
Homework Set No. 3, Physics 880.08

Deadline – Wednesday, May 18, 2011

1. a. (5 pts) By explicitly expanding the exponentials on the left-hand-side and carrying
out the Grassmann integrals show that the following relation holds

∫

dχ̄1 dχ1 dχ̄2 dχ2 exp

[

−
∑

i,j

aij χ̄i χj

]

exp

[

∑

k

(χ̄k ξk + ξ̄k χk)

]

= (det A) exp

[

∑

i,j

ξ̄iA
−1
ij ξj

]

where χi and ξj are Grassmann variables, and A is a 2× 2 Hermitean matrix with elements
aij .

b (5 pts) Show that

−i
∂

∂ξ̄
F = χF = F χ

i
∂

∂ξ
F = χ̄ F = F χ̄

for the function

F = exp
[

i (ξ̄ χ + χ̄ ξ)
]

.

Here χ and ξ are Grassmann variables.

2. Nature of the perturbation series.
Consider a zero-dimensional “field theory” defined by the “path integral”

I(m,λ) =

∞
∫

−∞

dx e−S[x] (1)

where the (Euclidean) action is

S[x] = m x2 + λ x4.

a. (10 pts) Expand I(m,λ) in a perturbation series in the powers of λ. Show that the
radius of convergence of the series is zero.

You may need the integral definition of the gamma-function

Γ(z) =

∞
∫

0

dt tz−1 e−t
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along with the following property

Γ(z + 1) = z Γ(z).

b. (10 pts) Let In(m,λ) denote the truncated perturbation series from part a (partial
sum) with the highest power of λ being λn. Using your favorite numerical software plot
In(m = 1, λ) for n = 0, 1, 2, 3, 4, 5, . . . as functions of λ in the range λ ∈ [0, 0.1] (I got better-
looking plots in this range, but you may change it to make a better picture). On the same
plot draw the curve corresponding to the exact result

I(m,λ) =

√

m

4 λ
e

m
2

8 λ K1/4

(

m2

8 λ

)

,

with K1/4 the modified Bessel function. Demonstrate the asymptotic nature of the series: as
you increase the order n, the quality of the perturbative approximation first increases, but
then rapidly starts to decrease.

c. OPTIONAL (5 pts) Quasi-classical approximation: evaluate the integral I(m,λ) in
Eq. (1) using the steepest descent (aka saddle point) method. Find the “classical solution”
(xcl = 0), expand the power of the exponent to quadratic order in fluctuations ξ (where
x = xcl + ξ), and integrate over all ξ. How good is the approximation? Note that at small-λ
the saddle-point approximation works. (This is usually true for field theories too.)

3. (10 pts) Consider a non-Abelian gauge theory with the gauge field Aa
µ and the La-

grangian

L = −
1

4
F a

µν F a µν .

Here

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ + g fabc Ab

µ Ac
ν

with fabc the structure constants of the gauge group SU(N).
Write the equations of motion for this theory. If we define Ja µ by

∂ν F a νµ = Ja µ

what is Ja µ for the above Lagrangian?

4. (10 pts) When constructing gauge-invariant Lagrangian for the non-Abelian gauge
field Aa

µ one may consider another Lorentz-invariant

I = ǫµνρσ F a
µν F a

ρσ.
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Show that this term can be written as a 4-divergence,

I = ∂µ Kµ

and find the 4-vector Kµ explicitly in terms of the field Aa
µ. Why can not the invariant I

serve as the Lagrangian for the non-Abelian field?
(Hint: you may find the identity

fabe f cde =
2

N
(δac δbd − δad δbc) + dace dbde − dbce dade

useful. Here the gauge group is SU(N) and dabc is the absolutely symmetric object defined
by

dabc = 2 Tr
(

T a {T b, T c}
)

with T a the generators of SU(N) in the fundamental representation.)
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