Homework Set No. 3, Physics 880.08 Deadline - Wednesday, November 18, 2009

1. Consider a free (real) scalar theory with the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2}
$$

Define the Hamiltonian by

$$
H(t)=\int d^{3} x[\pi(\vec{x}, t) \dot{\varphi}(\vec{x}, t)-\mathcal{L}]
$$

a. (3 pts) Show that for classical field configurations

$$
\frac{d}{d t} H(t)=0 .
$$

b. (2 pts) Write $H(t)$ in terms of π and φ with no $\dot{\varphi}$'s appearing.
c. (5 pts) Now imagine that the field is quantized. Assuming that the classical KleinGordon equation holds for the operator $\varphi(\vec{x}, t)$ use canonical quantization commutators

$$
\left[\varphi(\vec{x}, t), \pi\left(\vec{x}^{\prime}, t\right)\right]=i \delta\left(\vec{x}-\vec{x}^{\prime}\right)
$$

(with all other equal-time commutators being zero) to show that $H(t)$ (now an operator) generates time translations, i.e., show that

$$
\begin{gathered}
i \partial_{0} \varphi=[\varphi, H(t)] \\
i \partial_{0} \pi=[\pi, H(t)] .
\end{gathered}
$$

2. The same as in problem 1, but now for Dirac field: start with a theory with Lagrangian density

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

a. (3 pts) Construct a Hamiltonian $H(t)$ and show that for classical field configurations

$$
\frac{d}{d t} H(t)=0 .
$$

b. (2 pts) Write $H(t)$ in terms of π and ψ.
c. (5 pts) For quantized field ψ use the anti-commutation relations

$$
\left\{\psi_{\alpha}(\vec{x}, t), \psi_{\beta}^{\dagger}\left(\vec{x}^{\prime}, t\right)\right\}=\delta_{\alpha \beta} \delta\left(\vec{x}-\vec{x}^{\prime}\right)
$$

along with Dirac equation to show that

$$
\begin{gathered}
i \partial_{0} \psi_{\alpha}=\left[\psi_{\alpha}, H(t)\right] \\
i \partial_{0} \bar{\psi}_{\alpha}=\left[\bar{\psi}_{\alpha}, H(t)\right] .
\end{gathered}
$$

3. In class we quantized free real scalar field theory of problem 1. The field operator was shown to be

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}\left[\hat{a}_{\vec{k}} e^{-i k \cdot x}+\hat{a}_{\vec{k}}^{\dagger} e^{i k \cdot x}\right] \tag{1}
\end{equation*}
$$

with the particle creation and annihilation operators obeying the following commutation relations

$$
\left[\hat{a}_{\vec{k}}, \hat{a}_{\vec{k}^{\prime}}^{\dagger}\right]=(2 \pi)^{3} 2 E_{k} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right), \quad\left[\hat{a}_{\vec{k}}, \hat{a}_{\vec{k}^{\prime}}\right]=\left[\hat{a}_{\vec{k}}^{\dagger}, \hat{a}_{\vec{k}^{\prime}}^{\dagger}\right]=0 .
$$

Above $k \cdot x=E_{k} t-\vec{k} \cdot \vec{x}$. The Hamiltonian was shown to be

$$
\hat{H}=\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}} E_{k} \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}
$$

(a) (5 pts) Find the commutators $\left[\hat{H}, \hat{a}_{\vec{k}}\right]$ and $\left[\hat{H}, \hat{a}_{\vec{k}}^{\dagger}\right]$.
(b) (15 pts) Use the results of part (a) to write the particle creation and annihilation operators in Heisenberg representation defined by

$$
\begin{align*}
\hat{a}_{\vec{k}}^{H}(t) & =e^{i \hat{H} t} \hat{a}_{\vec{k}} e^{-i \hat{H} t} \\
\hat{a}_{\vec{k}}^{H \dagger}(t) & =e^{i \hat{H} t} \hat{a}_{\vec{k}}^{\dagger} e^{-i \hat{H} t} \tag{2}
\end{align*}
$$

in terms of $E_{k}, \hat{a}_{\vec{k}}$ and $\hat{a}_{\vec{k}}^{\dagger}$ (i.e., eliminate \hat{H} in Eqs. (2) above). Rewrite the field ϕ from Eq. (1) in terms of the obtained $\hat{a}_{\vec{k}}^{H}(t)$ and $\hat{a}_{\vec{k}}^{H \dagger}(t)$.
(Hint: you may find the following identity useful

$$
[\hat{H},[\hat{H}, \ldots,[\hat{H}, \hat{\mathcal{O}}] \ldots]]=\sum_{m=0}^{N} \frac{N!}{m!(N-m)!} \hat{H}^{N-m} \hat{\mathcal{O}}(-\hat{H})^{m}
$$

where $\hat{\mathcal{O}}$ is an arbitrary operator and there are N commutators on the left hand side. If you use this identity, you would have to prove it for full credit. The proof can be done by induction.)

