Homework Set No. 4, Physics 880.08
 Deadline - Monday, June 6, 2011

1. For the non-Abelian gauge theory with the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

and the field strength

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

find the Feynman rules for the
a. (15 pts) 3 -gluon vertex, and
b. (15 pts) for the 4 -gluon vertex,
by calculating 3- and 4-point coordinate-space Green functions correspondingly at the lowest non-trivial order using Wick contractions, and by truncating the propagators. (Your answers should agree with the rules given in class.)
2. a. (30 pts) Calculate the cross section for

$$
\text { gluon }+ \text { gluon } \rightarrow \text { quark }+ \text { antiquark }
$$

at the Born level shown in the figure below. The figure is for the amplitude, which needs to be squared and multiplied by appropriate factors to get the cross section.

You should find

$$
\frac{d \sigma_{g g \rightarrow q \bar{q}}}{d t}=\frac{3 \pi \alpha_{s}^{2}}{8 s^{2}}\left(t^{2}+u^{2}\right)\left(\frac{4}{9 t u}-\frac{1}{s^{2}}\right)
$$

with the Mandelstam variables $s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}-p_{1}\right)^{2}, u=\left(k_{2}-p_{1}\right)^{2}$. $(q$ and \bar{q} in the figure denote the quark and the antiquark. Time flows upward.) Assume that quarks are massless.
b. (5 pts) Using the result of part a find the cross section $d \sigma_{q \bar{q} \rightarrow g g} / d t$ for the inverse process

$$
\text { quark }+ \text { antiquark } \rightarrow \text { gluon }+ \text { gluon. }
$$

Hints:
You may want to read Sterman pp. 233-237, where he works out the process from part b in much detail. If you choose to work in the $\partial_{\mu} A^{\mu}=0$ Lorenz gauge, then following Sterman one may use the polarization sum

$$
\begin{equation*}
\sum_{\lambda= \pm 1} \epsilon_{\mu}^{* \lambda}(k) \epsilon_{\nu}^{\lambda}(k)=-g_{\mu \nu}+\frac{\bar{k}_{\mu} k_{\nu}+k_{\mu} \bar{k}_{\nu}}{k \cdot \bar{k}} \tag{1}
\end{equation*}
$$

where for $k^{\mu}=\left(k^{0}, \vec{k}\right)$ we defined $\bar{k}^{\mu}=\left(k^{0},-\vec{k}\right)$. Using Eq. (1) after squaring the amplitudes one may simplify the resulting expression following Sterman's prescription.

The following γ-matrix formulas may be useful:

$$
\begin{gathered}
\gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 g^{\nu \rho} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{\mu}=-2 \gamma^{\sigma} \gamma^{\rho} \gamma^{\nu} \\
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu}\right]=4 g^{\mu \nu} \\
\operatorname{tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right]=4\left(g^{\mu \nu} g^{\rho \sigma}+g^{\mu \sigma} g^{\nu \rho}-g^{\mu \rho} g^{\nu \sigma}\right)
\end{gathered}
$$

For color traces the following expressions may come in handy:

$$
T^{a} T^{a}=C_{F} \mathbf{1}
$$

with

$$
\begin{gathered}
C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}, \\
\operatorname{tr}\left[T^{a} T^{b} T^{a} T^{b}\right]=-\frac{C_{F}}{2} \\
f^{a b c} f^{a b d}=N_{c} \delta^{c d} .
\end{gathered}
$$

