Homework Set No. 3, Physics 880.08
 Deadline - Monday, February 21, 2011

1. a. (15 pts) Calculate the differential cross section $d \sigma / d t$ for electron-positron annihilation into two photons, i.e., for

$$
e^{-}+e^{+} \rightarrow \gamma+\gamma
$$

You may assume that electron and positron are massless. Express your answer in terms of Mandelstam variables s, t and u, and electromagnetic coupling constant $\alpha_{E M}$.
(Hint: you may want to use the replacement

$$
\sum_{\lambda= \pm} \epsilon_{\mu}^{(\lambda) *}(k) \epsilon_{\nu}^{(\lambda)}(k) \rightarrow-g_{\mu \nu}
$$

when summing over photon polarizations.)
b. (10 pts) Calculate the differential cross section $d \sigma / d t$ for the inverse process (again assuming that e^{+}and e^{-}are massless):

$$
\gamma+\gamma \rightarrow e^{-}+e^{+}
$$

Express your answer in terms of Mandelstam variables s, t and u, and $\alpha_{E M}$. Compare the answer with the result of part a. Comment.
2. (25 pts) Problem 5.2 in Peskin and Schroeder. Clarification to their problem formulation: you are asked to find the differential cross section in the center-of-mass frame. Also write an expression for $d \sigma / d t$.

