Homework Set No. 4, Physics 880.08 Deadline – Wednesday, March 17, 2010

1. (15 pts) In class when calculating the cross section for Compton scattering we encountered the following Dirac trace

$$\operatorname{Tr}\left[\left(\not\!\!\!p'+m\right)\gamma^{\nu}\left(\not\!\!\!p+\not\!\!\!k+m\right)\gamma^{\mu}\left(\not\!\!\!p+m\right)\gamma_{\nu}\left(\not\!\!\!p-\not\!\!\!k'+m\right)\gamma_{\mu}\right].$$

Show that this trace is equal to

8
$$\left[4m^4 + m^2(s - m^2) + m^2(u - m^2)\right]$$

as we used in class. Here $s = (p+k)^2 = (p'+k')^2$ and $u = (p-k')^2 = (p'-k)^2$, with p, p' the 4-momenta of the electron and k, k' the 4-momenta of the photon.

2. Consider ϕ^4 scalar theory with the Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{m^2}{2} \varphi^2 - \frac{\lambda}{4!} \varphi^4.$$

Below use Pauli-Villars regularization with two new particles, such that the propagators of the internal lines are replaced by

$$\frac{i}{k^2 - m^2 + i\epsilon} \rightarrow \frac{i}{k^2 - m^2 + i\epsilon} + \sum_{i=1}^2 \frac{iC_i}{k^2 - M_i^2 + i\epsilon}$$

with $C_1 = 1$, $C_2 = -2$, and $M_1^2 = m^2 + 2M^2$, $M_2^2 = m^2 + M^2$. *M* is some UV cutoff.

a. (30 pts) Calculate regularized one-loop corrections to the propagator and to the connected four-point Green function, keeping only divergent and finite terms at large M.

b. (15 pts) Set up the renormalization program for the ϕ^4 theory at one loop. Find all counterterms and coefficients in front of them using "on-shell" renormalization conditions. In particular show that the renormalized truncated 4-point Green function $\Gamma^4(s, t, u)$ is given by

$$\Gamma^{4}(s,t,u) = -i \left\{ \lambda + \frac{\lambda^{2}}{32\pi^{2}} \int_{0}^{1} dx \left[\ln \left(\frac{m^{2} - s x (1-x)}{m^{2} - 4 m^{2} x (1-x)} \right) + (s \leftrightarrow t) + (s \leftrightarrow u) \right] + o(\lambda^{3}) \right\}.$$

Choose the counter-terms such that $\Gamma^4(s,t,u) = -i\lambda$ when $s = t = u = 4m^2$. For a 4-point function with two external lines having incoming 4-momenta p_1^{μ} and p_2^{μ} and two other external lines having outgoing 4-momenta p_3^{μ} and p_4^{μ} we define as usual $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$ and $u = (p_1 - p_4)^2$. (You may find the discussion in Chapter 10.2 of Peskin and Schroeder useful, though they use dimensional regularization.)