Homework Set No. 4, Physics 880.08 Deadline - Wednesday, March 17, 2010

1. (15 pts) In class when calculating the cross section for Compton scattering we encountered the following Dirac trace

$$
\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{\nu}\left(\not{ }^{\prime}+\not{ }^{\prime}+m\right) \gamma^{\mu}\left(\not{ }^{\prime}+m\right) \gamma_{\nu}\left(\not{ }^{\prime}-\not \chi^{\prime}+m\right) \gamma_{\mu}\right] .
$$

Show that this trace is equal to

$$
8\left[4 m^{4}+m^{2}\left(s-m^{2}\right)+m^{2}\left(u-m^{2}\right)\right]
$$

as we used in class. Here $s=(p+k)^{2}=\left(p^{\prime}+k^{\prime}\right)^{2}$ and $u=\left(p-k^{\prime}\right)^{2}=\left(p^{\prime}-k\right)^{2}$, with p, p^{\prime} the 4 -momenta of the electron and k, k^{\prime} the 4 -momenta of the photon.
2. Consider ϕ^{4} scalar theory with the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4}
$$

Below use Pauli-Villars regularization with two new particles, such that the propagators of the internal lines are replaced by

$$
\frac{i}{k^{2}-m^{2}+i \epsilon} \rightarrow \frac{i}{k^{2}-m^{2}+i \epsilon}+\sum_{i=1}^{2} \frac{i C_{i}}{k^{2}-M_{i}^{2}+i \epsilon}
$$

with $C_{1}=1, C_{2}=-2$, and $M_{1}^{2}=m^{2}+2 M^{2}, M_{2}^{2}=m^{2}+M^{2} . M$ is some UV cutoff.
a. (30 pts) Calculate regularized one-loop corrections to the propagator and to the connected four-point Green function, keeping only divergent and finite terms at large M.
b. (15 pts) Set up the renormalization program for the ϕ^{4} theory at one loop. Find all counterterms and coefficients in front of them using "on-shell" renormalization conditions. In particular show that the renormalized truncated 4-point Green function $\Gamma^{4}(s, t, u)$ is given by
$\Gamma^{4}(s, t, u)=-i\left\{\lambda+\frac{\lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left[\ln \left(\frac{m^{2}-s x(1-x)}{m^{2}-4 m^{2} x(1-x)}\right)+(s \leftrightarrow t)+(s \leftrightarrow u)\right]+o\left(\lambda^{3}\right)\right\}$.
Choose the counter-terms such that $\Gamma^{4}(s, t, u)=-i \lambda$ when $s=t=u=4 m^{2}$. For a 4 -point function with two external lines having incoming 4 -momenta p_{1}^{μ} and p_{2}^{μ} and two other external lines having outgoing 4 -momenta p_{3}^{μ} and p_{4}^{μ} we define as usual $s=\left(p_{1}+p_{2}\right)^{2}$, $t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{1}-p_{4}\right)^{2}$. (You may find the discussion in Chapter 10.2 of Peskin and Schroeder useful, though they use dimensional regularization.)

