Homework Set No. 4, Physics 880.08 Deadline - noon on Tuesday, March 15, 2011

1. Construct the momentum-space Feynman rules for the following theories (draw all the propagators and vertices, and find their contributions to the diagrams):
a. (10 pts) Scalar electrodynamics, with the Lagrangian density

$$
\mathcal{L}=\left(D_{\mu} \varphi\right)^{*} D^{\mu} \varphi-m^{2} \varphi^{*} \varphi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

where $D_{\mu}=\partial_{\mu}+i e A_{\mu}$. Here φ is a complex scalar field, A_{μ} is a real gauge field, $F_{\mu \nu}=$ $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
b. (5 pts) Complex scalar theory, with the Lagrangian density

$$
\mathcal{L}=\left(\partial_{\mu} \varphi\right)^{*} \partial^{\mu} \varphi-\lambda^{2} \varphi^{*} \varphi\left(\varphi^{*} \varphi-v^{2}\right)^{2}
$$

where λ and v are real positive constants and φ is a complex scalar field.
Note that while for the photon propagator you can simply use the expression given in class, I would like you to derive the propagator for the complex scalar field in part a.
2. Consider φ^{4} scalar theory with the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4} .
$$

Below use Pauli-Villars regularization with two new particles, such that the propagators of the internal lines are replaced by

$$
\frac{i}{k^{2}-m^{2}+i \epsilon} \rightarrow \frac{i}{k^{2}-m^{2}+i \epsilon}+\sum_{j=1}^{2} \frac{i C_{j}}{k^{2}-M_{j}^{2}+i \epsilon}
$$

with $C_{1}=1, C_{2}=-2$, and $M_{1}^{2}=m^{2}+2 M^{2}, M_{2}^{2}=m^{2}+M^{2} . M$ is some UV cutoff.
a. (30 pts) Calculate regularized one-loop 1PI corrections to the propagator and to the four-point Green function, keeping only divergent and finite terms at large M (i.e., dropping all terms which vanish in the $M \rightarrow \infty$ limit).
b. (15 pts) Set up the renormalization program for the ϕ^{4} theory at one loop: that is, find all counterterms and coefficients in front of them using "on-shell" renormalization
conditions:

$$
\begin{aligned}
\Sigma\left(p^{2}=m^{2}\right) & =0, \\
\left.\frac{\partial \Sigma\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m^{2}} & =0, \\
\Gamma^{4}\left(s=4 m^{2}, t=0, u=0\right) & =-i \lambda .
\end{aligned}
$$

Here $-i \Sigma\left(p^{2}\right)$ is the sum of all 1 PI corrections to the propagator, and $\Gamma^{4}(s, t, u)$ is the truncated 1PI 4-point Green function. Also m is the physical particle mass, and λ is the physical coupling.

In particular show that the renormalized 4-point function $\Gamma_{R}^{4}(s, t, u)$ is given by

$$
\begin{array}{r}
\Gamma_{R}^{4}(s, t, u)=-i\left\{\lambda+\frac{\lambda^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left[\ln \left(\frac{m^{2}-s x(1-x)}{m^{2}-4 m^{2} x(1-x)}\right)+\ln \left(\frac{m^{2}-t x(1-x)}{m^{2}}\right)\right.\right. \\
\left.\left.+\ln \left(\frac{m^{2}-u x(1-x)}{m^{2}}\right)\right]+o\left(\lambda^{3}\right)\right\}
\end{array}
$$

For a 4-point function with two external lines having incoming 4-momenta p_{1}^{μ} and p_{2}^{μ} and two other external lines having outgoing 4-momenta p_{3}^{μ} and p_{4}^{μ} we define as usual $s=\left(p_{1}+p_{2}\right)^{2}$, $t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{1}-p_{4}\right)^{2}$. (Hint: you may find the discussion in Chapter 10.2 of Peskin and Schroeder useful, though they use dimensional regularization.)

