Homework Set No. 2, Physics 880.08 Deadline - Wednesday, February 2, 2011

1. (35 pts) Problem 4.1 in Peskin and Schroeder. (Hints: Reading pp. 32-33 in Peskin and Schroeder first may help understand the problem. Assume that $j(x)$ is real. Each item is worth the following amounts of points: (a) -3 , (b) -5 , (c) -10 , (d) -8 , (e) -7 , (f) -2 .)
2. (20 pts) Consider $2 \rightarrow 2$ scattering of identical particles of mass m. Suppose the production cross section of a particle with 4 -momentum p is given by

$$
\mathcal{E}_{p} \frac{d \sigma}{d^{3} p}=f(s, t, u) \delta\left(s^{\prime}+t^{\prime}+u^{\prime}-4 m^{2}\right)
$$

where f is some function of $s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}-p\right)^{2}$, and $u=\left(k_{1}-p_{2}\right)^{2}$, with $s^{\prime}=\left(p+p_{2}\right)^{2}$, $t^{\prime}=\left(k_{2}-p_{2}\right)^{2}, u^{\prime}=\left(k_{1}-p_{2}\right)^{2}=u$ (see figure below). Just like in class $k_{1}^{\mu}=\left(E_{k_{1}}, \vec{k}_{1}\right)$, $k_{2}^{\mu}=\left(E_{k_{2}}, \vec{k}_{2}\right), p^{\mu}=\left(E_{p}, \vec{p}\right)$, and $p_{2}^{\mu}=\left(E_{p_{2}}, \vec{k}_{1}+\vec{k}_{2}-\vec{p}\right)$.

Show that

$$
\frac{d \sigma}{d t}=\frac{\pi}{\sqrt{s\left(s-4 m^{2}\right)}} f(s, t, u)
$$

where u is now defined by $u=4 m^{2}-s-t$ and $s=\left(k_{1}+k_{2}\right)^{2}$ still. (Hint: it is easier to prove this result by picking either the CMS frame or the rest frame of one of the initial state particles.)

