Homework Set No. 3, Physics 880.08 Deadline - Friday, May 14, 2010

1. Show explicitly that the time evolution kernel we derived in class for a free nonrelativistic particle

$$
U_{\text {free }}\left(q, t ; q^{\prime}, t^{\prime}\right)=\sqrt{\frac{m}{2 \pi i \hbar\left(t-t^{\prime}\right)}} e^{\frac{i}{\hbar} \frac{m}{2} \frac{\left(q-q^{\prime}\right)^{2}}{t-t^{\prime}}}
$$

is unitary.
a (5 pts) First show that

$$
\int_{-\infty}^{\infty} d q^{\prime} U_{\text {free }}\left(q, t ; q^{\prime}, t^{\prime}\right) U_{\text {free }}\left(q^{\prime}, t^{\prime} ; q^{\prime \prime}, t^{\prime \prime}\right)=U_{\text {free }}\left(q, t ; q^{\prime \prime}, t^{\prime \prime}\right)
$$

b (5 pts) Then demonstrate that

$$
\lim _{t \rightarrow t^{\prime}} U_{\text {free }}\left(q, t ; q^{\prime}, t^{\prime}\right)=\delta\left(q-q^{\prime}\right)
$$

Explain why the results of parts a and \mathbf{b} prove unitarity of the time evolution kernel.
2. a. (5 pts) By explicitly expanding the exponentials on the left-hand-side and carrying out the Grassmann integrals show that the following relation holds

$$
\int d \bar{\chi}_{1} d \chi_{1} d \bar{\chi}_{2} d \chi_{2} \exp \left[-\sum_{i, j} a_{i j} \bar{\chi}_{i} \chi_{j}\right] \exp \left[\sum_{k}\left(\bar{\chi}_{k} \xi_{k}+\bar{\xi}_{k} \chi_{k}\right)\right]=(\operatorname{det} A) \exp \left[\sum_{i, j} \bar{\xi}_{i} A_{i j}^{-1} \xi_{j}\right]
$$

where χ_{i} and ξ_{j} are Grassmann variables, and A is a 2×2 matrix with elements $a_{i j}$.
b (5 pts) Show that

$$
\begin{aligned}
-i \frac{\partial}{\partial \bar{\xi}} F & =\chi F=F \chi \\
i \frac{\partial}{\partial \xi} F & =\bar{\chi} F=F \bar{\chi}
\end{aligned}
$$

for the function

$$
F=\exp [i(\bar{\xi} \chi+\bar{\chi} \xi)] .
$$

Here χ and ξ are Grassmann variables.
3. (10 pts) Consider a non-Abelian gauge theory with the gauge field A_{μ}^{a} and the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Here

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

with $f^{a b c}$ the structure constants of the gauge group $S U(N)$.
Write the equations of motion for this theory. If we define $J^{a \mu}$ by

$$
\partial_{\nu} F^{a \nu \mu}=J^{a \mu}
$$

what is $J^{a \mu}$ for the above Lagrangian?
4. (10 pts) When constructing gauge-invariant Lagrangian for the non-Abelian gauge field A_{μ}^{a} one may consider another Lorentz-invariant

$$
I=\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
$$

Show that this term can be written as a 4-divergence,

$$
I=\partial_{\mu} K^{\mu}
$$

and find the 4 -vector K^{μ} explicitly in terms of the field A_{μ}^{a}. Why can not the invariant I serve as the Lagrangian for the non-Abelian field?
(Hint: you may find the identity

$$
f^{a b e} f^{c d e}=\frac{2}{N}\left(\delta^{a c} \delta^{b d}-\delta^{a d} \delta^{b c}\right)+d^{a c e} d^{b d e}-d^{b c e} d^{a d e}
$$

useful. Here the gauge group is $S U(N)$ and $d^{a b c}$ is the absolutely symmetric object defined by

$$
d^{a b c}=2 \operatorname{Tr}\left(T^{a}\left\{T^{b}, T^{c}\right\}\right)
$$

with T^{a} the generators of $S U(N)$ in the fundamental representation.)

