Homework Set No. 2, Physics 880.08 Deadline – Wednesday, February 2, 2011

- 1. (35 pts) Problem 4.1 in Peskin and Schroeder. (Hints: Reading pp. 32-33 in Peskin and Schroeder first may help understand the problem. Assume that j(x) is real. Each item is worth the following amounts of points: (a) 3, (b) 5, (c) 10, (d) 8, (e) 7, (f) 2.)
- **2.** (20 pts) Consider $2 \to 2$ scattering of identical particles of mass m. Suppose the production cross section of a particle with 4-momentum p is given by

$$\mathcal{E}_p \frac{d\sigma}{d^3 p} = f(s, t, u) \, \delta(s' + t' + u' - 4 \, m^2)$$

where f is some function of $s=(k_1+k_2)^2$, $t=(k_1-p)^2$, and $u=(k_1-p_2)^2$, with $s'=(p+p_2)^2$, $t'=(k_2-p_2)^2$, $u'=(k_1-p_2)^2=u$ (see figure below). Just like in class $k_1^{\mu}=(E_{k_1},\vec{k}_1)$, $k_2^{\mu}=(E_{k_2},\vec{k}_2)$, $p^{\mu}=(E_p,\vec{p})$, and $p_2^{\mu}=(E_{p_2},\vec{k}_1+\vec{k}_2-\vec{p})$.

Show that

$$\frac{d\sigma}{dt} = \frac{\pi}{\sqrt{s(s-4m^2)}} f(s,t,u)$$

where u is now defined by $u = 4 m^2 - s - t$ and $s = (k_1 + k_2)^2$ still. (Hint: it is easier to prove this result by picking either the CMS frame or the rest frame of one of the initial state particles.)