Homework Set No. 3, Physics 880.08
 Deadline - Wednesday, May 18, 2011

1. a. (5 pts) By explicitly expanding the exponentials on the left-hand-side and carrying out the Grassmann integrals show that the following relation holds
$\int d \bar{\chi}_{1} d \chi_{1} d \bar{\chi}_{2} d \chi_{2} \exp \left[-\sum_{i, j} a_{i j} \bar{\chi}_{i} \chi_{j}\right] \exp \left[\sum_{k}\left(\bar{\chi}_{k} \xi_{k}+\bar{\xi}_{k} \chi_{k}\right)\right]=(\operatorname{det} A) \exp \left[\sum_{i, j} \bar{\xi}_{i} A_{i j}^{-1} \xi_{j}\right]$
where χ_{i} and ξ_{j} are Grassmann variables, and A is a 2×2 Hermitean matrix with elements $a_{i j}$.
b (5 pts) Show that

$$
\begin{aligned}
-i \frac{\partial}{\partial \bar{\xi}} F & =\chi F=F \chi \\
i \frac{\partial}{\partial \xi} F & =\bar{\chi} F=F \bar{\chi}
\end{aligned}
$$

for the function

$$
F=\exp [i(\bar{\xi} \chi+\bar{\chi} \xi)] .
$$

Here χ and ξ are Grassmann variables.
2. Nature of the perturbation series.

Consider a zero-dimensional "field theory" defined by the "path integral"

$$
\begin{equation*}
I(m, \lambda)=\int_{-\infty}^{\infty} d x e^{-S[x]} \tag{1}
\end{equation*}
$$

where the (Euclidean) action is

$$
S[x]=m x^{2}+\lambda x^{4} .
$$

a. (10 pts) Expand $I(m, \lambda)$ in a perturbation series in the powers of λ. Show that the radius of convergence of the series is zero.

You may need the integral definition of the gamma-function

$$
\Gamma(z)=\int_{0}^{\infty} d t t^{z-1} e^{-t}
$$

along with the following property

$$
\Gamma(z+1)=z \Gamma(z)
$$

b. (10 pts) Let $I_{n}(m, \lambda)$ denote the truncated perturbation series from part a (partial sum) with the highest power of λ being λ^{n}. Using your favorite numerical software plot $I_{n}(m=1, \lambda)$ for $n=0,1,2,3,4,5, \ldots$ as functions of λ in the range $\lambda \in[0,0.1]$ (I got betterlooking plots in this range, but you may change it to make a better picture). On the same plot draw the curve corresponding to the exact result

$$
I(m, \lambda)=\sqrt{\frac{m}{4 \lambda}} e^{\frac{m^{2}}{8 \lambda}} K_{1 / 4}\left(\frac{m^{2}}{8 \lambda}\right),
$$

with $K_{1 / 4}$ the modified Bessel function. Demonstrate the asymptotic nature of the series: as you increase the order n, the quality of the perturbative approximation first increases, but then rapidly starts to decrease.
c. OPTIONAL (5 pts) Quasi-classical approximation: evaluate the integral $I(m, \lambda)$ in Eq. (1) using the steepest descent (aka saddle point) method. Find the "classical solution" $\left(x_{c l}=0\right)$, expand the power of the exponent to quadratic order in fluctuations ξ (where $x=x_{c l}+\xi$), and integrate over all ξ. How good is the approximation? Note that at small- λ the saddle-point approximation works. (This is usually true for field theories too.)
3. (10 pts) Consider a non-Abelian gauge theory with the gauge field A_{μ}^{a} and the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

Here

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

with $f^{a b c}$ the structure constants of the gauge group $S U(N)$.
Write the equations of motion for this theory. If we define $J^{a \mu}$ by

$$
\partial_{\nu} F^{a \nu \mu}=J^{a \mu}
$$

what is $J^{a \mu}$ for the above Lagrangian?
4. (10 pts) When constructing gauge-invariant Lagrangian for the non-Abelian gauge field A_{μ}^{a} one may consider another Lorentz-invariant

$$
I=\epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
$$

Show that this term can be written as a 4-divergence,

$$
I=\partial_{\mu} K^{\mu}
$$

and find the 4 -vector K^{μ} explicitly in terms of the field A_{μ}^{a}. Why can not the invariant I serve as the Lagrangian for the non-Abelian field?
(Hint: you may find the identity

$$
f^{a b e} f^{c d e}=\frac{2}{N}\left(\delta^{a c} \delta^{b d}-\delta^{a d} \delta^{b c}\right)+d^{a c e} d^{b d e}-d^{b c e} d^{a d e}
$$

useful. Here the gauge group is $S U(N)$ and $d^{a b c}$ is the absolutely symmetric object defined by

$$
d^{a b c}=2 \operatorname{Tr}\left(T^{a}\left\{T^{b}, T^{c}\right\}\right)
$$

with T^{a} the generators of $S U(N)$ in the fundamental representation.)

