Homework Set No. 4, Physics 8808.02
 Deadline - Thursday, March 7, 2013

1. (10 pts) Fill in the steps omitted in class to derive the one-loop electron self-energy correction in QED using dimensional regularization. That is, obtain Eq. (10.41) in Peskin and Schroeder with zero photon mass, $\mu=0$, starting from

$$
\begin{equation*}
\Sigma_{2}(p)=-i e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\gamma^{\mu}(\not \not \subset+m) \gamma_{\mu}}{\left[(p-k)^{2}+i \epsilon\right]\left[k^{2}-m^{2}+i \epsilon\right]} \tag{1}
\end{equation*}
$$

Assume that $p^{2}<0$.
2. Using dimensional regularization find the one-loop beta-function

$$
\beta(\lambda)=\mu^{2} \frac{d \lambda}{d \mu^{2}}
$$

of the real scalar φ^{3} theory with the Lagrangian density

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \varphi_{0} \partial^{\mu} \varphi_{0}-\frac{m_{0}^{2}}{2} \varphi_{0}^{2}-\frac{\lambda_{0}}{3!} \varphi_{0}^{3} \tag{2}
\end{equation*}
$$

in six (!) space-time dimensions. Here φ_{0} is the bare field, while λ_{0} and m_{0} are the bare coupling constant and the bare mass correspondingly.
a. (20 pts) Similar to how you did it in HW 3 for ϕ^{4} theory, rewrite the Lagrangian (2) in terms of renormalized physical fields φ, coupling λ, mass m and the counterterms. By calculating the one-loop propagator and vertex corrections find the divergent ($\sim 1 / \epsilon$ with $\epsilon=6-d)$ parts of the coefficients of the counterterms δ_{λ} and δ_{Z}. (Ignore the tadpole graph.) Note that we do not need the finite parts of the counterterms to find $\beta(\lambda)$!
b. (10 pts) Using the results of part a find $\beta(\lambda)$ following the steps of the QED betafunction calculation performed in class.

