Homework Set No. 2, Physics 8808.1
 Deadline - Tuesday, September 18, 2012

1. Consider generators of some Lie group obeying Lie algebra commutation relations

$$
\begin{equation*}
\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c} \tag{1}
\end{equation*}
$$

with anti-symmetric structure constants $f_{a b c}$.
(a) (5 pts) Prove the Jacobi identity

$$
\left[X_{a},\left[X_{b}, X_{c}\right]\right]+\left[X_{b},\left[X_{c}, X_{a}\right]\right]+\left[X_{c},\left[X_{a}, X_{b}\right]\right]=0
$$

by expanding out the commutators.
(b) (5 pts) Use the commutation relation (1) for X_{a} 's in the Jacobi identity to show that

$$
f_{b c d} f_{a d e}+f_{a b d} f_{c d e}+f_{c a d} f_{b d e}=0
$$

which is also often referred to as the Jacobi identity.
2. (a) (5 pts) Suppose the generators of the Lie group in problem 1 are normalized such that

$$
\begin{equation*}
\operatorname{tr}\left(X_{a} X_{b}\right)=\frac{1}{2} \delta^{a b} \tag{2}
\end{equation*}
$$

Using this along with Eq. (1) find the structure constants $f^{a b c}$ in terms of generators X_{a} and prove that $f^{a b c}$ is anti-symmetric under the interchange of any pair of its indices.
(b) (5 pts) Using Gell-Mann matrices (and their commutators) find the structure constants f^{147} and f^{458} of the group $S U(3)$ employing the relation found in part (a) of this problem.
3. (10 pts) In class we defined the generators of the Lorentz group by

$$
L_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) .
$$

Show that these generators obey the following algebra

$$
\left[L_{\mu \nu}, L_{\rho \sigma}\right]=i \eta_{\nu \rho} L_{\mu \sigma}-i \eta_{\mu \rho} L_{\nu \sigma}-i \eta_{\nu \sigma} L_{\mu \rho}+i \eta_{\mu \sigma} L_{\nu \rho}
$$

