Homework Set No. 2, Physics 880.08
 Deadline - Monday, November 2, 2009

1. (10 pts) In class we showed that Dirac spinors transform as

$$
\psi_{D}(x) \rightarrow \psi_{D}^{\prime}\left(x^{\prime}\right)=\left(\begin{array}{cc}
e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})} & 0 \tag{1}\\
0 & e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})}
\end{array}\right) \psi_{D}(x)
$$

under Lorentz transformations. Show that this transformation rule is equivalent to

$$
\psi_{D}(x) \rightarrow \psi_{D}^{\prime}\left(x^{\prime}\right)=e^{-\frac{i}{4} \omega^{\mu \nu} \sigma_{\mu \nu}} \psi_{D}(x)
$$

where

$$
\sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] .
$$

As usual $\xi^{i}=\omega^{0 i}$ and $\theta_{i}=\frac{1}{2} \epsilon_{i j k} \omega_{j k}$. You can consider boosts and rotations separately for the full credit.
2. (a) (5 pts) Complete the proof started in class that

$$
\bar{\psi} \gamma^{\mu} \psi
$$

is a 4 -vector by showing that it transforms like one under infinitesimal boosts. ψ is the Dirac spinor which transforms according to Eq. (1).
(b) (5 pts) Prove that

$$
\bar{\psi} \gamma^{\mu} \gamma^{5} \psi
$$

is a 4 -vector under both boosts and rotations. What happens to it under parity?
3. (10 pts) Writing Dirac spinor in terms of two-component Weyl spinors

$$
\psi_{D}(x)=\binom{\chi_{L}}{\chi_{R}}
$$

one can see from Eq. (1) above that Weyl spinors transform under Lorentz transformations as

$$
\begin{aligned}
& \chi_{L}(x) \rightarrow \chi_{L}^{\prime}\left(x^{\prime}\right)=e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}-i \vec{\xi})} \chi_{L}(x) \\
& \chi_{R}(x) \rightarrow \chi_{L}^{\prime}\left(x^{\prime}\right)=e^{\frac{i}{2} \vec{\sigma} \cdot(\vec{\theta}+i \vec{\xi})} \chi_{R}(x)
\end{aligned}
$$

Show that $\sigma^{2} \chi_{L}^{*}$ transforms as a right-handed Weyl spinor. Here $*$ denotes complex conjugation and σ^{2} is a Pauli matrix.
4. Consider a massive Dirac field ψ with mass m.
a. (2 pts) Starting with Dirac equation

$$
\left[i \gamma^{\mu} \partial_{\mu}-m\right] \psi=0
$$

derive an equation for $\bar{\psi}$.
b. (3 pts) Using the result of part a show that the electromagnetic current

$$
j_{\mu}=\bar{\psi} \gamma_{\mu} \psi
$$

is conserved at the classical level, i.e., show that $\partial_{\mu} j^{\mu}=0$.
c. (5 pts) Defining $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ use the anti-commutation relations for γ-matrices $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ to show that

$$
\left\{\gamma^{\mu}, \gamma^{5}\right\}=0
$$

Use this result to show that the divergence of the axial vector current

$$
j^{5 \mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi
$$

is

$$
\begin{equation*}
\partial_{\mu} j^{5 \mu}=2 i m \bar{\psi} \gamma^{5} \psi \tag{2}
\end{equation*}
$$

That is the axial current is conserved for massless particles (in this classical theory).

