \phi\right) \cdot\left(\phi^{\dagger} \vec{\tau} \phi\right) \tag{2}
\end{equation*}
$$

with $\vec{\tau}$ the Pauli matrices and λ_{1} a constant. Show that this quadric term can be reduced to that in $V(\phi)$ using the Fierz identity

$$
\sum_{a=1}^{3}\left(\frac{\tau^{a}}{2}\right)_{i j}\left(\frac{\tau^{a}}{2}\right)_{k l}=\frac{1}{2} \delta_{j k} \delta_{i l}-\frac{1}{4} \delta_{i j} \delta_{k l} .
$$

b. (5 pts) The same as in part a for

$$
\begin{equation*}
V_{2}(\phi)=\lambda_{1} \sum_{a, b=1}^{3}\left(\phi^{\dagger} \tau^{a} \tau^{b} \phi\right)\left(\phi^{\dagger} \tau^{a} \tau^{b} \phi\right) \tag{3}
\end{equation*}
$$

